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Abstract: The effect of fluctuations in the drift velocity on dispersion by a porous medium is investigated. 
An analytical model is developed which represents the effect of a single discrete step in the velocity of a 1-
dimensional flow as a multiplicative factor that modifies the underlying linear growth in solute variance 
predicted by the standard advection-dispersion equation. The algebraic structure of the model identifies two 
variable combinations ∆ and α that characterize the step and the rate of stochastic dispersion respectively, in 
terms of which a simple formula for the downstream effect of the step on dispersion is obtained. This 
formalism is next applied to a sequence of 3 steps representing a velocity fluctuation, and it is shown that 
while kinetic compression effects cancel out across such a fluctuation, the stochastic dispersion increases for 
any plausible combination of ∆ and α. This implies that a dispersion enhancement factor f is associated with 
a fluctuation, and a simple formula is obtained for this in terms of variables that describe the fluctuation 
length and amplitude. Moreover, the algebra leads to the definition of a natural length scale Λ related to the 
Peclet number of the flow.  Repeated application of this formula is used to find the cumulative dispersion 
enhancement by a sequence of identical fluctuations, leading to an expression for dispersivity  as a function 
of the distance traversed by a solute plume. Key features of the model are that the dispersivity behaves 
differently for traversal lengths above and below Λ, and that above this transition it is proportional to a 
fractional power of the traversal length. These features are in agreement with experimental observation of 
scale-dependent dispersivity, but quantitatively the observed growth in dispersivity over several orders of 
magnitude is not obtained for any reasonable choice of parameter values. 
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1. INTRODUCTION 

It is a well-known fact [Fetter (1999)] that the 
observed dispersivity of natural porous media 
such as underground aquifers depends strongly on 
the length scale of the flow for which dispersion 
is measured. It is also widely accepted that this is 
related to the inhomogeneity of natural media, i.e. 
variations in the hydraulic conductivity and 
porosity of such media. 

This paper presents a further step in our ongoing 
investigation of this phenomenon, that is based on 
the premise that variations in media properties 
and geometry cause macroscopic variations in the 
drift velocity of the fluid that carries a solute 
plume through the medium.  

Such variations have been shown previously to 
modify the diffusion-like behavior of dispersion 
in a constant flow velocity.  Diffusive behavior 
(as follows from Fick’s law) is exemplified by the 
linear time-dependence of a gaussian 
concentration plume variance with initial value S2 

 2 2( ) 2t S D tσ = +  (1) 

where D = d v is defined as the dispersion 
coefficient, d as the dispersivity and v is the 
constant drift velocity.  

In particular, we have shown [Kulasiri and 
Verwoerd  (2002)] that if v changes linearly with 
the traversal length x of the plume, an exponential 
increase or decrease of the variance with time 
replaces the linear growth. Part of this is merely a 
reversible kinematical effect, but there is also an 
irreversible part that expresses an interaction 
between random deflections of the fluid flow by 
the pore structure, and a macroscopic change of 
the flow velocity v. This interaction is a 
consequence of the fact that at a microscopic 
level, the motion of fluid elements is described by 
a stochastic partial differential equation (SPDE) 
in which v plays the role of a driving coefficient. 

A similar but less dramatic deviation from linear 
diffusive behavior has also been demonstrated 
[Verwoerd and Kulasiri (2001)] for the discrete 
velocity steps of a piecewise constant, 1-
dimensional velocity. In this case it was found 
that when a gaussian concentration plume 
propagates through a step, the profile remains 
approximately gaussian but the variance is now 
given by the expression: 
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For a constant velocity a(T) = 1 and we recover 
the linear time relationship. In this equation γ  is 



the amplitude of the stochastic term in the 
underlying SPDE, and a comparison of equation 
(2) in the constant velocity case with equation (1) 
shows that apart from proportionality constants γ2  
then reduces to the dispersion coefficient D  

The most significant feature of equation (2) is that 
beyond a step, the linear time dependence is 
modified by the multiplicative factor 1/a(T) . Here 
T is a dimensionless time parameter expressed in 
terms of the time θ at which the plume reaches 
the step, and a(T) is approximated by 
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Here ∆ = (V2-V1)/ (V2+V1) is a dimensionless 
parameter that characterizes the height of the 
velocity step from V1 to V2, and α  is the ratio of 
the plume variances at the entry and exit points of 
the velocity regime that is terminated at the step 
under consideration. The approximation holds for 
∆ < 0.3 . 

When the peak reaches the step, T = 1. In the 
absence of dispersion α = 1 and then a(1) reduces 
to the kinematical value (1-∆)2/(1+∆)2 . With 
dispersion, equation (3) only applies at T 
sufficiently larger than 1 that the plume has fully 
penetrated the step. At such a time a(T) 
approaches the kinematical compression 
(stretching) of the plume at a downwards 
(upwards) velocity step, but then decays back to a 
value of 1 for large times (i.e., at positions far 
beyond the step). 

The cases of linear velocity growth over an 
indefinite period, and of a velocity step, both 
demonstrate the principle of non-linear dispersion 
growth, but neither represents a realistic scenario. 
Instead, an actual flow through an aquifer would 
be expected to show fluctuations of the flow 
velocity around the average that is deduced from 
total flow volume measurements. 

 To model that, this paper sets out to explore the 
extension of the single step results to multiple 
steps, such as may be used to describe a series of 
fluctuations of the flow velocity about an average 
value. Clearly such a piecewise constant velocity 
description is still highly idealized, but has the 
advantage that with a simple formula such as 
equation (3) it is feasible to perform a detailed 
calculation analytically and hence gain far more 
insight into the important processes and variables 
that are involved. 

2. THE MULTIPLE STEP MODEL 

In the detailed analysis of the single step, it was 
found that a gaussian incident concentration peak 

is somewhat distorted when it penetrates the step, 
and this was expressed by a slowly varying 
modulation factor that multiplies the transmitted 
peak.  As a simplifying assumption, we now 
ignore the modulation and hence use the output 
gaussian, with its non-linear time dependent 
variance, as the input gaussian for the next step.  

The variables that are needed to describe the 
effect of the m-th step are then given by the 
following expressions: 
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In a similar way ∆ acquires an index and is 
calculated by appropriately assigning the 
applicable velocity values for the particular step.  

While the output gaussian from step m propagates 
to step (m+1), its variance changes and so the 
input variance for step (m+1) is found by 
evaluating equation (3) for am(Tm) at the Tm-value 
obtained by setting t = θm+1, hence reducing Tm to 
√αm+1 . When the peak emerges from step (m+1) , 
the variance acquires an additional factor 
1/am+1(Tm+1) which once more is evaluated at Tm+1 
= √αm+2 to give the input gaussian for step (m+2). 

In this way the cumulative effect of a sequence of 
M steps, is to multiply the variance by an 
enhancement factor FM defined by using eq (3) as: 
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In this expression, strictly speaking the M-th 
factor and hence also FM should still be a function 
of an undetermined TM -parameter. But in most 
applications one envisages an infinite sequence of 
steps and M is simply the number of steps that the 
plume has penetrated in moving from the origin to 
a position x. Then it is appropriate to evaluate the 
effect of the first M steps at the time when it 
enters the (M+1)-th, and equation (5) is obtained. 

As a simple illustration of the use of this formula, 
suppose that a smooth linear velocity growth v = 
v0 + p x , is approximated by a “staircase” of 
regularly spaced small discrete steps, all with the 
same value for ∆. In this case, the relation 
between the continuous and stepped versions is 
expressed by  

 ( )1
2M pt+∆

∆=  (6) 

where t is the time at which the plume reaches x .  

Suppose first that there is no dispersion, i.e. the 
deterministic limit, and so all α = 1. Then the 
product expression becomes a simple power law  
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and in the limit of large M, i.e. small ∆, this 
reduces to e pt by virtue of the well known identity 
(1 )n n xx

n e∞+ → .  This exponential growth or 

decline is identical to that calculated directly for 
the deterministic evolution of a gaussian plume in 
a flow with a constant velocity gradient p.  

Returning to the full dispersion expression, the θm 
may be expressed in terms of ∆ and p and used to 
substitute the αm in equation (5). The resulting 
product is complicated but may be expressed in 
terms of Gamma-functions, and these 
approximated by the Stirling approximation. In 
this way similar exponential factors as for the 
deterministic case are retrieved. Again the result 
can be compared to the exact result derived 
[Kulasiri and Verwoerd (2002)] for stochastic 
dispersion in a constant velocity gradient. The 
analytical expressions are in this case not 
identical, as a result of the approximations 
involved in equation (3), but contain similar 
exponential terms and give a very similar 
numerical behavior. 

The success achieved in using the discrete step 
approach as a model in the case of a linear 
velocity change for which exact results are 
known, gives us confidence to apply the same 
approach to model the as yet unknown case of 
velocity fluctuations.   

The decay of the single step factor in equation (3) 
beyond the step position implies that there is an 
associated length scale. Length scale effects are 
bound to follow from this for fluctuations made 
up of steps. It is therefore prudent to construct the 
fluctuation model in such a way that it has a 
unique characteristic length, allowing analysis of 
how this length affects the final results. That is 
most easily achieved by locating all steps at the 
positions of a fixed periodic grid, with a spacing  
L .  Figure 1 illustrates the simple fluctuation 
model assumed for the work presented here. 

The value V represents the average flow velocity. 
The value of V2 is fixed by freely choosing the 
step size parameter ∆ to determine the amplitude 
of the fluctuation about V; i.e., V2 = V(1+∆)/(1-∆). 
Then V3 is chosen in such a way that the average 
velocity will indeed be V, and this is found to be 
V3 = V(1+∆)/(1+3∆). So the fluctuations are fully 
characterized by the amplitude parameter ∆ and 
the fluctuation length 3L which is in effect the 
periodic repeat length. 

 

 

 

 

Figure 1. Step model for velocity fluctuations on 
a periodic grid of length L 

In the absence of dispersion, the only effects of 
the steps are the kinematical compression or 
stretching of the gaussian solute peak required by 
flux conservation, and these obviously cancel 
over the combination of 3 steps that make up a 
single fluctuation. It therefore makes sense to also 
collect the 3 steps together when describing the 
evolution of the plume in the presence of 
dispersion. Any deviation from 1, in the 
combined multiplicative factor, can then clearly 
be ascribed to a fluctuation effect on dispersion.  

The first step in this calculation is to find the 
arrival times of the peak at each step, as 
θi=Θi(L/V) where the dimensionless arrival times 
Θi are Θ1=1, Θ2=2/(1+∆) and Θ3=3. Putting these 
into the definitions of the αi as in equation (4) we 
find 
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This equation exhibits a crucial fact that pervades 
all of the results on the fluctuation model, namely 
that all lengths are measured with respect to a 
common length scale defined by  

 2 2/cV t V S γΛ = − =  (9) 

This is applied by replacing L in the expression 
for the Θi by the scaled grid spacing λ = L/Λ  

The effect of the first fluctuation that the plume 
encounters is then given by an enhancement 
factor f = F3 in the notation of equation (5), and it 
is easily seen that this is a function of only the 
two dimensionless parameters ∆ and λ that 
characterize the fluctuation amplitude and length 
respectively. 

The analytical form obtained for f(λ,∆) is very 
complicated, but its numerical behavior is rather 
simple, as shown in figure 2. Plausibly, for either 
∆ = 0 or λ = 0 , f = 1 and there is no enhancement. 
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Figure 2. The single fluctuation enhancement 
factor for –0.2 < ∆ < 0.2, and  0 < λ < 1.  

However, a very significant feature seen in the 
figure is that for all other combinations of ∆ and λ 
values, f is greater than 1, which means that 
dispersion is increased relative to the diffusive or 
Fickian values by a fluctuation. It is not obvious 
that this will happen, as a single upwards velocity 
step suppresses dispersion while a downwards 
step increases it, and without dispersion these 
effects cancel exactly across a fluctuation. We 
have earlier shown [Verwoerd and Kulasiri 
(2001)] from numerical calculations that a net 
residual enhancement of dispersion across a 
fluctuation is obtained for a specific example, but 
the analytical result reported here is a major 
advance as it shows that this is true in general. 
The parameters displayed in the figure cover a 
generous range, allowing for the maximum and 
minimum velocities to differ by ≈40% from the 
average, and as will be seen below only λ << 1 is 
expected to be physically relevant.  

This result adds substantially to the plausibility of 
the simplified model under discussion where all 
fluctuations are assumed to be identical. If f 
turned out to be <1 for some fluctuations, it might 
have been argued that in a realistic system 
fluctuations over a range of amplitudes and 
lengths will be present and could cancel each 
other. As this is not the case, the present model 
where in effect the ranges are represented by their 
averages and the effects from subsequent 
fluctuations are allowed to accumulate, appears 
quite reasonable as a first approximation. 

The next step is to include multiple fluctuations in 
the calculation. We modify the notation slightly in 
henceforth using m as an index counting 
fluctuations rather than steps. Equation (5) is 
accordingly modified by replacing the single step 
factor that appears as the subject of the product, 
by a product of the 3 step factors that make up the 
m-th fluctuation. Analytical calculation of this 
single fluctuation enhancement factor  fm(λ,∆) 
proceeds as outlined above for the special case 
now written as f1(λ,∆). Once more a very 

complicated, but rational algebraic expression is 
obtained for fm(λ,∆). The nature of its m-
dependence is illustrated in figure 3. 

 

Figure 3. Dependence of the single fluctuation 
enhancement (solid line) on the fluctuation 
number m, for ∆ = 0.1 and λ = 0.001. The dotted 
line corresponds to the scale length Λ .  

The enhancement encountered by the plume as it 
traverses a sequence of fluctuations decreases 
slowly at first, but when it reaches the m-value 
that corresponds to the scale length Λ there is a 
sharp decline and a further asymptotic decrease 
beyond that. The parameter values chosen to 
display this behavior, were found by taking a 
Peclet number between 1 and 10, the initial plume 
extension of the order of 10-2 m and the pore 
diameter 10-4 m. These are merely meant as 
plausible order of magnitude estimates and lead to 
a Λ value in the order of 10 m or larger. Then the 
assumed value λ = 0.001 implies a physical 
fluctuation length of about 3 cm, which appears a 
reasonable estimate of the scale on which 
inhomogeneities appear in natural aquifers. 

The crucial role played by Λ is seen to be as a 
transition point between distinct short range and 
long range behaviors of the enhancement factor. 
Such a distinction between short- and long range 
behaviors is also noticeable in experimental 
observations of the dispersivity that extend over a 
sufficient spatial scale, and it is gratifying to find 
it arising as a natural consequence of the 
mathematics of the fluctuation model. 

However, before dispersivity can be calculated, it 
is first necessary to perform the repeated product 
of enhancement factors required by equation (5). 
Unfortunately, this is not feasible with the 
complicated form obtained for fm so far and we 
resort to an approximate expression for it. 

The strategy used to find such an approximation, 
is to make three series expansions of fm about the 
points m = ∞, λ = 0 and the point m = 1/2λ that 
falls inside the transition range; then a simple 
function was guessed that has the same 
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dominating terms in its series expansions about 
the same points. A surprising feature of the 
dominating terms in all three expansions is that 
the ∆-dependence is separated out into an 
identical rational polynomial expression that we 
designate as Q(∆). In terms of this the 
approximation found is 
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 This amazingly simple expression reproduces the 
behavior of the full formula for fm to such an 
extent that it is indistinguishable from the original 
curve for the parameter values shown in figure 3; 
only when λ approaches 1 does it underestimate 
the exact value by a few percent in the low range, 
while the high range values are still very close. 

A plot of the Q function for a range of ∆-values is 
shown in figure 4. 

Figure 4.  Q as a function of step size parameter 
∆, for the regular grid fluctuation model (solid 
line) and for a non-grid model (dashed line). 

The calculations described so far have also been 
done for a slightly more general fluctuation 
model, in which the restriction of steps to lie at 
grid points was relaxed. It turns out that while the 
full expression for fm is different, equation (10) 
still holds but a somewhat different expression for 
Q(λ) is obtained.  Both curves are plotted in 
figure 4, and while Q is seen to be moderately 
sensitive to the details of the shape of the 
assumed fluctuation profile, Q values are less than 
about 0.4 for reasonable fluctuation amplitudes. 

Equation (10) is simple enough that when 
substituted into equation (5) the expression for the 
cumulative enhancement factor FM can be 
calculated analytically. It is obtained as a ratio of 
two Pochhammer functions which are themselves 
defined as a ratio of Gamma functions. The 
Stirling approximation is applied to these, and 
after simplification we obtain the following 

expression for the cumulative enhancement 
factor: 
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When the plume has traversed a distance x, the 
number M of fluctuations that it has encountered 
is given by x = 3LM and the time t taken is x = Vt.  

One way to proceed is to eliminate M in favor of 
t, and then multiply this by the diffusive 
dispersion expression  γ2(t-tc) of equation (2) to 
get the gaussian variance of the plume. This is 
clearly non-linear in t and a commonly used 
strategy is to take the time derivative of that as the 
dispersion coefficient D. On the other hand, one 
may simply take the D as the coefficient of the 
factor (t-tc), i.e. divide the variance expression by 
(t-tc) instead of differentiating it. Both procedures 
give the same result in the only case where the 
definition of a dispersion coefficient is strictly 
meaningful, i.e. the case of diffusive dispersion. 
Non-linear time dependence of the variance gives 
a slightly different result, but the division 
procedure that in effect extracts an average value 
over the interval  (0,t), is closer to the way 
dispersivity is determined experimentally.   

We therefore use the latter method, and in the 
present context, finding the dispersivity then 
reduces to simply multiplying the calculated 
enhancement factor by a constant, namely the 
initial (laboratory scale) dispersivity. In other 
words, the enhancement factor F can be 
considered as merely the (dimensionless) scaled 
dispersivity.  As the measured values are 
expressed as a function of the traversal length x 
rather than time t, we eliminate M in equation 
(11) in favor of the scaled traversal length Γ = x/Λ 
by the relation 

 3 MλΓ =  (12) 

The resulting behavior of F(Γ) is shown in figure 
5, over 5 orders of magnitudes of the traversal 
length, similar to the range of experimental values 
collected by Gelhar (1986) and further analysed 
by Fetter (1999). The figure shows that there is a 
distinct transition from a low range behavior to a 
high range behavior when the traversal length 
reaches the scale length Λ . Such a transition is 
also seen in the experimental values, at a length of 
between 10 and 100 meters.  
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Figure 5. Logarithmic plot of scaled dispersivity 
as a function of scaled traversal length for λ = 

0.001 and Q = 0.3.. 

The high range behavior is easily extracted from 
the analytic expression in equation (11) by taking 
the large M limit, as M is proportional to Γ. In this 
limit the first factor reduces to eQ (a constant) and 
the last factor also becomes constant, so that the 
entire Γ-dependence is carried by the second 
factor which simplifies to (1+Γ)Q → Γ Q . This 
power law becomes a straight line with slope Q in 
the logarithmic plot, which agrees with the 
observed high range behavior. Even more 
significant, the measured values suggest a slope 
of approximately 0.3, and this agrees with the 
restricted range of Q values derived from the 
mathematical properties of the fluctuation model 
as shown in figure 4.  

However, there are also two points on which 
figure 5 differs markedly from the observations. 
First, the low range trend in the figure is a slower 
rate of growth than in the high range while the 
reverse holds for the measurements. Secondly, as 
a result of this the overall increase in the figure is 
only by a factor of 10 , while an increase of 104 is 
found for measured values. 

This vast numerical discrepancy hinges on a 
single detail of the low range behavior. For Γ<<1 
i.e. M << 1/3λ , the increase of F with Γ is 
dominated by the first factor in equation (11), and 
this increases roughly exponentially with Γ. At 
the transition point it saturates to the value eQ and 
with any reasonable value of Q this is far too 
small to produce the observed rise of 3 orders in 
magnitude in dispersivity up to the transition. 

The simple ad hoc change of increasing the 
coefficient of Q in the first term of equation (11)
by a factor of about 25 is found to remove both 
discrepancies and give a dispersivity curve in 
rather good agreement with the experimental 
values. However, there is no obvious justification 
for such a change within the confines of the 
stepped fluctuation model presented, and further 

investigation of this point is left to our subsequent 
paper. 

3. CONCLUSIONS 

The model using fluctuations formed from 1-
dimensional discrete velocity  steps on a regular 
grid to describe longitudinal dispersivity, is no 
doubt highly idealized. It can come as no surprise 
that full numerical agreement with observations in 
natural aquifers is not obtained. In fact, in view of 
additional effects bound to appear in higher 
dimensional systems complete agreement would 
have been questionable.  

However, the model amply demonstrates how 
minor enhancement effects of individual 
fluctuations on solute dispersion, can combine to 
create the complex dependence of dispersivity on 
measurement scale that is observed, as well as the 
dramatic magnitude of these effects.  At root, this 
is because of the multiplicative way that 
enhancements combine, a result that is expected 
to transcend the details assumed for fluctuations. 

Moreover, the level of agreement  is sufficient to 
suggest that the model has captured the essential 
underlying mechanism of scale dependence. In 
particular, the identification of a macroscopic 
length scale that dictates the phenomenon, is a 
significant new concept.  

Finally, the feasibility of algebraic analysis 
brought about by the relative simplicity of the 
model, allows significant variables and 
combinations of variables to be identified. For 
example, the result that the fluctuation amplitude 
represented by Q(∆) uniquely determines the long 
range behavior of the dispersivity, is a sufficiently 
general and qualitative statement that it should be 
amenable to direct experimental testing or 
comparison with other theories. 
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