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Abstract: We describe a parsimonious approach to the problem of a transgenerational individual-based 
model (IBM) of the interaction between species at different trophic levels. We implement the approach in a 
model of the interaction of a generalized predator and prey species and compare it with a state variable model 
of the two species. Similarities and differences between the two models are described. Perhaps the most 
important finding is the sensitivity of the IBM to the level of individual variation, manifested here by the 
level of resources carried by each individual. The heterogeneity of resource levels is very important for 
resilience and the viability of the species in the model. We argue that as individual-based modelling 
simulates the local interactions between heterogeneous individuals and their environment, interactions which 
ultimately determine the dynamics of populations, metapopulations, communities and ecosystems, the use of 
individual-based modelling is important in developing understanding of large-scale ecological patterns. 
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1. INTRODUCTION 

The use of individual-based modelling (IBM) in 
ecology has grown steadily in the last fifteen 
years (Grimm, 1999; Judson, 1994; Schmitz & 
Booth, 1997) since the pioneering work of 
DeAngelis (1979), Kaiser (1979) and Łomnicki 
(1978). Individual-based modelling is an 
alternative to the more traditional state variable 
approach in which ordinary or partial differential 
equations are used to predict system outcomes 
over time. IBM is well-suited to the modelling of 
systems characterized by large numbers of 
discrete elements. 

An individual-based model consists of a set of 
heterogeneous discrete objects which change their 
state over time in a changing environment. 
Execution of the model is achieved by simulating 
local interactions between individuals and the 
time-varying, heterogeneous environment. In 
contrast, the traditional state variable modelling 
takes a top-down approach, seeking to express 
relationships between global outcomes. Global 
outcomes are modelled directly in a set of 
equations, and execution consists of evaluating 
the equations over time, often in discrete time 
intervals. Populations, rather than individuals, are 
modelled. 

Inherent in state variable models are simplifying 
assumptions such as homogeneity of individual 
properties and behaviour. Interactions typically 
occur randomly in one homogeneous environment 
space. There are, however, degrees of complexity 
in ecological systems including temporal and 

spatial scales, behavioral mechanisms and 
learning which are not easy to model in 
differential equations. The mathematics becomes 
intractable as the details or number of species 
rises (DeAngelis et al., 2001; Łomnicki, 1999; 
Schmitz & Booth, 1997). 

While the state variable approach has been 
successful in providing general understanding of 
system dynamics, it does not address issues of 
individual heterogeneity, individual learning and 
behaviour, local interactions or environmental 
heterogeneity which are important in modelling 
the complexity of these systems. Our empirical 
understanding of population dynamics and 
individual interactions is that these systems 
cannot easily be modelled using an equation-
based state variable approach (DeAngelis et al., 
2001; Huston et al., 1988; Łomnicki, 1999; 
Schmitz & Booth, 1997). 

The individual-based approach seeks to address 
these problems. Individuals in an individual-based 
model have potentially unique state and 
behaviour. The behaviour of an individual 
depends on global rules of engagement and on the 
state of the individual. The details of the 
interaction between individuals and the different 
states of the individuals can have a significant 
effect on the overall system dynamics and 
population levels, and begin to address the 
criticisms of the generalization of these factors in 
state variable models (DeAngelis et al., 2001; 
Schmitz & Booth, 1997). 



The motivations for building individual-based 
models include looking for a mechanistic 
understanding of the complex interactions in 
ecological systems, the need to build a predictive 
tool to be used to forecast population levels and 
an exploration of the effect of adding complexity 
to a model in order to introduce biological 
realism. 

In this paper we describe two models of the 
population dynamics of a predator species and a 
prey species. An individual-based model is 
compared with a state variable model of the two 
species. We find that the interaction of the 
individuals in the individual-based model 
generates comparable results to the state variable 
model – the population levels are interdependent 
and exhibit similar patterns, albeit with 
characteristics of stochastic and chaotic systems 
in the IBM. Mean population levels, while not 
explicitly coded into the IBM, emerge from the 
heterogeneous individuals and their rules of 
engagement, and these population levels are 
quickly resumed after an exogenous shock in the 
form of population decimation. The state variable 
model behaves differently in similar experiments. 

Perhaps most importantly, we find that the level 
of variation among the individuals in the IBM has 
profound implications for the stability of the 
population levels predicted by the model. 

2. THE INDIVIDUAL-BASED MODEL 

The individual-based model described here was 
built with the goal of parsimony. We have 
endeavored to keep the number of parameters as 
low as possible while still including the essential 
characteristics of the system. As the model 
involves the interaction of species at different 
trophic levels the flow of energy resources is an 
essential characteristic. The IBM creates 
individual predators and prey which maintain a 
resource total, a simple analogy of the energy 
reserves stored by living animals. Resources flow 
from prey to predators. The concept of using 
resources as the currency of the model was 
inspired by the Gecko model of Schmitz and 
Booth (1997). 

 
Each individual is given a resource level when it 
is born or created at the beginning of a simulation, 
and may add to the resource level by eating. 
Predators acquire the resources of their prey when 
they are eaten, and prey are given resources 
during each cycle of the simulation. A cycle is 
defined here as the basic time-step of the model 
and may represent different realistic time steps 
depending on the species being modelled. The 
individuals reproduce when they have enough 
resources or they may die of starvation or from 

being eaten. 
 

The model output is the population levels of the 
two species each cycle. Statistics may also be 
calculated and displayed. 
 
The model inputs are: 
• Initial numbers of predators and prey (pn 

and bn) 
• Predator chances of eating (to be 

multiplied by the number of prey) (pη) 
• Initial resources of individuals of both 

species (pir and bir) 
• Reproductive cost for both species (prc and 

brc) 
• Metabolic tax per cycle for both species 

(pmt and bmt) 
• Maximum and minimum resources to be 

added to each prey individual per cycle 
(bminr and bmaxr) 

2.1. Description of processing per cycle 

During each cycle of the simulator each predator 
and prey object is processed. One entire 
population is processed before the other. The 
order in which the two populations are processed 
does not affect the model dynamics. Processing 
the populations involves: 

Implementing resource intake. Each predator is 
given a chance to eat once per cycle. Its chances 
of eating are proportional to the prey population, 
as in the Lotka-Volterra equations described 
below. If the predator is to eat, a prey individual 
is selected at random and removed from the 
simulation. The resource total of this prey 
individual is added to the resource total of the 
predator. This model operates in one environment 
space, again like the Lotka-Volterra equations, so 
the prey eaten can be anywhere in the 
environment space. 

Each prey individual is given resources each 
cycle to simulate eating. The number of resources 
given to each  prey individual is randomly 
selected from between an upper and lower bound  
(two of the model parameters, bminr and bmaxr). 

Applying metabolic tax. A tax is deducted from 
the resource total of each individual to simulate 
the metabolic cost of living for each cycle. If the 
resource total drops below the metabolic tax per 
cycle, the individual dies and is removed, as it 
does not have the resources to live one more 
cycle. The metabolic tax (pmt and bmt) parameters 
are global. 

Processing reproduction. Each individual may 
produce one offspring per cycle if it has enough 
resources to both reproduce and live one more 



cycle. If an individual is to reproduce, a 
reproductive tax is removed from its resource 
total to represent the energy cost of bearing 
offspring, and a new individual is added to the 
simulation. The new individual is not processed 
until the next cycle. The individuals in this model 
reproduce by parthenogenesis – mating behaviour 
and its associated complexity is not modelled. 
The costs of reproducing are global parameters 
(prc and brc). 

2.2. Simulating population dynamics with 
the IBM 

The simulations graphed here were started with 
40 predators and 80 prey and were executed for 
250 cycles of the model unless otherwise noted. 
Population levels in Figure 1 have a mean of 70 
predators and 110 prey.  As Figure 1 illustrates, 
the model output is similar to that of the Lotka-
Volterra equations (Figure 3). 

The populations in Figure 1 appear to be 
dependent on each other as would be expected 
given the model algorithm. The predator 
population is dependent on the prey as a source of 
food, and the prey population is dependent on the 
predators as their chances of being eaten rises as 
the predator population rises. No statistical 
analysis was done to test this dependency. 

The input values used to produce Figure 1 are as 
follows: pn = 40, bn = 80, pη = 0.0055, pir = 1000, 
bir = 500, prc = 600, brc = 325, pmt = 250, bmt = 
250, bminr = 100, bmaxr = 490, rs1 = 90. These 
values were used for all figures unless otherwise 
noted. 
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Figure 1.  The individual-based model 

The set of parameters used to create Figure 1 
results in populations which cycle indefinitely. 
                                                           
1 The seed supplied to the Java pseudorandom 
number generator, explained in section 2.2. 

Figure 2 illustrates the model output over 5000 
cycles: we have run the simulator for over 100 
000 cycles with similar results. Figure 2 is typical 
of the output over thousands of cycles using 
different sets of stable parameter values. The 
population levels of the two species demonstrate 
oscillating levels as do the population levels 
generated by the Lotka-Volterra equations, but 
the stochastic and possibly chaotic nature of the 
model is evident in the varying overall population 
levels over many cycles and in the occasional 
extreme values. 
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Figure 2. The IBM over 5000 cycles 

Because of the stochastic nature of the model, and 
because the model was sensitive to parameter 
values, a statistical analysis of population levels 
to accurately determine trends was not pursued. 
The figures presented in this paper are 
representative of the parameter space explored. 
The model is not deterministic, but it is worth 
noting here an implementation detail: the 
computer programming language used generates 
pseudorandom numbers using the linear 
congruential method (Java language 
documentation). If the same seed is used to 
generate the pseudorandom numbers in different 
executions of the model, an identical sequence of 
pseudorandom numbers will result. This means 
that while the model has a stochastic element, an 
individual execution of the model may be exactly 
repeated.  

3. THE STATE VARIABLE MODEL 

The equations developed by Lotka and Volterra in 
the 1920’s (see, for example, Adler, 1998) are 
used here to implement a state variable approach 
to the predator-prey problem. The equations are 
as follows: 



 

)1()()]([)( tbtp
dt

tdb ελ −=  

)2()()]([)( tptb
dt

tdp ηδ +−=  

 
Where b represents the population of prey, p 

the population of predators, λ the prey growth rate 
in the absence of predators, ε the chances of a 
prey object being eaten, δ the predator growth rate 
in the absence of prey and η the chances of a 
predator eating. The initial population levels are 
known. We use the Euler method to implement an 
ODE solver. 
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Figure 3. The state variable model 

Figure 3 is a graph of the population levels 
produced by a computational implementation of 
the ODE solver. The model is calibrated with the 
following parameter values: η = 0.006, ε = 
0.0075, δ = 1.0 and λ = 1.2, and initial values: b0 
= p0 = 100. The simulation was run for 40 time 
units with a time step of 0.0001. 

 
The assumptions on which the Lotka-Volterra 
model is based include the homogeneity of 
individual organisms and the homogeneity of the 
environment. The individual-based model built 
here makes some of these assumptions, including 
the homogenous distribution of the species. The 
significant feature of the IBM, however, is the 
heterogeneity of the individuals. 

4. BEHAVIOUR OF THE MODELS 
AFTER POPULATION DECIMATION 

The stability of both models and the tendency 
towards stable population means in the 
individual-based model are illustrated when the 
models are subjected to an exogenous shock. In 
the graphs below the two populations are halved 
at a given time during the simulation. This is at 

cycle 100 in the IBM and at time unit 1 in the 
state variable model.  
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Figure 4. Artificial reduction of population 

numbers in the state variable model 

After the shock the state variable model resumes 
stable cycling population levels, but the minima 
and maxima are permanently altered (Figure 4). 
The population reduction can be seen at time unit 
1 where the two population lines are vertical. In 
contrast the IBM resumes the same mean minima 
and maxima after reacting to the shock over 
cycles 100 to 140 (approximately) in Figure 5. A 
vertical line has been added to the graph to 
indicate where the populations are halved. 
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Figure 5. Artificial reduction of population 

numbers in the IBM 

5. INDIVIDUAL HETEROGENEITY 

The resources carried by each individual in the 
IBM are the only source of individual variation in 
this model. Preliminary results indicate that this 
variation is important to the stability of the 
population numbers. If the simulator is started 
with little or no variation in the resource levels of 
the individuals, the population levels are very 
unstable and one of the populations usually drops 
to zero. Figure 6 illustrates the two populations 
and the standard deviation of the prey resources 



for each cycle when the resource standard 
deviation is low at the start of the simulation. The 
simulation lasts less than 20 cycles and stops 
when the predator population drops to zero. 
Figure 7 illustrates the simulation started with 
higher resource standard deviations and is in fact 
the first 100 cycles of the simulation illustrated in 
Figure 1 with the standard deviation of the prey 
resources for each cycle added to the figure. 
There is no parameter used to directly set the 
resource levels of individuals. The simulation in 
Figure 7 is achieved by re-starting the simulator 
after producing Figure 6 using the individuals 
which are left in the computer memory when the 
simulation that produced Figure 6 was halted. 
These individuals have a higher level of resource 
variation than those at the start of a clean 
simulation. 
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Figure 6. Low initial resource variation 

The importance of the level of variation in 
resources to the stability of the model over many 
cycles is consistently observed. The initial prey 
resource variance is more important than the 
initial predator resource variance. It is difficult to 
make conclusions about the importance of this 
finding as the model is of two generalized species 
and the parameter values are therefore not derived 
from empirical data. We add this finding, 
however, to the growing evidence in the literature 
that individual variation is important to the long-
term viability of species in individual-based 
models of ecological systems (DeAngelis et al., 
2001; Huston et al., 1988; Łomnicki, 1999; 
Schmitz & Booth, 1997). The significance and 
importance of individual variation, and the 
correlation between the prey numbers and the 
prey resource standard deviations will be the 
subject of future research. 

 

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

Cycle

P
op

ul
at

io
n

Predators
Prey
Prey Resource SD

 
Figure 7. Higher initial resource variation 

6. DISCUSSION 

In this paper we have presented preliminary 
results obtained from the IBM described. We 
have not yet performed any structured and 
exhaustive analysis of the stability of the model, 
its robustness to parameter values or the 
dependence of the populations on each other. This 
will form the basis of future work, and is 
necessary before the generality of the results can 
be asserted. The comments made in this 
discussion should be read with this in mind. 

The individual-based model of predator-prey 
interaction described here is based on a simple set 
of rules governing resource flow in the system. It 
produces cycling predator-prey population 
dynamics similar to those of the Lotka-Volterra 
model. There are significant differences between 
the two models, however, and one difference is 
revealed when the models are subjected to an 
exogenous shock in the form of population 
decimation. While this permanently affects the 
population levels in the state variable model, the 
IBM returns to the original population levels after 
reacting to the shock. Initial results indicate that 
the behaviour of the IBM after the shock appears 
to be highly dependent on which individuals are 
left, their resource means and resource variance. 
In Figure 5 the drop in predator numbers evident 
immediately after this shock could perhaps be 
explained if many of those predators not removed 
by the shock would not have survived the next 
few cycles anyway (due to their resource levels), 
and the resulting disproportionate drop in predator 
numbers results in an unusually high prey 
population, dragging the predator population up 
as well. These new population peaks are 
unsustainable given the resources entering the 
system, and the population means and variances 
move back to the stable levels inherent in the 
system. This is contrasted with the simple 
adjustment in the state variable model after the 



shock, and illustrates the inherent stable 
population levels in the IBM. 

Perhaps the most important finding of the work 
described here is the sensitivity of the model to 
individual variation. In this model the variance of 
the resource total in the population is critical to 
the stability of the population levels. A low 
resource variance almost always leads to the 
extinction of one of the species. The dynamics 
involved in the model which produce this effect 
will be explored in future research, but the 
parallels with real populations are interesting. The 
importance of variation, both genetic and 
phenotypic, to population viability is emphasized 
by many researchers, for example Meffe and 
Carroll (1997). The importance of individual-
based modelling to ecology because of the 
possibility that individual variation may be built 
into the model is of central importance to the 
work of researchers including DeAngelis et al. 
(2001), Huston et al. (1988) and Schmitz & Booth 
(1997). Emerging themes in the literature include 
the importance of individual variation in both real 
and simulated populations, and that the modelling 
of individual variation and heterogeneous local 
interactions in IBMs leads to different system 
level outcomes compared with state variable 
models of the same system. 

7. CONCLUDING REMARKS 

The state variable approach to ecological system 
modelling has been to generalize and simplify 
system parameters to build parsimonious and 
deterministic models. These models have been 
useful in classical population ecology in helping 
to understand broad system dynamics. The 
approach in an individual-based model, in 
contrast, is to simulate local interactions between 
heterogeneous individuals, interactions which 
ultimately determine the dynamics of populations, 
metapopulations, communities and ecosystems. 

This paper describes an individual-based model of 
the interaction between two species. The model 
was built by using the energy flow in a predator-
prey system as its currency. The model exhibits 
inherent mean population levels, levels to which 
the model returns after artificial adjustment. It 
also exhibits an intriguing sensitivity to the level 
of individual variation. Sensitivity to individual 
heterogeneity is consistently cited in the literature 
as important to individual-based models of 
ecosystems and to the ecosystems themselves. In 
future work we will explore these characteristics 
and in doing so may possibly take a step towards 
understanding large-scale ecological patterns by 
investigation of generalized individual 
interactions. 
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