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Abstract: A large number of data mining techniques and tools are available for extracting trends, characteristics 
or rules from data. A selection of those relevant to hydrology are covered in this paper.  Clustering, classification, 
association rule extraction and dominant mode analysis and the ways in which each family of techniques could be 
used in a hydrological modelling context are considered.  In addition to demonstrating the relevance of data 
mining techniques to the science of hydrological modelling, two specific applications will be discussed.   They 
illustrate the possibilities for improving existing modelling techniques by integrating a data mining approach.  
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1.  INTRODUCTION 
Hydrology can be a data-intensive science.  
Modelling methods aimed at improving 
understanding or predictive capacity can require 
large amounts of observational data in the model 
building stage, and output similar quantities of data.  
The observational data used in hydrological 
modeling and analysis contain measurement and 
sampling errors, often being collected with 
imprecise measuring equipment.  The quality and 
nature of collected data are of extreme importance 
in hydrology, so it follows that all characteristics of 
such data should be subject to the best possible 
analysis.  Data mining is defined in many different 
ways in different contexts, but we use this one: 
Discovery of interesting, comprehensible and 
previously unknown rules, trends or characteristics 
from data.  Essentially, by this we mean discovery 
of anything that is useful and non-trivial or 
unexpected from our data. 

Typically the minimum data sets used in catchment 
hydrology are in the form of daily records of 
rainfall, streamflow, temperature and other climatic 
variables.  Rainfall and streamflow are the two 
considered here because of their relevance to 
rainfall-runoff modelling, and also because these 
quantities do not vary smoothly over long time 
scales in the way temperatures do. The behaviour of 

rainfall and streamflow series is more complex and 
has greater potential to deliver new information.   

2. SOME RELEVANT ISSUES IN 
HYDROLOGY 

2.1.  Data issues 
A number of issues confront us from the collection 
of such measurements. Firstly, errors arise from the 
assumption of homogeneous rainfall over a 
catchment, and the arrival at the total rainfall 
estimate from some smoothing or interpolation.  We 
will not analyse the interpolation process here, but 
note that daily rainfall measurement is usually 
expressed as totals from 9am to 9am.  Streamflow 
records are usually single measurements collected 
at 12 midnight or they can be averages from one 
midnight to the next.  Hence, the definition of 
‘daily’ varies (for more details see Spate 2002). 

Using daily mean streamflow is often a poor 
representation of the distribution of flows 
throughout the day.  Systematic measurement errors 
are also a consideration.  Rainfall gauges may suffer 
losses due to evaporation or splashing, and 
streamflow is intrinsically difficult to measure.  
Even in a simplified channel like a rectangular weir, 
where the cross-sectional area of the channel is 
known, one velocity measurement is not adequate 
to describe the velocity profile of the flow.  In a 

 



natural channel the flow profile is still more 
variable, and the cross-sectional area difficult to 
measure. 

2.2. Focus of this paper 

The data mining techniques discussed here cannot 
(generally) help remove systematic errors or correct 
measurement problems.  To circumvent this we will 
change slightly the form of model under 
consideration. Instead of aiming to predict 
streamflow volume from total rainfall over the 
catchment, we will model what the measured 
streamflow would be from the measured and 
interpolated rainfall.  Of course this approach does 
not remove any errors, but it serves to simplify our 
analysis.   

In addition to providing a quick overview of a few 
data mining techniques that may be useful to 
researchers in the modelling community. Examples 
are chiefly from hydrology, but this is not intended 
to limit our focus- techniques for extracting 
additional information from data. We would also 
like to investigate various methods for dealing with 
missing data points, a common feature of 
hydrological data. 

3.  BASIC TECHNIQUES 

A number of techniques are already commonplace 
in hydrological modelling.  Rather than a discussion 
of existing modelling techniques here, we prefer to 
suggest new applications of data mining tools.  
Consider temporal data. There are two ways we can 
characterise temporal data, as time series or as 
unordered records of the variables collected on a 
given day.  Using both approaches we can borrow 
from extensive technical bases established for other 
applications.  For example, some tools used for 
stock-market analysis can be generalised for other 
time series, or isolated records can be considered as 
‘market baskets’ and analysed using techniques 
developed for supermarket purchase analysis.  

A third perspective is a middle way between the 
two above. When examining any hydrograph, we 
note that the width of most streamflow peaks and 
some rainfall events have a length of a few days.  It 
seems natural to change the granularity of our time 
series from days into peaks or events.  For the 
moment we will consider this more granular series 
as a sequence of shapes, shape A, shape B, and so 
on.  More sophisticated views are discussed later. 

One aspect of hydrological data acts in our favour.  
Daily data, where data mining techniques are 
perhaps most useful because of the relatively 
overwhelming quantity of this kind of data and the 

nature of the information we would like to extract, 
is usually represented in a sequence of thousands or 
tens of thousands of records.  Most established data 
mining techniques aim to deal with anything up to 
millions of records, so the computational efficiency 
is in general very high for large datasets.  In our 
case, we can take the simplest method without 
regard for computation time, as it is not likely to be 
a restrictive factor with our relatively small quantity 
of data (of the order thousands to tens of thousands 
of data points).  Of course, the small data quantity is 
not necessarily an advantage.  We have less data 
from which to extract information. 

There are a few main data mining concepts we will 
consider.  They are, in approximate order of 
importance from first to last: Clustering, 
Classification, Association Rule Finding, Dominant 
Mode Analysis / Series Similarity Measures.  Each 
will be discussed now in the following sections. 

3.1 Clustering 
The word ‘cluster’ has twofold meaning, a cluster 
being a group of objects, and the verb cluster 
meaning to group objects according to similarity in 
some attributes.  There are many algorithms 
available to cluster data, mostly with the object of 
producing clusters such that the objects within a 
cluster are as similar, and the defining attributes of 
each cluster as dissimilar as possible.  The number 
of clusters and level of acceptable dissimilarity in a 
cluster are considerations in this problem.  We 
require enough clusters so that internal objects are 
close, but not so many that there are similar 
clusters.  There is a trade-off between the amount of 
information stored in the clustering regime and 
understandability or usefulness of that information.  

In this section we will examine a basic clustering 
algorithm, and a few of the problems associated 
with clustering time series specifically. To illustrate 
the nature of the clustering problem we will 
describe in detail one simple clustering method.  
Called the k-means algorithm (Whitten and Frank 
1991), we specify beforehand the number of 
clusters k we want in our regime. 

1. Select k different data points at random.  These 
will define our initial clusters. 

2. Set the mean value of each cluster to be the 
value of a chosen point.  

3. Assign each data point to the cluster with mean 
value closest to the data value. 

4. Re-calculate the cluster mean taking into 
account points assigned in step 2. 

 



5. Repeat steps 3 and 4 until the clusters no longer 
change. 

Figure 2. Difficulties in Peak Comparison, 
Problems 1-3. 

The k-medoids algorithm is essentially the same as 
the k-means, except that where we used means in 
steps 2-4 we now use medoids.  The medoid of a set 
of point is the n-dimensional analogue of the one-
dimensional median.  The use of medoids is a 
sensible choice when the data contains outliers, 
because an extreme value will not skew the medoid 
as much as the mean value. 

Selection of appropriate distance measures between 
entire time series or sequences of length more than 
one peak is even more complex.  We cannot use 
Euclidean distance because although the response 
characteristics and basic shapes may be very similar 
in two series, the peaks will not occur at the same 
point in each series (Das et al., 1998).  There are of 
course other methods for matching shapes, but 
those we will examine are a selection of the 
simplest.  Suggested distance measures between 
series include the distribution of basic shapes, 
average values, unit hydrographs, and so on.  The 
unit hydrograph is a calculated quantity specific to 
hydrological time series.  It is in essence a 
representative flow response to a pulse of rainfall 
(see Jakeman et al., 1990). 

This rough outline of an algorithm could be applied 
to data in any of the conceptual data forms we 
described above- isolated records, events or whole 
time series.  However, we must decide how to 
measure means (or medoids) and distances between 
shapes, series or records.  If we have isolated daily 
records containing one or two variables, we can just 
use some Euclidean distance measure.  Events and 
complete series are much more complicated to 
compare quantitatively.  

Consider the set of streamflow peaks: 

 

 

Calculating distance measures between whole series 
could have wide-reaching applications, and is 
discussed in a later section (Section 3.4).   
Clustering of datasets for a large number of 
catchments can provide regionalisation (extension 
of model parameters to cover similar catchments) 
grouping without the need for extensive modelling, 
and also with less data.  In theory, clustering could 
provide guidelines for replacing small missing 
sequences.   Upon clustering every whole peak, the 
pieces of information in a peak with holes could be 
used to find the most likely cluster for the partial 
peak.  The cluster mean or similar representative 
shape (however defined) could then serve as a 
template for the reconstruction of the partial peak.   
This should, on surface analysis, be more accurate 
than replacing the missing points with information 
gleaned from the whole set of peaks. 

Figure 1. Example Peaks 

 

1. We would like to group peaks according to 
shape, and we can do this according to the 
Euclidean distance, but this measure will not 
reflect similarity between peaks that are the 
same rough shape but slightly out of phase, 

2. Different in magnitude or 

3. Start from different base levels.    

To obviate these problems, it is sometimes 
appropriate to normalise each peak, making the 
mean zero (to remove problem 3) and the variance 
zero (to remove problem 2).  Perhaps the simplest 
and most effective counter to problem 1 is to choose 
the starting points of peaks well. 

Other potential environmental applications of 
clustering exist in terrain data analysis (Gallant, 
personal correspondence). Here identifying and 
clustering the component shapes in a large-scale 
Digital Elevation Model (DEM) could lead to the 
selection of similar geomorphological regions.  
With sufficient data, the connectivity between 
geomorphological types would be open for easy 
examination, and other data that is less simple to 

 



collect such as flow accumulation regions made 
available.  Work is underway in this area. 

In the process we will generate a decision tree or 
other model (see Spate 2002) for automatically 
deciding whether or not a rainfall event is intense, 
which can then be applied to daily data where there 
is not higher resolution data available.  The Boolean 
intensity yes/no marker is called a classifier and the 
process of building and applying the model is 
known as classification.   When this process is 
actually applied to real data useful information can 
be extracted. In Spate (2002) this is illustrated with 
the J48 machine learning algorithm in the Weka 
data mining package (Whitten and Frank, 1991).  In 
the experiments performed, most of the output 
decision trees were qualitatively logical from a 
physical perspective, and some branches ending in 
the ‘intense’ classifier seemed to be characterising 
certain physical event types, like summer storms. 

3.2 Classification 
The nature and usefulness of classification is 
perhaps best illustrated with an example.  In a daily 
rainfall dataset, no information is typically available 
about rainfall distribution during the day, the 
rainfall intensity.  We do not know if the rainfall 
measured on a given day fell evenly over the whole 
24 hour period or in one intense burst over an hour, 
say.  In the context of daily rainfall-runoff 
modelling, intensity information would be 
extremely useful, as the nature of the streamflow 
responses is dependent on rainfall intensity.  The 
intensity of a rainfall event not only alters the 
response but is also an important determining factor 
in the calculation of solute and suspended particle 
transportation. 

The approach behind the J48 algorithm (although 
the form in Weka is somewhat modified) is a simple 
divide-and-conquer method (Whitten and Frank, 
1991). A decision tree is built up layer by layer by 
splitting one variable to create two branches. The 
variable on which the split is performed is located 
by examining all possible branching schemes, and 
then choosing the one most likely to give a small 
tree.  This likelihood is measured by the ‘purity’ of 
the generated nodes of the tree, or how much 
information is gained by making the split.  The J48 
algorithm is discussed more in Spate (2002).  

High-intensity rainfall data, by which we mean data 
collected at intervals of order less than a day, is 
expensive and difficult to collect and hence much 
rarer than daily data.  We would like to find a way 
of determining the approximate intensity of a 
rainfall event with daily data. To assist, maximum 
and minimum temperatures, relative humidities, 
solar radiation, sunshine hours, evaporation, and 
other variables may be available on a daily basis. 

Using all the daily data series, we can start to 
hypothesise as to where in the rainfall series intense 
events occur.  Using pre-existing physical 
knowledge of the catchment or catchment type, it 
may be possible to find, for example, an 
approximate set of physical characteristics for a 
summer storm day with temperature, humidity and 
rainfall above set thresholds, a date within the likely 
bounds, and so on.   This is clearly a very vague 
approach that is unlikely to be workable in most 
areas.  

In this way, up to 80% of events defined as 
‘intense’ can be identified in an independent test 
dataset.  Minimal false positives (non-intense events 
tagged intense) are returned.  The building, pruning, 
and testing of classification models is currently in 
progress (Spate, in preparation). 

There are many other classification algorithms 
based on entirely different concepts, but the divide-
and-conquer is perhaps the simplest. Bayesian 
methods, neural networks and genetic algorithms 
are among the conceptual bases of some other 
approaches.  Classification algorithms are currently 
being trialed for application as land-use models in 
Thailand (Letcher, personal correspondence).  The 
aim in this project is to discover the rules that 
govern the choice of crop chosen by farmers under 
particular economic, environmental, and irrigation 
conditions.  

Instead, we select all those catchments in our region 
of interest where high-intensity rainfall data does 
exist for at least some temporal interval.  Then we 
can apply some simple criteria to the high-intensity 
data; for example so much rain must fall in such a 
small time interval on a given day for that fall to be 
flagged as an intense event.  Having generated a 
Boolean series with ones on every day with an 
intense event and zeros elsewhere, we can use a 
data mining algorithm to automatically extract those 
combinations of daily data characteristics which 
tend to occur on a day with a one in the Boolean 
series.  

3.3 Association rule extraction 
The concept, although not necessarily the methods, 
of association rules are similar to classification 
schemes.  In this case we would like to find any 
rules of the form A ⇒T B that seem to occur in the 
data with frequency above a given threshold. Here 

 



A and B are just events of a certain type, with the 
rule if A occurs then B occurs within time T.  A and 
B do not necessarily have to be the same variable, 
for example A could be a rainfall event type and B a 
shape of flow peak.  Here we assume our data is 
clustered, and in the form of basic shapes.  Each 
basic shape in the series can be replaced by the 
cluster medoid, mean or representative shape. This 
yields a sequence of a small number of cluster 
representative shapes.  Each shape in the original 
sequence is a replaced by a similar shape from a 
simplified alphabet.  Although it represents a less 
significant saving with our relatively small amount 
of data, some data compression occurs in this 
transformation from a series of daily values to a 
sequence of peak shapes. 

Extensions of the basic rule format are possible 
with a little more computational effort.  For 
example the rule A1, A2, …, AH V,⇒T B could be 
interpreted as if A1, A2, …, AH all occur within time 
V, then B will occur within time T (Das et al., 1998).  
The most basic rule form we could consider is A ⇒ 
B with no time dependence, which is sometimes 
useful.  

In our classification example above we had a 
complete tree with every possible daily record 
covered at some point by a rule with a classifier. 
But correspondingly in association rules we obtain 
only those patterns in time that occur frequently 
(such as when some small characteristic rainfall 
event produces similar responses).  For example, if 
a catchment is prone to a short rainfall event with 
total rainfall of between 10 mm and 30 mm, the 
stream will usually respond with a particular peak 
(given normal antecedent conditions) that we will 
be able to identify. But if a prolonged low-intensity 
rainfall event occurs over three or four days only a 
few times in the record, we may not be able to 
extract a rule that determines the stream response to 
these conditions.  

For a given event type C, say, we may not 
necessarily have any rule involving C on the left- or 
right-hand side.  Also, where classification in 
general attempts to build a model that gives the 
correct classifier for every instance of the training 
data the rules output from association rule 
extraction may have exceptions in the training data. 
What we get from these rules is a partial model 
composed of common trends. 

A partial model may have some application. For 
example, if we discover from our data that A ⇒1 B 
with 70% confidence (if A, then B occurs in 70% of 
cases), any missing segments immediately 
following an occurrence of A can be replaced by B.  

In this way we may be able to patch some of the 
holes in our dataset.  Reconstruction by rules has 
advantages over replacement by average values or 
interpolation.  We preserve the prevailing structures 
in the series. 

3.4 Dominant mode analysis and series similarity 
measures  
The technique of extracting dominant modes of a 
time series is well established. It involves 
approximation to the series by decomposition with 
basis functions, usually but not always orthogonal.  
Fourier analysis is the best known and most used of 
these. In our example we transform our time series 
of streamflow into a set of frequencies with 
amplitudes.  The process can be thought of as 
decomposition into sine waves. Fourier analysis is 
especially useful in very wet catchments where the 
flow peaks are not well separated. In these 
circumstances analysis of individual peaks can be 
difficult, because of the absence of extractable tail 
of the response to a single rainfall pulse.  Figure 3 
shows a few distinct peaks and Figure 4 some 
overlapping peaks. Fourier mode analyses retain no 
information about timing of events in the series. 

More recently a different, although related, method 
has emerged.  Wavelet transformations spatially 
decompose the signal into a series of wavelets, the 
characteristics of which can be carefully tailored.  
Temporal information is retained, and there is the 
additional advantage of detailed analysis at varying 
time scales (Bachman et al., 2000).  Wavelet 
transformation has been used to regionalise 
catchments by taking the wavelet spectra (a form of 
the results of the wavelet transform) of streamflow 
records as a signature of catchment response 
characteristics and clustering on these (Zoppou et 
al. 2002). 

 

Figure 3. Distinct Peaks 

 

Figure 4. Overlapping Peaks 

Other measures can be used to compare the 
similarity of time series.  Usually, the basic 

 



 

approach (as with Fourier and wavelet analyses) is 
to map the series onto some low dimensional space 
and then apply simple distance measures like the 
Euclidean distance between the mapped vectors 
(Gunopolis and Das, 2001). Both wavelet and 
Fourier spectra can be compared this way.   

The Longest Common Sequence method calculates 
the longest continuous subsequence of points that 
are common between two series.  This approach, 
while enticingly simple, is not directly useful for 
hydrological data in this form, but when we allow 
linear scaling and translation of subsequences, it 
becomes more appropriate.  However, hydrological 
data is not ideal for this kind of analysis - LCS 
measures are chiefly applicable to data taking 
discrete values from a small set.  Rainfall and 
streamflow records can be discretised, but will not 
be considered here. 

Some series comparison techniques are probably 
inappropriate to our problem.  Piecewise linear 
representation is unlikely to be helpful due to the 
spiky nature of long-term hydrographs, and 
dynamic time warping, which allows stretching of 
compression of time axes to achieve better fit 
between sequences may not preserve information 
valuable to our analysis.  Recently, methods for 
image database searching have been developed with 
various mathematically rigorous shape matching 
bases.  For example, the Princeton University Shape 
Retrieval and Analysis Group image search engine 
uses the set of distances between a random sample 
of points inside the shape boundaries to characterise 
the shape (Chazelle et al., 2002).  The approach of 
the Princeton group can be tested online, with 
mixed results. 

Using distance measures to quantify changes in 
catchment response characteristics is acceptable 
practice, but only using simple and/or hydrological 
modelling concepts like the unit hydrograph or 
average rainfall/runoff coefficient in the 
comparison.  The development of better distance 
measures would also be of use in this kind of 
application. 

4. CONCLUSIONS 

We have seen a range of hydrological problems that 
could be phrased as data mining, and methods in 
common use that also fall under that heading. It is 
the nature of most hydrological datasets to contain 
at least rainfall, streamflow and temperature over a 
period of several years or more, and spatial 
metadata, making association rule techniques a 
viable option. The structure of the rainfall and 
runoff data, decomposable into peaks (although this 

is not always easy - see Figures 3 and 4) lends itself 
to clustering and association rule extraction. 

Many methods of time series data mining have been 
developed for stock price analysis, consumer 
behaviour trend isolation, and even environmental 
applications.  A library of techniques is available 
for hydrological use, requiring minimal alteration.  
There are also huge amounts of environmental and 
hydrological data freely available.  These two 
factors imply that the impact of data mining 
techniques such as clustering, classification, and 
association rule extraction could easily have a huge 
impact on certain hydrological problems.   
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