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Abstract: This Paper describes an application of Structured Total Least Squares method to the interpolation of
terrain data. We briefly review the ideas of Least Squares, Total Least Squares, and Structured Total Least Squares.
We illustrate the use of Structured Total Least Squares in the approximation of terrain surfaces using a novel
discrete surface, the Triangular Regular Network. The Structured Total Least Squares algorithm allows us to deal
with data corrupted by noise in every coordinate (x, y, z).
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1. INTRODUCTION

Least Squares (LS) is a very well known procedure
for regressing one measured output onto a set of re-
gressors. It is used in diverse fields including Biol-
ogy, Economics, Geophysics, and Control Engineer-
ing. Underlying this procedure is the implicit assump-
tion that the regressors are known exactly whereas the
measured variable is corrupted by noise (Kendall and
Stuart, 1967). LS can be interpreted as a Maximum
Likelihood estimation procedure by hypothesing that
the noise has a Gaussian distribution.

An interesting issue is that in some applications, the
regressors themselves, may be measured with errors.
One may still apply ordinary Least Squares. However,
the resultant parameter estimates can be biased. The
implications of bias are that the estimated parameter
depends on the particular data set and hence there may
be difficulties when it is used to predict the measured
output under alternative conditions.

In this context, Total Least Squares (TLS) is a proce-
dure that allows for errors in all variables leading to
unbiased (i.e. data independent) estimates. A special
form of TLS is the Structured Total Least Squares
(STLS) algorithm which allows one to impose spe-
cial constraints on the model structure. These algo-
rithms can also be interpreted via Maximum Likeli-
hood (ML) estimation (Kendall and Stuart, 1967).

To illustrate these ideas, we will utilize a simple ex-
ample motivated by terrain modelling where the data
has errors in all 3 coordinates i.e. in x, y, and z.
We introduce a particular model structure (called a

Triangular Regular Network TRN) and show how the
model can be fitted to data using the STLS algorithm.

To fit the specific application into context , we note
that land surveying data is becoming increasingly
available in digital form. This fact has caused a rapid
evolution of Geographic Information Systems (GIS)
and has increased the interest in terrain modelling
(Mascardi, 1998).

One challenging area of research in this area is to find
a way to reduce the amount of data to be stored in
GIS. This research stream is aimed at several end-
user requirements, e.g. decreasing the amount of in-
formation to be transmitted over a communication
line, saving disk storage space or loading of a terrain
from disk into memory (De Floriani et al., 2000). The
key problem is that there are usually many redundant
measurements, and it is thus possible to reduce the
amount of data by selecting the most significant data
without interfering with the accuracy of the underlying
representation.

There are many existing algorithms that fit a discrete
surface to terrain data. These algorithms assume that
the measurements are exact, and then apply a data
reduction method to select the most important data
(Heckbert and Garland, 1997; Mascardi, 1998; Long-
ley et al., 1999). However, this error free measurement
assumption is rarely met in practice. For this reason,
these models are more useful for representing a sur-
face than for interpolation purposes.

Indeed, for the class of problems in which we are in-
terested, the data may have spatial dispersion at every
coordinate. This feature is central to the method that
we have developed. To account for different errors



we represent each data point by a different matrix of
errors. Thus, for each measurement, φi = (xi, yi, zi),
on the surface Ω : Ξ → R, we assign a different
error covariance matrix (Ci ∈ R

3×3). In this paper
we describe a discrete surface to represent a given
terrain, which we call a Triangular Regular Network
(TRN). TRN has an underlying data reduction pro-
cedure, which is inherent in the way we estimate the
height for every sample in the grid (see Figure 1).
One can then envisage that there are many data points
inside every triangle, but we only store the vertices of
every triangle. A typical example is shown in Figure 4.
One important feature of the data reduction procedure
in TRN is that it can be applied to different representa-
tions (such as a Triangular Irregular Network), and in
consequence, to improve the interpolation procedure
for the representation chosen. We use STLS to fit the
TRN to given data from terrain.

2. BACKGROUND TO LS, TLS, AND STLS

To introduce the ideas of LS, TLS, and STLS we
consider the simple problem of regressing an “output”
variable y on a regressor x. Thus, we want to fit a
model of the form

yo
i = αxo

i , i = 1, . . . , N (1)

(i) LS: We assume that xo
i is measured exactly but

yo
i is measured in noise (yi = yo

i + ∆yi). In this
case, we can estimate α via LS as

α̂ =

∑N

i=1 xo
i yi

∑N

i=1(x
o
i )

2
(2)

However, we might ask what happens if yo
i is

measured exactly but xo
i is measured in noise

(xi = xo
i + ∆xi). This could be thought of as

an alternative “regression” problem:

xo
i =

1

α
yo

i = βyo
i (3)

Then the LS estimate of β is

β̂ =

∑N

i=1 xiy
o
i

∑N

i=1(y
o
i )2

(4)

(ii) TLS: Say now that both x and y are measured
with noise. Then it is probably clear that neither
results (2), nor (4) are appropiate. Instead, we
would like some “combination” of those meth-
ods. This is provided by TLS. A generalization
of the model (1) is to write

φo
i θ = 0 (5)

where

φo
i = [xo

i , y
o
i ] (6)

Now, say that φi is a noisy measurement of φo
i with

errors in both variables. If we assume that these errors
are Gaussian distributed with zero mean and a 2 × 2
covariance matrix Ci, then the ML for this problem is

θ̂ML = arg max
θ

p({φi}|{φ̂i}, θ)

p({φi}|{φ̂i}, θ) =

N
∏

i=1

exp
[

− 1
2
(φi − φ̂i)C

−1
i (φi − φ̂i)

T
]

(2π)|Ci|1/2

(7)

where

φ̂iθ = 0 (8)

Remark 1. The above ideas can be generalized to 3
dimensions, as is the case in Terrain Modelling; in
which case Ci is a 3 × 3 covariance matrix. Indeed,
higher dimension problems are also possible. OOO

Optimizing (7) subject to (8) leads to the TLS al-
gorithm. Also, if additional structure (in the form of
linear constraints on the different entries of the vector
φ̂i) is added to the model, we get a so called STLS
problem. Earlier work on this problem has been pre-
sented by De Moor (1993). This latter paper considers
a special case in which the covariance matrices, Ci,
are equal to the identity matrix. We follow the de-
velopment of De Moor (1993) making the necessary
extensions to allow us to cover general Ci matrices
and to deal with the specific structure that we have
(Goodwin et al., 2001).

Algorithms to solve this problem can be found in
(De Moor, 1993; Jiang, 1998; Lemmerling, 1999;
Mastronardi et al., 2000; Van Huffel and Lemmer-
limg, 2002). It is also possible to directly maximize
(7) subject to the constraints. This approach is called
Constrained Total Least Squares (CTLS) (Van Huffel
and Lemmerlimg, 2002).

3. DATA ASSUMPTIONS

Suppose that samples φi = {(xi, yi, zi), 1 ≤ n ≤ N}
(corrupted by noise) of a surface Ω : Ξ ⊂ R

2 → R are
collected.

Our aim is to find an approximation to this surface. We
introduce the following assumptions:

• The surface Ω defined by Ω = {(x, y, z)|z =
z(x, y)} can be modelled by a particular kind
of surface called TRN (this concept will be ex-
plained below).

• The nominal value (error free) of each measure-
ment φi is φ̂i = (x̂i, ŷi, ẑi) which belongs to the
surface Ω.

• The measurement error {φ̃i = φi − φ̂i} is a se-
quence of independent random variables, jointly
Gaussian with zero mean and covariance matrix
Ci.

• The domain Ξ of the surface Ω is the region
defined by Ξ = {(x, y)|0 < x < X, 0 < y <
Y }.

• Sufficient data exists in all the regions of Ξ.



Note that the first assumption allows us to transform
this approximation problem into an estimation prob-
lem.

4. TRN SURFACE

The TRN that we propose is basically a regular grid
representation that uses a grid such as the one shown
in Figure 1 . Using every three neighboring grid points
we can define a triangle to represent the surface.
The rectangles are combined into four components.
(See Figure 3). Notice that we have constrained the
triangles so that the surface is continuous. Repeating
this over all rectangles, a surface which can be viewed
as an approximation of Ω, is generated.

4.1 The Grid

By way of illustration, we choose the grid shown in
Figure 1. Using this grid, we next have to decide the
number of rectangles to be used and the dimensions of
the rectangles in order to cover all of the domain Ξ of
the surface Ω.

The number of subdivisions of the edges satisfy Nx =
X/∆x and Ny = Y /∆y. Also, the total number of
samples represented by the grid is N = 2NxNy +
Ny + Nx + 1. The samples are enumerated from left
to right, row by row and, bottom to top, as illustrated
in Figure 1.

2Nx + 1Nx + 2 Nx + 3

(3)

(Nx + 2)(Nx + 1)

(Nx)

(NxNy )

y

∆x

x

∆x
2

∆y
(1) (2)

∆y

2

1 2 3 Nx + 1

Fig. 1. Finite Sampling Grid

Given the heights, Zn = z (Xn, Yn) at the nth sample
we use a two dimensional plane to approximate the
surface and refer to this approximation in the sequel as
Triangular Regular Network. Specifically, every three
neighboring samples, as described in Figure 1, define
a plane so that the surface approximation consists of
connected triangular plane sections as demonstrated
in Figure 3.

For reasons which will become clearer later, we also
enumerate the rectangles created by the neighboring

sample points which are integer multiples of the sam-
pling intervals. Here too, we go from left to right,
bottom to top and have K = NxNy rectangles (see the
numbers in parenthesis in Figure 1). Consider the kth
rectangle, as described in Figure (2). Then, as we can
observe from the figure, the samples are enumerated
again according to the rectangle(s) they belong to.
Clearly, any given sample can belong to, at most, four
rectangles. We wish to identify the five samples of the
kth rectangle in the previous enumeration. So, given
k = 1, 2..., K define

ky = floor(k/Nx) + 1

kx = k − (ky − 1)Nx

(1)

(2)

(4)

(Xk,1, Yk,1)

(Xk,3, Yk,3)(Xk,2, Yk,2)

(Xk,4, Yk,4)

(3)

(Xk,5, Yk,5)

Fig. 2. The k-th rectangle of samples.

Then we have the following relationships

(Xk,1, Yk,1) = (Xn−Nx−1, Yn−Nx−1)

(Xk,2, Yk,2) = (Xn+Nx
, Yn+Nx

)

(Xk,3, Yk,3) = (Xn+Nx+1, Yn+Nx+1)

(Xk,4, Yk,4) = (Xn−Nx
, Yn−Nx

)

(Xk,5, Yk,5) = (Xn, Yn) (9)

where
n = (2Nx + 1) ky + kx − Nx

and

Xk,1 = Xk,2 = ∆x (kx − 1)

Xk,3 = Xk,4 = ∆xkx

Xk,5 = ∆x

(

kx −
1

2

)

Yk,1 = Yk,4 = ∆y (ky − 1)

Yk,2 = Yk,3 = ∆yky

Yk,5 = ∆y

(

ky −
1

2

)

(10)

Having the heights at the rectangle samples, Zk,l =
z (Xk,l, Yk,l), l = 1, 2, 3, 4, 5 the surface section
above the rectangle is approximated as shown in Fig-
ure 3.

4.2 TRN Parameterization

Let us assume we have I data points each consisting
of three values φi = (xi, yi, zi) measured relative to
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Fig. 3. TRN at rectangle k

the same origin. We hypothesise that these data points
are of the form

(xi, yi, zi) = (x̂i, ŷi, ẑi) + (∆xi, ∆yi, ∆zi)

where φ̃i = (∆xi, ∆yi, ∆zi) are the error terms in
each data point, assumed jointly Gaussian with zero
mean and covariance matrix Ci ∈ R

3×3, and φ̂i =
(x̂i, ŷi, ẑi) is the nominal value on the TRN surface.

Typically, the data collected from landscape surveying
is irregular and contains errors. Furthermore, since it
is likely that the data comes from a number of different
surveys, it may represent different accuracies for lati-
tude, longitude and height measurements. Moreover,
the accuracies may differ from location to location
(i.e. different data points). Hence, we will allow for the
possibility of different covariance matrices at different
data points.

To formulate the above surface fitting problem as an
optimization problem, let us assume that the data is
sorted according to (xi, yi) belonging to triangle l in
rectangle k with Ik,l data points in each such set and
I =

∑K

k=1

∑4
l=1 Ik,l. Algorithms, such as those pre-

sented in (Goodwin et al., 2001), can be used to deter-
mine to which rectangle k, and triangle l that the data
(xi, yi, zi) belongs. A feature of this problem, which
makes it difficult, is that there is a lot of structure in the
way that the surface is parameterized. Actually, it is
this structure that leads to the need for STLS. We will
capture this structure by parameterizing the problem
via a set of basis functions. Specifically, let us define:

Bi
x = eI

i

(

e4I
4i−3

)T
∈ R

I×4I

Bi
y = eI

i

(

e4I
4i−2

)T
∈ R

I×4I

Bi
z = eI

i

(

e4I
4i−1

)T
∈ R

I×4I

Bi
0 = eI

i

(

e4I
4i

)T
∈ R

I×4I

where eI
i is the ith column of the I dimensional

identity matrix.

Using these basis functions we can succinctly param-
eterize the problem using

Φ =

I
∑

i=1

(

xiB
i
x + yiB

i
y + ziB

i
z + Bi

0

)

∈ R
I×4I

= diag([ φ1 1 ], [ φ2 1 ], · · · , [ φI 1 ]) (11)

Next we define a vector θ ∈ R
4I whose entries are

a set of parameters (ai,bi,c,di) for every data point
i = 1..I .

θ = [ a1 b1 c d1 a2 b2 c d2 · · · aI bI c dI ]
T (12)

Notice that the vector of parameters contains the coef-
ficients of all the planes in the TRN surface. In order
to obtain a continuous surface some constraints should
be added to this problem. Also, note that the parameter
c is the same for every plane. This constraint will be
necessary to develop Lemma 1.

If we replace the entries of Φ by their nominal values,
we will call the resultant matrix Φ̂. Now, since each
data point lies in a plane, we can describe these planes
by the relationship Φ̂θ = 0. Of course, it will be
generally be the case that several data points will lie
in the same plane, so many of the entries in θ will be
the same. One way to reduce the number of parameters
to estimate is to define a new vector compounded by
the vertex height of every triangle.

4.3 TRN Reparameterization

For future use in the reparameterization procedure, we
define the following matrices for any k = 1, 2, ..., K

Dk,1 =









Xk,1 Yk,1 0 1
Xk,2 Yk,2 0 1

0 0 1 0
Xk,5 Yk,5 0 1









; Dk,2 =









Xk,2 Yk,2 0 1
Xk,3 Yk,3 0 1

0 0 1 0
Xk,5 Yk,5 0 1









Dk,3 =









Xk,3 Yk,3 0 1
Xk,4 Yk,4 0 1

0 0 1 0
Xk,5 Yk,5 0 1









; Dk,4 =









Xk,4 Yk,4 0 1
Xk,1 Yk,1 0 1

0 0 1 0
Xk,5 Yk,5 0 1









Ek,1 =













(

eN+1
n−Nx−1

)T

(

eN+1
n+Nx

)T

(

eN+1
N+1

)T

(

eN+1
n

)T













; Ek,2 =













(

eN+1
n+Nx

)T

(

eN+1
n+Nx+1

)T

(

eN+1
N+1

)T

(

eN+1
n

)T













Ek,3 =













(

eN+1
n+Nx+1

)T

(

eN+1
n−Nx

)T

(

eN+1
N+1

)T

(

eN+1
n

)T













; Ek,4 =













(

eN+1
n−Nx

)T

(

eN+1
n−Nx−1

)T

(

eN+1
N+1

)T

(

eN+1
n

)T













We also define

Lk,l =











D−1
k,l Ek,l

D−1
k,l Ek,l

...
D−1

k,l Ek,l











∈ R
4Ik,l×(N+1) (13)



and finally

L =























L1,1

...
L1,4

...
LK,1

...
LK,4























∈
� 4I×(N+1)

Note that, in equation (13), we use the inverse of
the matrices Dk,l. This is possible because all of
these matrices are non-singular. In fact, if we use
the definitions of the sample grid (equation (10)), we
obtain that the determinant of the matrices Dk,l is non
zero, specifically,

|Dk,l| = −
∆x∆y

2
; k = 1, 2, · · · , K; l = 1, 2, 3, 4

With the above definitions, we can reparameterize
all the parameters in (12) in terms of the grid point
heights. This is formally established in the following
Lemma:

Lemma 1. Consider the vector

θ =
[

−cZ1 −cZ2 . . . −cZN c
]T

(14)

and define
[

ak,l bk,l c dk,l

]T
= D−1

k,l Ek,lθ. Then,
the plane defined by ak,lx + bk,ly + cz + dk,l = 0 is
the lth triangular plane section in the kth rectangle.

Proof. We will prove the result for l = 1 and any
k. For l = 2, 3, 4 the proof is similar. The (k, 1) th
triangular plane section is the plane passing through
the three points (Xk,1, Yk,1, Zk,1), (Xk,2, Yk,2, Zk,2),
(Xk,5, Yk,5, Zk,5). Let us then test the result. Specifi-
cally, we have

[

Xk,1 Yk,1 Zk,1 1
Xk,2 Yk,2 Zk,2 1
Xk,5 Yk,5 Zk,5 1

]







ak,1

bk,1

c

dk,1







=

[

Xk,1 Yk,1 Zk,1 1
Xk,2 Yk,2 Zk,2 1
Xk,5 Yk,5 Zk,5 1

]

D−1
k,1

Ek,1θ

=

[

Xk,1 Yk,1 Zk,1 1
Xk,2 Yk,2 Zk,2 1
Xk,5 Yk,5 Zk,5 1

]

D−1
k,1







−cZn−Nx−1

−cZn+Nx

c

−cZn







Recalling the relationships between the two indexing
system for the sampling points (equation (9)) we have







−cZn−Nx−1

−cZn+Nx

c

−cZn







=







−cZk,1

−cZk,2

c

−cZk,5







(15)

Additionally,

[

Xk,1 Yk,1 Zk,1 1
Xk,2 Yk,2 Zk,2 1

Xk,5 Yk,5 Zk,5 1

]

D−1
k,1

=

([

Xk,1 Yk,1 0 1
Xk,2 Yk,2 0 1
Xk,5 Yk,5 0 1

]

+

[

0 0 Zk,1 0
0 0 Zk,2 0
0 0 Zk,5 0

])

D−1
k,1

=

[

1 0 0 0
0 1 0 0
0 0 0 1

]

+

[

0 0 Zk,1 0
0 0 Zk,2 0
0 0 Zk,5 0

]

(16)

Then, the product of the last two terms ((15) and (16))
yields:

[

Xk,1 Yk,1 Zk,1 1
Xk,2 Yk,2 Zk,2 1
Xk,5 Yk,5 Zk,5 1

]







ak,1

bk,1

c

dk,1







=

[

0
0
0

]

which completes the proof.

Using Lemma 1 we obtain

θ = Lθ (17)

which allows to reparameterize the TRN surface in
terms of the vertex heigth.

Remark 2. Note that this Lemma can be generalized
for other kinds of representation with a given grid.

OOO

5. MAXIMUM LIKELIHOOD

We utilize the general idea described above but with
3D data and with the particular model structure briefly
explained above.

5.1 Fitting the TRN via optimization

If the covariance matrices Ci are known (or approxi-
mated) instead of maximize (7), we can minimize (18)
subject to the same constraint, i.e.

(θML, {φ̂i}ML) = arg min
θ,θ,{φ̂i}

I
∑

i=1

(

φi − φ̂i

)

C−1
i

(

φi − φ̂i

)T

subject to:

Φ̂θ = 0, θ = Lθ (18)

In particular, we optimize (18) with respect to
{

φ̂i

}I

i=1
,

θ and θ, where Φ̂ satisfies the structural constraints
imposed by eqn. (11), namely

Φ̂ =

I
∑

i=1

(

x̂iB
i
x + ŷiB

i
y + ẑiB

i
z + Bi

0

)

Note that with this structural constraint, Lemma 1 im-
plies that {(x̂i, ŷi, ẑi)}

I

i=1 are all on the TRN surface
as determined by θ and eqn. (14).

It is clear that the vector of parameters, θ, is not
unique, since we can scale all parameters by a con-
stant. Thus, we can add ||θ||2 = 1 as a new constraint
to this optimization problem.



6. AN ILLUSTRATIVE EXAMPLE

Synthetic elevation data has been generated by means
of evaluating a function given by:

z̄ = 2sin2(2x̄ + ȳ)

Then noise was added to the coordinates of every data
point as follows: x = x̄ + εx, y = ȳ + εy, z = z̄ + εz

where εx, εy, εz are uniform i.i.d. in the interval
[−0.05, 0.05].

Note that, the function used to generate the data is not
a TRN since it is not composed of triangles. Thus, our
procedure can be thought of as solving an approxima-
tion problem where we aim to find the “closest” TRN
surface to the given data. Of course, this corresponds
to practical reality since all DEM is an approxima-
tion problem. However, when the data is generated
by a TRN (corrupted by noise) this problem is an
estimation problem and the Maximum Likelihood pro-
cedure asymptotically achieves the Cramer Rao lower
bound, which is a measure of the estimator efficiency
(Kendall and Stuart, 1967).

In Figure 4 we can see the data, and the TRN approx-
imation obtained by CTLS. The maximum deviation
(in height) of the TRN from the “true” surface is 0.15
when the true height is 1.94.

In this example, the number of data points was 441
each comprising 3 measurements. This gives 1323
scalar variables. The number of samples on the TRN
grid is 41, each comprising 3 coordinates. However,
the x, and y components lie in a regular grid which
does not need to be stored. Hence, the end result of
the TRN fitting is that the original 1323 degrees of
freedom have been replaced by 41 degrees of freedom
to describe the surface.
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Fig. 4. Digital Elevation Modelling.

7. CONCLUSIONS

This paper has described LS, TLS, and STLS mo-
tivated by the Terrain modelling problem. This pro-
cedure has been applied to one particular kind of
surface which we call Triangular Regular Network.
However, the same procedure can be applied to other

kinds of representation over a given grid, e.g. non-
uniform grids. The benefits of applying the STLS
approach to the terrain modelling problem is that it
is possible to deal with errors (in x, y, and z) in all
the measurements. Since TRN is basically a regular
grid representation, they share the same advantages
and disadvantages. It is possible to apply the ideas
of errors in variables (TLS, STLS) to more complex
surface representations.
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