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Abstract: Consideration of the scale of interaction between precipitation and topography is important for the 
accurate interpolation of rainfall in mountainous areas and also provides insight into the physical processes 
involved. In this paper we use trivariate thin-plate smoothing splines to interpolate monthly rainfall over two 
subregions of the Australian continent, incorporating different overriding climatic conditions and rainfall 
types. The interpolations are based upon elevations derived from elevation grids of various resolutions. All 
the grids are local averages of version 2.0 of the 9 second resolution digital elevation model of Australia. The 
results suggest that the optimal scale of interaction between precipitation and topography, as it pertains to the 
interpolation of precipitation in Australia, is between 5 and 10 kilometres. This is in agreement with results 
of similar studies dealing with daily precipitation. 
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1. INTRODUCTION 

Precipitation exhibits complex spatial behaviour 
and it is well known that this behaviour is often 
related to the underlying topography. Determining 
the scales of the interaction of observed 
precipitation with topography thus has bearing on 
the spatio-temporal analysis of precipitation and 
can provide insight into the nature of the 
precipitation processes involved. In particular, 
knowledge of the scale of dependence of 
precipitation on topography can be used to 
optimise interpolation methods that incorporate 
topographic dependence for estimating the spatial 
distribution of quantities related to precipitation. 
Such interpolatory methods play a pivotal role in 
a wide range of applications concerned with 
assessing the impacts of climate on agriculture, 
ecology, hydrology and tourism (Hutchinson 
[1995a], Hulme, et al. [1995], Houghton et al. 
[1996], Ruddell, et al. [1990]). In addition, since 
physically based precipitation models present 
forecasts in the form of gridded surfaces that are 
typically made at grid resolutions from tens to 
hundreds of kilometres, methods for interpolating 
precipitation observed at discrete locations has an 
important part to play in the calibration and 
validation of such models. 

In this paper we specifically address the problem 
of determining the optimal degree of horizontal 
resolution suitable for the interpolation of 
monthly point precipitation values. Given the 
physical characteristics of the processes involved 
during a precipitation event it is intuitively clear 
that the layers of air between the rain bearing 

clouds and the underlying topography act as a 
diffusive buffer. Thus one would expect the 
precipitation patterns to conform to a broader 
scale representation of the underlying topography. 
Determination of the appropriate degree of 
horizontal scaling for the interaction between 
monthly precipitation totals and topography in 
Australia is hence the main focus of this paper. 

 

2. STUDY REGIONS AND DATA 

We present results for two subregions of the 
Australian continent. The first region of interest is 
the portion of South Australia/Victoria falling 
within the limits of 137o and 141o longitude and   
-38o and -29o latitude. The second region is the 
portion of Queensland/New South Wales falling 
within the limits of 147o and 154o longitude and     
-29o and -22o latitude. Margins of 1o were added 
to these limits to reduce errors due to edge effects.  

The two regions with margins are shown in 
Figure 1 along with the precipitation data 
locations.  We will use the abbreviations SA to 
refer to the first region and SQ to refer to the 
second region.  These regions were chosen since 
they both contain significant topography. The 
climate of the SQ region, however, is 
subtropical/tropical, while the climate of the SA 
region is temperate. The precipitation in the SA 
region usually results from frontal activity while 
in the SQ region the precipitation can result from 
both frontal activity moving up the east coast as   
well as seasonal convective activity originating in 
the tropics. The precipitation data used in this   
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Figure 1. Locations of data points for (a) SA region and (b) SQ region. The dashed lines frame the areas of 
study. The solid lines enclose those data points within the study areas plus margins. 

 

study were obtained from the Bureau of 
Meteorology and consisted of monthly totals for 
the year 2000. For the SQ region the data 
consisted of 1023 points within the margins, 830 
of which were within the limits defined above. Of 
these 830 points, 60 were randomly removed to 
provide a validation data set for the fitted spline. 
For the SA region the data consisted of 566 points 
within the margins, 449 of which were within the 
specified limits. Of these 449 points, 40 were 
randomly removed for validation purposes. 

The square root transformation was applied to the 
precipitation values before the interpolation to 
remove the natural skewness in the distribution of 
rainfall values. Application of this transformation 
also helped facilitate the identification of bad data 
values. 

The monthly precipitation data was interpolated 
using the ANUSPLIN 4.3 package, which is a 
collection of FORTRAN routines for calculating 
thin-plate smoothing splines (Hutchinson [2003]). 
A new feature of the ANUSPLIN 4.3 package is a 
facility for the systematic identification and 
removal of suspected bad data points. Data values 
that differ from the fitted surface by more than 3.6 
standard deviations are flagged. These data values 
can then be compared to values at nearby 
locations. In this way erroneous data can be 
identified and removed from the data set. 
Typically, one often finds spurious zeros that 
have been confused with a missed reading. Given 
this new feature, the full data sets (before 
removing validation points) were subjected to 
initial spline analyses using elevation data derived 

from the 9 second DEM. These initial analyses 
then provided a set of suspect data points for each 
region that was excluded from all of the 
subsequent spline analyses. It should be noted that 
many of the suspect zero data points would not 
have been identified without the aid of the square 
root transformation. 

The elevation data were derived from local 
averages of version 2.0 of the 9 second (approx. 
250m) resolution digital elevation model of 
Australia (Hutchinson et al. [2001]). The local 
averages of the DEM were obtained using the 
GRDGEN routine (Hutchinson, [2002]), which 
averages the DEM over grid cells of a specified 
size. Thirteen different grid resolutions were used, 
ranging from 250m to 90km.  Scale specific 
elevation data were then attributed to each data 
location using the INTGRD routine (Hutchinson, 
[2002]), which applies biquadratic spline 
interpolation to each of the locally averaged 
DEMs. In addition, the station heights as recorded 
in the Bureau of Meteorology’s database were 
also used to test how ultra fine resolution 
elevation data effects the interpolation of 
precipitation. In this way fourteen sets of 
precipitation/elevation data were obtained for the 
regions, each pertaining to a different horizontal 
topographic scale. 

The spline interpolation for the SA region was 
based on 400 knots chosen by successively 
removing closest data points. Similarly, for the 
SQ region, the surface fitting was based upon 900 
knots. The use of knots, rather the full data set, as 
a basis for spline interpolation, bypasses the 



4. RESULTS effects due to short-range correlation within the 
data and can thus lead to more stable surfaces. 
The ANUSPLIN 4.3 package allows for the 
automatic selection of a specified number of 
knots using the SELNOT routine.  

The square root of the GCVs and the residual 
mean square errors for the square roots of the 
precipitation values in the validation data sets 
were obtained as outputs from the SPLINB 
routine.   

3. SMOOTHING SPLINE METHOD The effect that the horizontal resolution of 
topography has on the interpolation of rainfall in 
the SA and SQ regions can be seen in figure 2 and 
figure 3, respectively. These figures show plots of 
the GCV versus horizontal resolution for each of 
the months of the year 2000. The various GCV 
curves have been vertically translated to elucidate 
their comparison. The vertical axes have been left 
unmarked for this reason. In doing the 
translations, however, we have preserved the 
relative positions of the monthly curves with 
respect to the vertical axis. 

The measured precipitation values are assumed to 
be realisations of the model   

                     ri
1/2 = f(xi,yi,hi)  + εi 

where ri denotes the precipitation recorded at the 
location whose longitude and latitude are xi and yi 
respectively, and whose elevation is hi. The εi 
represent random error terms, assumed to satisfy 

                   ε = (ε1,….,εn)T = N(0,σ 2I). 

 Units of degrees were used for the latitude and 
longitude of the data locations, while units of 
kilometres were used for the elevations. This is in 
keeping with the commonly accepted atmospheric 
horizontal and vertical distance scales of 1000km 
and 10km respectively (Daley [1991]) and with 
the results of other studies concerned with the 
effect of the vertical exaggeration of elevation on 
the interpolation of precipitation (Hutchinson and 
Bischof [1983], Hutchinson [1995b]). 
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Figure 2. Monthly plots of GCV versus 
Horizontal Resolution of Topography for the SA 
region. 

The general thin-plate smoothing spline estimate 
of the function f is obtained by minimising 

              1/n || r1/2 – f(x,y,h) ||2 + λ Jm( f ) 

over a suitable class of functions. The first term in 
the above expression is the average squared 
Euclidean distance between the observed data and 
fitted values, and Jm(f) is the mth order roughness 
penalty consisting of the integral of squared mth 
order partial derivatives of f. In this study we will 
take m=2 so that we are considering smoothness 
in terms of second order partial derivatives of the 
function f. The parameter λ determines a balance 
between the fidelity to the data and the degree of 
smoothness of the fitted spline function f. This 
parameter is usually determined automatically by 
minimising the generalised cross validation 
(GCV). The GCV provides a reliable measure of 
the predictive error of the fitted surface that is 
calculated from the data by implicitly withholding 
each data point in turn from the fitting procedure.  
For further details on thin-plate smoothing splines 
the reader is referred to Wahba [1990] and 
Hutchinson [1995b]. 
 
The SPLINB routine in the ANUSPLIN 4.3 
package facilitates the calculation of minimum 
GCV thin-plate smoothing splines based on knot 
sets. 

In figure 2, the majority of the months show local 
or global minima in the vicinity of a horizontal 
resolution of about 5 to 8 kilometres. Moreover, 
in the cases of January and December, where no 



well defined local minima is evident, the GCV 
still displays an increase once the horizontal 
resolution exceeds approximately 10 kilometres. 
In figure 3, the GCV curves are slightly noisier 
yet we again see the well defined local or global 
minima in the GCV at approximately 5 to 6 
kilometres. The months of July and September are 
notable exceptions to this trend. Note, however, 
that almost no rain was recorded in these two 
months; the network means for July and 
September were 12 mm and 3 mm, respectively, 
as compared to the mean over all months of 63 
mm. 
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Figure 3. Monthly plots of GCV versus 
Horizontal Resolution of Topography for the SQ 
region. 

The two regions under study differ in their 
prevailing climatic conditions. One way this 
difference manifests itself is in the form of the 
different seasonal rainfall patterns observed in the 
two regions. Hence, to better understand what 
effect this difference might have on the 
interaction of topography and precipitation, we 
partition the months into seasonal blocks. 

Figure 4 thus takes a slightly more compressed 
view of how the square root of the GCV varied 

with the horizontal DEM resolution for the SA 
region.  Shown are the means over the ‘winter’ 
months of April through to September and the 
means over the remaining ‘summer’ months.  
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 Figure 4. Mean square root of GCV for 
‘summer’ and ‘winter’ months for the SA region. 

The winter mean GCV curve displays a sharp 
minimum at approximately 7 km resolution while 
the summer mean GCV curve shows a less 
defined but similar effect. The reason for the 
difference between the summer and winter GCV 
curves is due to the fact that the majority of 
precipitation in the SA region occurs during the 
winter months. Thus, the mean rainfall over the 
data network in July was 57 mm compared to just 
5 mm in January. One would not expect to see a 
significant topographic effect during months 
when rainfall is slight. 

Figure 5 shows the corresponding square root of 
GCV curves for the SQ region. In contrast to the 
SA region, both the summer and winter mean 
GCV curves show definite minima at a horizontal 
resolution of approximately 5 km. The similar 
behaviour in summer and winter is due to the 
relatively high rainfalls that the SQ region 
receives for the majority of months in the year. 
The winter rainfall originates predominantly form 
frontal weather patterns while the summer rainfall 
is most likely associated with seasonal tropical 
weather patterns.  As mentioned before the only 
significantly ‘dry’ months for the SQ region in the 
year 2000 were July and September. Both of these 
months elicited almost no response to the 
resolution of the underlying topography. 



0.01 0.1 1 10 100

Horizontal Resolution (km)

Sq
ua

re
 R

oo
t o

f G
C

V

Summer Mean Winter Mean

0.82

0.84

0.86

1.20

1.18

1.22

Figure 5.  Mean square root of GCV for 
‘summer’ and ‘winter’ months for the SQ region. 

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.01 0.1 1 10 100

Horizontal Resolution (km)

Va
lid

at
io

n 
Er

ro
r

Summer Mean Winter Mean
 

Figure 7. Mean validation error for ‘summer’ and 
‘winter’ months for the SQ region. 

winter months display broad minima between 5 
and 10 kilometres. Again, as in figure 2, the effect 
is more pronounced in the winter months when 
the majority of rain is experienced in the SA 
region. 

Analogous plots of the validation error for the 
square root analysis can be seen for the SA region 
in figure 6 and the SQ region in figure 7. The 
validation plots are noisier than the GCV plots 
but in figure 6 the means for both the summer and  

In figure 7 both the summer and winter mean 
validation error curves behave rather erratically 
between 8 and 15 kilometres resolution. The 
winter validation error curve shows a broad 
minimum at approximately 3 kilometres 
resolution. This feature, however, is not seen in 
the summer validation error curve. Given the 
spatial extent of the SQ region and the sparseness 
of the data network within it, it would be unwise 
to place too much emphasis on these results. As 
well as having regions of significant topography, 
the SQ region contains relatively flat regions also. 
If a significant fraction of validation points are 
found over such flat regions then the ensuing 
response of the validation errors to horizontal 
resolution will be corrupted. 
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Figure 6. Mean validation error for ‘summer’ and 
‘winter’ months for the SA region 

 

5. CONCLUSIONS AND DISCUSSION 

This study has shown that the optimal horizontal 
resolution of topography for the interpolation of 
monthly rainfall in two subregions of the 
Australian continent is approximately 5 to 8 
kilometres. The fact that this approximate scale 
suggested itself so predominantly in both regions 
and in the majority of months considered 
indicates that 5 to 8 kilometres is a good estimate 



of the actual scale of the interaction of monthly 
precipitation with topography in general. 
Moreover, the result obtained in this paper is in 
good agreement with the results of Hutchinson 
[1998] in which the author found an optimal 
horizontal resolution of approximately 8 
kilometres. The precipitation data used in 
Hutchinson [1998], however, consisted of daily, 
rather than monthly totals, collected over a 
portion of the Swiss Alps. The fact that the same 
resolution was found in both studies suggests that 
the result is, to an extent, independent of the 
temporal nature of the precipitation data and the 
geographical or climatic region in which the 
precipitation data was collected. This lends 
further weight to the claim that the atmospheric 
processes involved in the creation of precipitation 
respond to the underlying topography at a 
resolution of approximately 5 to 8 kilometres in 
general. 

This result thus has bearing on the development 
of atmospheric models. The inclusion in models 
of a suitable scale of interaction between the 
atmosphere and topography has the potential to 
improve model performance and to lead to a 
better understanding of atmospheric processes. 

The result has additional importance in that it 
suggests that there is a scale of horizontal 
resolution of topography, below which no real 
improvement in interpolation error is achieved. 
Fine scale analyses of environmental processes 
often require increasingly finer resolution grids of 
environmental variables and this means that they 
demand more computer space for their storage. 
Hence, until improved topographically dependent 
models are found, it is useful to know that 
precipitation, despite its spatial complexity, 
requires only a 5 to 8 kilometre resolution grid of 
elevation to optimise its topographic dependent 
interpolation from discrete sources. 

The noisy and inconsistent results found for the 
validation errors in the SQ region are believed to 
be due to deficiencies in the data network and the 
relatively large prediction error associated with 
rainfall validation data sets of modest size. The 
data network deficiencies are due to the 
sparseness of the SQ data network and the mixed 
topographic regimes found within the SQ region.  
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