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Abstract: This paper describes a mathematical modelling technique which may be used to identify
the origin and release history of a polluting gas released into the atmosphere from a point source.
The inputs to this model are: pollution concentration measurements made at ground locations
downstream, wind speed and transport parameters. The inverse model is formulated as a non-linear
least-squares minimisation problem coupled with the solution of an advection-dispersion equation for a
non-steady point source. The minimisation problem is ill-posed; consequently its solution is extremely
sensitive to errors in the measurement data. Tikhonov’s regularisation, which stabilises the solution
process, is used to overcome the ill-posedness. Since the minimisation problem has a combination of
linear and non-linear parameters, the problem is solved in two steps. Non-linear parameters are found
by constructing an iterative procedure and, at each iteration, the linear parameters are calculated.
The optimal value of the regularisation parameter is obtained by incorporating the L-curve criterion
from linear inverse theory in conjunction with maintaining a steady increase in the regularisa-
tion parameter from one iteration to the next. Finally, the accuracy of the model is examined by
imposing a normally-distributed relative noise into concentration data generated by the forward model.
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1. INTRODUCTION

Atmospheric dispersion modelling may be
used in a post-accident management plan
to evaluate conditions in the case where the
accidents involve gas leakages. Atmospheric
dispersion models describe the transport and
dispersal of pollutant gases in the atmosphere.
A dispersion model, which is capable of de-
scribing the behaviour of air pollutants in the
atmosphere, requires the following input data:
(1) meteorological data such as wind speed,
direction and atmospheric stability, and (2) the
source emission rate and its origin. In reality,
meteorological data can be measured using
available measuring instruments, but the source
release rate and its origin are often unknown.
Methods to determine the release rate and
the origin of the source of the pollutant gas
are therefore a significant part of modelling
atmospheric dispersion.

The procedure for identifying the origin
and release rate of a gas from observations of
pollutant concentration reduces to a parameter
estimation problem in an air pollution model.

Several articles (Edwards et al., 1993; Kibler &
Suttles, 1977; Sohier et al., 1997), have been
published in this area. In these approaches air
pollution transport models for the steady-state
point source are used as representative of the
pollution transport process, but none of these
are based on the advection-dispersion model.

A variety of numerical and analytical tech-
niques have been proposed (Skaggs & Kabala,
1994; Woodbury & Ulrych, 1996; Neupauer
et al, 2000) to solve similar problems in the
area of groundwater modelling. Because of
the physical and mathematical similarities
between the mass transfer in water and air,
mathematical techniques used in groundwater
modelling are also relevant to the problem of
air pollution modelling.

The novel concept of this study is to identify
the origin and release history of a polluting gas
based on methods available in the groundwater
modelling literature. In one of our previous
papers (Kathirgamanathan et al., 2002) we
addressed the same problem. In this paper we
report a different technique as a computation-



ally more efficient substitute to the previous.
The development of this technique is based on
the work of Farquharson & Oldenburg (2000).

2. THE FORWARD PROBLEM

A Cartesian co-ordinate system (X,Y,Z)
is used with the X-axis oriented in the di-
rection of the mean wind, the Y-axis in the
horizontal cross-wind direction, and the Z-axis
oriented in the vertical direction. A gas
leakage with a mass release rate q(t) kg/s is
assumed to start at time ¢ = 0 at a point
(0,0,H) height H above the ground, which
is assumed horizontal. The released particles
are subsequently blown by a wind with mean
velocity uw = (U,0,0) and monitored at a
known location (Xp,Yp,0) on the ground.
The gas particles move with the wind in the
X-direction at the same time as being dispersed
by turbulence in the atmosphere. The mass
concentration C(X,Y,Z,t) of the cloud of
particles is described by (Kathirgamanathan et
al., 2002)
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and Kx, Ky and Kz are atmospheric disper-
sion coefficients in the X, Y and Z directions,
respectively.

3. THE INVERSE PROBLEM

Figure 1 illustrates the set-up of the
problem. The location and release rate
of the pollutant at its source are not
available, but the concentration of pol-

lutant distribution C(Xo,Yp,0,t;) = cF,
C(X() + a:l,YO + yl,O,ti) = ClQ, and
C(XO +1‘2,Yb +y270)ti) = Cﬁ (Z = 172)"')”)
with t; = 0, at down-stream locations P, @,

and R respectively are available, where Xg, Yy
are unknown and z1, 2, y1 and y» are known.
Here we use the concentration distribution at
three points on the ground since it has been
demonstrated in one of our previous papers
(Kathirgamanathan et al., 2001) that data from
at least three spatial locations are necessary to
estimate reliably. Our goal here is to estimate
the release rate ¢(t) of the pollution and its
location in terms of X, Yy and H. Here, H
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*| Source »- Goncentration at the location P

qlt) G- Concentration at the point Q
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-

Figure 1. Illustration of the inverse problem.

is the height of the pollution source from the
ground.

3.1. The least-squares formulation

The simplest way to proceed is to solve
(1) on a time mesh with uniform spacing.
We suppose that we wish to determine the
source release at times 74 = 0, ..., T, = tn,
where m < 3n since the number of parameters
to be estimated should be no greater than
the number n of measurement data points at
each location. Discretising (1) and using, for
example, the trapezoidal rule gives a system of
equations

c=A(p)q (3)
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where ¢ = cf,...,cﬁ,cl,...,cg,c{%,...,cf ,
Aij = [Kp(ti, ), Kqlti, 77), Kr(ti, 77)]" Bij,

a = [q(r0), .., q(r)]" and p = [Xo, Yo, H]",
and the B;; are quadrature weights. Generally,
minimising an objective function solves inverse
problems. Now the problem for estimating the
release rate q and the location p is

minimize  Z(q, p) = [|[A(p)a—cl3, (4)
where A(p)q, c¢ are vectors containing the
estimated and measured concentrations respec-
tively, p is the vector of unknown non-linear
parameters identifying the source location, and
q is the vector of unknown linear parameters
identifying the source release rates.  The
estimated concentrations are obtained from the
solution of the forward problem using estimates




of unknown parameter values.

Since the minimisation problem given in
(4) has a combination of linear g and non-
linear parameters p, we separate the solution
process into two steps. We find the non-linear
parameter p by constructing an iterative
procedure, where at each iteration a linear
sub-problem is solved to estimate the linear
parameter q corresponding to that particular
value of p. This procedure will speed up
enormously because, after the elimination of
q using linear algebra, only three non-linear
variables (p = [Xo, Yo, H]) remain. In one
of our previous papers we solved the same
problem given in (4) for a known value of p. It
was shown that the problem is ill-posed and we
therefore used Tikhonov regularisation to solve
the problem. The linear sub-problem inside the
non-linear iteration is an ill-posed problem.

3.2. Regularized least squares

Tikhonov regularization replaces the ill-
posed problem with the well-posed problem
by imposing a bound on the solution. With
Tikhonov regularisation, we introduce the
regularised objective function

Z(q, p) 1A(p)a — cll5 + A°||Lq]l3,
= ¢d+)\2¢m. (5)

Here, ¢q = ||A(p)q—c]||3 is the residual norm (or
data misfit function) and ¢, = ||Lq]|? is the so-
lution norm. We are interested in the function
Z(q,p) and its local and global minima with
respect to (q, p) for different values of the reg-
ularisation parameter A. L is the regularisation
operator and A is the regularisation parameter
that controls the relative strength of L, i.e. it
compromises between the accuracy and the sta-
bility of the solution. The most common form
of the regularisation operator is given by
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The most popular choice for obtaining a smooth
solution is N = 2 (Skaggs & Kabala 1994).

3.3. Selection of the
parameter

regularisation

In this section, we build up an algorithm
as a computationally more efficient alternative
to the algorithm described in our previous
paper (Kathirgamanathan et al., 2002). The
concept behind this algorithm is based on the

work of Farquharson & Oldenburg (2000). In
this work, the optimal A value of the nonlinear
minimisation problem

min ¢(x) = [|F(x) —cl* + N||ILx]* (7)
Pa(x) + N (%)

is projected using linear inverse theory (L-curve
or GCV). In (7), ¢4 is an error norm, ¢,, is a
solution norm and A is a regularisation param-
eter that balances the two components. In this
problem the relationship between the data and
the parameters x is non-linear. The non-linear
relationship is overcome by constructing an it-
erative procedure in which the non-linear min-
imisation problem is replaced at each iteration
by its linearised approximation. In the develop-
ment of the solution, the value of A\ starts from
a large value and then decreases from one itera-
tion to the next slowly in conjunction with the
equation

Ant1 = max(chy, A¥), (8)

where 0.01 < ¢ < 0.5, A* is an optimal value of
regularisation parameter obtained either using
the linear L-curve or the GCV at the n-th iter-
ation for the linearised equation, and A, Ap41
are the values of A at n-th, (n + 1)-th iteration,
respectively. Equation (8) efficiently imposes a
steady decrease on A values, thereby giving a
consistent algorithm for the non-linear inverse
problem. Iteration is carried out until A, the
error norm and the solution norm all reach a
steady state. At steady state, the optimal value
of regularisation parameter, A\*, obtained using
L-curve (or GCV) for the linearised problem,
is equal to the final A value, i.e. A* = A,qq.
It has been demonstrated Farquharson &
Oldenburg (2000) using simulated data sets
that at the final iterations the obtained value
of the regularisation parameter was a good
estimate of what was expected for a given noise
level in the data.

3.4. Some Difficulties

Here, we extend the description of the
above approach of estimating the optimal A
to our problem (5). The idea is to solve (5)
for a sequences of \’s (each A\ acts as the only
regularisation parameter for the problem) so
that this sequence approaches a steady state as
it proceeds. This algorithm is as follows:

1. Choose the starting point p = pg, index
I = 1, and initial value of regularisation
parameter Ay = Ao, which is very large.



2. Until convergence of A, [|A(p)q —cl|, ||Lq]|
do

(i) solve (5) for fixed Ar, and find the so-
lution p = pr;

(ii) obtain the optimal value of A = A* for
the linear problem

min [|A(pr)q — ¢l + N[ Lall

using the linear L-curve;

(iii) update the A value, A;y; =
max (cAr, A*);

(iv) take the solution py as the starting
point to the next problem with A =
AL41;

(v) I=I+1.

log||Lq]|
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Figure 2. Non-linear L-curves.

By numerical experiments we have found that
this approach does not lead to our desired
solution. In order to better explain this, we
provide the solution path of (5) for a sequence
of A values. Equation (5) contains the error
norm (¢q) and the solution norm (¢,,) where
the first is a non-linear part and the later is
quadratic. Equation (5) is non-quadratic if A
is small and therefore the solution of (5) may
have several local minima. This leads to several
solution paths, as shown in Figure . Suppose
that curve 1 is the path of the global minimal
solution to (5), and curves 2, 3 and 4 are
the corresponding local minimal solutions for
various A values. The value of A at M is large
and therefore gives only one minimum for (5).
If we start from M, there is no guarantee the
solution path of (5) will be curve 1 in Figure .
It might be curves 2 or 3 or 4 in Figure . This
example clearly demonstrates that the above
approach is not very useful for our problem. To

overcome the difficulty, we have to modify this
approach slightly.

3.5. The Modified Method

The approach is similar to the method
described above, but here we start with a
small regularisation parameter and then slowly
increase its value. In the first step, we find
all or most of the local minima of (5) for the
starting value of A. At this stage we have to be
very careful to avoid rank deficiency when we
choose a small value of A.

In the second step, we take each of the
local minima obtained from the first step as
the starting value to solve (5) for various A
from small to large. We increase A slowly using
the formula A;11 = min(cAs, A*), where ¢ > 1,
A* is the optimal value of the regularisation
parameter obtained using the linear L-curve for
the sub-problem

min [[A(p*)q —ef| + N?[|Lqll,

and p* is the global minimal solution for A;.
We repeat this process until A, the error norm
and the solution norm have achieved steady
state (or convergence). When ¢ is small, it
takes longer to converge on A, but the gap
between two points on the minimal solution
curves are close enough and it therefore avoids
jumping from one curve to other. Therefore
use of a small value for ¢ is recommended.

A sample solution path of minimisation
problem (5) is shown in the Figure . In our
previous paper (Kathirgamanathan et al.,
2002), we solve (5) for a sequence of \ values
(15¥A-=m!")\) and then find the optimal value
((r + 1)t X). In this paper, we solve (5) for a
sequence of A values from 1%\ to (r + 1)\
only. Therefore, it is clear that some of the
work implemented in the previous paper is not
necessary. Therefore the method described in
this paper is computationally more efficient
than the previous method. Both methods
are safer since we increase A slowly, and for
each A we find all local minima and select
the minimal solution that gives the objective
function minimum. Therefore, there is no way
to get trapped in a local minimum. These two
methods use different approaches to approx-
imate the optimal value, and therefore each
method may find different optimal values of A.
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Figure 3. Nonlinear solution path.

4. MODELLING APPLICATION

In this section, we present numerical cal-
culations to evaluate the accuracy of the
method developed. To do so, we consider an
input of concentration data generated from a
point source of strength ¢(t) kg s~! located at
(0,0,H) in the Cartesian coordinate system.
We simulate the concentration signals at down-
stream locations. =~ We obtain concentration
signals by using the forward problem (1) and
true parameter values. In order to simulate
errors, we corrupt the concentration signals by
adding normally-distributed random noise. For
illustrative purposes, Kx, Ky, Kz and U are
taken as 12, 12, 0.2113 and 1.8, respectively.
The purposes of the numerical example is to
demonstrate the simultaneous estimation of
parameters Xg, Yy, H and the source release
function ¢(¢). In this example we consider a

Table 1. Estimated values.

P True Estimated Confidence
values values interval
Xo 300.0 305.0 +12.6
Yo 50.0 47.9 +9.7
H 12.0 11.4 +0.7

set of data that is corrupted by 10% of random
noise. The results of the source-term estimation
are summarised in Table and Figure . Listed
in Table are the true non-linear parameter
(location) values along with the reconstructed
values and their confidence interval estimates.
The graph of the regularisation parameter
vs the number of calculations is shown in
Figure a. This figure clearly shows that after a
few calculations the regularisation parameter
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Figure 4. (a) convergence of A, (b) relative
error in q, (c) relative error in p, (d) release
rates vs time (e) concentration history at the

point P=(Xj, ¥5,0).



converges to 2.34 x 1076,  Figures b and c
depict the error in q and p respectively as a
function of . Figure d depicts the true linear
parameters (release rates), along with their
reconstructed values and confidence interval
estimation. Figure e depicts the true and
reconstructed concentration history at the
location P. The results from further numerical
simulations and comparisons suggest that both
approaches perform well, and one particular
approach does not always predict a better result
than the other approach. In our experience,
therefore both approaches are equally useful.
If we consider only the amount of computation
time, then the approach considered in this
paper is a better choice than our previous
paper. It is also noted that the accuracy of
the estimation decreases with the following: (i)
increasing noise in the data, (ii) decreasing the
size of the source function discretisation, (iii)
regularisation, and (iv) increasing distances
between source and observation sites.

5. SUMMARY AND DISCUSSION

The goal of the work presented here is to
develop an inverse model capable of simultane-
ously estimating the location and release rate
of a pollutant gas from a point source. The
approach is based on a non-linear least squares
estimation using pollutant concentration mea-
surements on the ground. As the problem is
ill-posed, we apply Tikhonov’s regularisation
method to stabilise the solution. The parame-
ters in the problem are not all linear. Therefore
we determined the linear parameters using
simple linear algebra and for the computation
of non-linear parameters we then relied exclu-
sively on MATLAB’s routine Isqgnonlin. This
process is speeded up enormously because,
after the elimination of linear parameters,
only a few non-linear parameters remain. The
optimal value of the regularisation parameter
is obtained using the linear L-curve in conjunc-
tion with maintaining a steady increase of the
regularisation parameter from one iteration to
the next. A numerical example given in the
last section shows the inverse model is able to
reconstruct the location and release rate of a
pollution source with reasonable accuracy.
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