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Abstract: Drinking water contaminated by microorganisms can be a major risk to public health. Disinfection 
is used to destroy microorganisms that are potentially dangerous to humans. In order to prevent bacterial 
regrowth, it is also desirable to maintain a disinfectant residual in the water distribution system. The most 
commonly used disinfectant is chlorine. If the dosing rate of chlorine is too low, there may be insufficient 
residual at the end of the distribution system, resulting in bacterial regrowth. On the other hand, the addition 
of too much chlorine can lead to customer complaints about taste and odour, corrosion of the pipe network 
and the formation of potentially carcinogenic by-products. Consequently, in order to determine the optimal 
chlorine dosing rate, it is necessary to be able to predict chlorine decay in the network. In this paper, two 
data-driven techniques, namely linear regression models and multi layer perceptron artificial neural networks, 
are used to predict chlorine concentrations at two key locations in the Hope Valley water distribution system, 
which is located to the north of Adelaide, South Australia. A 5-year data set containing routinely measured 
parameters is used for model development and validation. The results obtained indicate that both techniques 
are relatively successful in predicting chlorine concentrations in the distribution system. This is despite the 
fact that there is no hydraulic model of the system and that only data that were collected on a routine basis 
are used for model development. Overall, the performance of the multi layer perceptron is slightly better than 
that of the regression model, suggesting the presence of some non-linearities in the underlying physical 
processes governing chlorine decay. 
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1. INTRODUCTION 

Drinking water contaminated by microorganisms 
can be a major risk to public health. Disinfection 
is the water treatment process carried out to 
destroy any harmful microorganisms that are 
contained in the drinking water. In order to 
prevent bacterial regrowth, it is desirable to 
maintain a disinfectant residual in the network. 

Chlorine is the most commonly used disinfectant 
due to its ease of application and monitoring, its 
low cost and its effectiveness in killing bacteria 
(Hua et al., 1999). However, as a result of 
chlorine reacting with various substances in the 
water and on the pipe wall, its concentration can 
decrease as it travels through the distribution 
system. This is known as chlorine decay. The 
amount of chlorine added to the water is very 
important. If the dosing rate is too low, there may 
not be a residual left at the end of the distribution 
system to protect against recontamination. If the 
dosing rate is too high, it can lead to customer 

complaints, corrosion of the pipe network or the 
formation of byproducts, including 
trihalomethanes (THMs), which are suspected 
carcinogens.  

Generally, the chlorine dosing rate at a water 
treatment plant is determined from operator 
knowledge and by monitoring residual chlorine 
concentrations and coliform levels in the 
distribution network. This is a sub-optimal 
method of operating, as the dosing rate is adjusted 
only after the chlorine concentration in the field is 
detected to lie outside a desirable range. It would 
be beneficial to accurately predict the chlorine 
dosing rate that is required to achieve a balance 
between sufficient chlorination to ensure 
bacteriological quality and providing customers 
with water that they find pleasant to drink. 

Traditionally, chlorine decay has been predicted 
using process-based models that assume chlorine 
decay follows a first order equation. The main 
advantage of process-based models is that they 
are based on the underlying physical processes, so 



the results obtained generally have a wide range 
of applicability. To develop a process-based 
model, a good understanding of the system is 
required along with extensive, accurate data to 
produce the hydraulic model used to determine 
travel times of water in the system. Flows in 
individual pipes, as well as the values of constants 
required for the chlorine decay model (which can 
be dependent on many factors, including 
temperature, initial chlorine concentration, source 
water quality and biofilm presence), must all be 
determined.  

An alternative modelling procedure consists of 
data-driven statistical models. Statistical chlorine 
decay models can be used to predict residual 
chlorine based on empirical relationships between 
a number of dependent and independent variables. 
The main difference between a statistical model 
and a process-based model is that statistical 
models are driven by observed relationships in the 
data, rather than an assumed knowledge of the 
actual process occurring in the system. The 
development of statistically based models for 
disinfection control purposes is justifiable in cases 
where parameter estimation within a process-
based model is imprecise or difficult to obtain 
(Rodriguez et al., 1997) or where the data 
required for the development of process based 
models are not available. This approach offers the 
advantage of not requiring extensive a priori 
knowledge of the laws of chemistry and 
mathematics governing the behaviour of residual 
chlorine (Sérodes et al., 2001) or the distribution 
system being studied. However some knowledge 
of the factors that will influence the chlorine 
decay can help identify which data are relevant 
for the analysis.  

Data-driven modelling approaches are becoming 
more popular due to the increasing availability of 
data in the water industry. Water utilities possess 
large quantities of data derived from control and 
monitoring facilities. Rather than devising data 
collection schemes to collect the large amounts of 
data required to develop a process-based model, 
statistical techniques can be applied to extract 
useful relationships from existing data sets, thus 
making maximum use of the data that are already 
available.  

The objective of this research is to assess the 
feasibility of using data-driven models for 
determining the chlorine decay in a water 
distribution network to aid in optimising chlorine 
dosing rate at the Hope Valley water treatment 
plant, South Australia. Two approaches will be 
considered, namely linear regression and artificial 
neural networks (ANNs). ANNs are used due to 
their ability to handle nonlinearity and large 
amounts of data, as well as their fault and noise 

tolerance and their learning and generalisation 
capabilities (Lawrence, 1994). Regression is used 
as a benchmark against which the performance of 
the ANN can be compared, as there has been a 
notable lack of research comparing the 
performance of ANNs with more conventional 
statistical approaches (Dawson et al., 2001). 
Linear regression was used in preference to non-
linear regression as the functional form of the 
process to be modelled must still be assumed 
when the latter modelling technique is used. 
Although the functional form of chlorine decay 
with time is resonably well known, the 
relationship between chlorine other input 
parameters, such as organic content, is largely 
unknown. 

2. PREDICTIVE MODELLING THEORY 

2.1. Linear Regression Analysis 

To perform a linear regression, the chlorine 
concentration, Y, is assumed to be a linear 
function of the inputs, X. The unknown 
parameters to be determined, ai are the 
coefficients, as given in (1): 

Y=a0 + a1X1 + a2X2 + … + anXn  (1) 

Where n is the number of inputs used. The 
coefficients are chosen so as to minimise the sum 
of the squared differences between the predicted 
and actual values of Y. 

2.2. Multi Layer Perceptron 

The multi layer perceptron (MLP) using the 
backpropagation training algorithm is the most 
widely used neural network for forecasting and 
prediction applications (Maier et al., 2000). MLPs 
generally consist of three layers: an input layer, a 
hidden layer and an output layer, as shown in 
Figure 1. However, MLPs may contain more than 
one hidden layer. 
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Figure 1. General Structure of MLPs. 



Each layer consists of nodes or neurons, which 
are connected to nodes in the previous and 
following layers by connections. The strength of 
each connection, referred to as its connection 
weight, can be adjusted. The connection weight 
from the ith node to the jth node is denoted by wij.  

Input data are presented to the network through 
the input layer, the values of which are denoted 
by xi. Data are passed from the input layer to the 
hidden layer. Each node in the hidden layer 
receives the weighted outputs (wijxi) of the nodes 
in the preceding layer. These outputs are then 
summed and added to a threshold value, θj, to 
produce the node input, Ij, as shown in (2). 

j
i

iijj xwI θ∑ +=  (2) 

The node input is then passed through an 
activation function, ƒ(Ij), to produce the node 
output, yj. This node output is then used to 
compute the inputs for nodes in the following 
layer, until the final output is calculated.  

3. CASE STUDY 

3.1. Hope Valley Water Distribution System 

The case study considers chlorine residuals and 
chlorine consumption in the Hope Valley water 
distribution system, Adelaide, Australia. Hope 
Valley was Adelaide's first water treatment plant 
(WTP). It has a design capacity of 273 ML/day 
and serves a population of approximately 
180,000, making it the third largest WTP in 
Adelaide.  

A 5-year data set collected by United Water 
International was used for this project. Chlorine 
concentrations were predicted at two locations in 
the water distribution system, sampling points 
1064 at the Queen Elizabeth Hospital on 
Woodville Road and 1066 at the Port Adelaide 
Primary School on Portland Road, as shown in 
Figure 2. Each dot in the figure represents a 
sampling point in the network. 

A 5-year data set collected by United Water 
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the water distribution system, sampling points 
1064 at the Queen Elizabeth Hospital on 
Woodville Road and 1066 at the Port Adelaide 
Primary School on Portland Road, as shown in 
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sampling point in the network. 

The network parameters available included the 
water temperatures at the WTP and at the sites of 
interest, flow from the WTP, chlorine 
concentrations throughout the network, the 
dissolved organic carbon (DOC) content, UV 
light absorbance, the time at which each 
measurement was taken and the previous week’s 
chlorine concentration at the site. The 
measurements at points 1064 and 1066 were 
taken weekly, which dictated the frequency of the 
patterns in the data sets. Some parameters were 
measured daily, such as the WTP flow and 
temperature, which resulted in a week of flow 

measurements available as input parameters for 
each chlorine concentration at the site being 
predicted. Other measurements, such as DOC, 
were measured fortnightly or monthly.  
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Figure 2. Location of chlorine sampling points. 

3.2. Predictive Model Development 

The systematic modelling procedure implemented 
in this research can be seen in . The main 
steps involve data preparation, input selection, 
data division, model selection, model calibration 
and performance evaluation. The analytical 
techniques used to help with the input 
determination process were the coefficients of 
correlation (CC), sensitivity analysis (SA) and 
partial mutual information (PMI). The division of 
data for use in the model calibration and 
validation steps was implemented using a self 
organising map (SOM). The two types of models 
used were linear regression and multi layer 
perceptrons (MLPs). Model calibration was 
performed using the “Least Squares” method for 
the linear regression, and the backpropagation 
algorithm for the MLP. Performance evaluation 
was then used to test the accuracy of each 
calibrated model, which included the Mean 
Absolute Error (MAE), Root Mean Squared Error 
(RMSE) and the maximum error produced by a 
prediction from the model (Max). Each step of the 
process is outlined in the following section. 

Figure 3

3.3. Input Determination  

If redundant input parameters can be identified 
and removed then model size can be reduced 
significantly. Using fewer input parameters will 
also decrease the amount of measured data 
required, which will effectively reduce the 
amount of noise (measurement errors) introduced 
into the model. This can lead to a more efficient 
and accurate model for predicting chlorine levels. 
There are many different methods that can be 
used to determine which inputs should be used in 
a predictive model. A priori knowledge of a 



system can be used to identify significant inputs if 
the system being studied is well understood. 
Inspection of time series plots can also be used to 
identify input/output relationships. However, if 
the system is not well understood, analytical 
techniques can be used (Maier and Dandy, 2000).  

Figure 3. Modelling methodology used. 

Three different techniques were adopted in this 
research to gain an appreciation of the inputs 
required for this study. They were correlation 
coefficients, sensitivity analysis and partial 
mutual information (Sharma, 2000). By using a 
combination of a priori knowledge and the results 
of the analytical procedures, the most significant 
inputs for the Hope Valley water distribution 
network were selected for model development. 
These inputs included the water temperature at 
the sites of interest and at the WTP, the WTP 
flow 5 days before the chlorine measurement 
being predicted, and the chorine concentrations at 
the WTP, at the North Adelaide tank inlet (see 
Figure 2) and at the site under prediction the 
previous week, resulting in a total of 6 model 
inputs. 

3.4. Data Division  

The development of any model requires the 
partitioning of the parent database into 
statistically similar subsets in order to calibrate 
and validate models. The method of data division 
used in this project was based on the method 
proposed by Bowden et al. (2002), using a self 
organizing map (SOM). The Kohonen Self 
Organising Map (SOM) is a type of unsupervised 
neural network, which produces a topologically 
ordered output based on statistical similarities 
(such as the mean and variance) between input 
patterns. Using the SOM the parent dataset was 
divided into 80% calibration and 20% validation. 
The validation set was set aside in the calibration 
process, as it was only used for the comparison of 
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Regression, being the simpler and easier model to 
implement, provided a good method to obtain 
quick predictions of chlorine concentration trends, 
but struggled to predict the extreme 
measurements, as indicated by a large average 
maximum error at both points.  

chlorine consumed from the WTP to point 1064. 
A similar result was found for the chlorine 
residual predictions at this point. The MLP also 
outperformed the linear regression at point 1066 
for both chlorine residual and consumption 
predictions, however the result was not as 
pronounced. Model performance was evaluated 
using the root mean square error (RMSE), the 
mean absolute error (MAE) and the maximum 
absolute error (Max). When comparing the 
prediction accuracy between two models the 
RMSE was considered the best indicator, as this 
error measurement penalises larger prediction 
errors more harshly than the MAE. The maximum 
absolute error for the models developed were also 
determined, as this gives an indication of the 
worst case prediction made by that model. 

R2 = 0.7624
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Figure 4. Summary of chlorine consumption 
prediction errors at point 1064. 

MLP

Figure 5. Scatter plot of the chlorine consumption 
for 1064 using the MLP model. 

5. DISCUSSION 

Chlorine measurements in the network range from 
0.7mg/L to <0.1mg/L at point 1064 with 
measurements occurring at 0.1mg/L intervals. 
This corresponds to an average measurement 
accuracy of 14%. Model performance is penalised 
as the model output is continuous, whereas the 
measured values are discrete. For example, a 
prediction of 0.45mg/L will be penalised 
regardless of the measured value of chlorine 
concentration, which is a multiple of 0.1. 
Therefore, the accuracy of the chlorine 
measurements may be restricting the predictive 
accuracy of the models, as in the calibration 
process the model parameters will be adjusted, 
possible incorrectly, to conform to the measured 
values. A possible solution to this problem could 
be to allow a tolerance before any error is 
calculated. 

All models produced a lower minimum RMSE at 
point 1066 than at point 1064. This may be due to 
the presence of complex processes not well 
explained at point 1064, such as moving mixing 
zones. For point 1066, the two models performed 
similarly based on the evaluation criteria used for 
both residual and consumption predictions. This 
may be due to a relatively simple relationship in 
the available data between the input parameters 
used and the chlorine concentrations at point 
1066. 

It is likely that there is a significant daily 
variation in chlorine concentrations at the 
sampling locations. The diurnal variation in 
demand will result in varying travel times. The 
variation in flow during a day may also have an 
effect on the dosing rate of chlorine. When the 
demand changes rapidly, the response time for 
adjusting the chlorine dosing rate may cause 
plugs of water, containing either high or low 
concentrations of chlorine, to move through the 
system. Changing demands will also affect the 
path the water may take from the WTP to the 
sampling location. The variation in factors such as 
these are most likely poorly represented by the 
available data. Hence the models developed 

The scatter plot for predicting chlorine 
consumption at 1064 with the MLP is shown in 
Figure 5. The solid line shown on the plot is a 
linear trendline fitted to the predicted values, the 
dashed lines indicate ± 0.2mg/L errors from the 
line of perfect predictions, indicated by the black 
line. It can be seen that there does not appear to 
be any general trend to the errors in the 
predictions, whereas the regression model tended 
to over-predict the low values and under-predict 
the high values. These results imply there is a 
significant non-linear relationship governing the 
processes, which, unlike the linear regression 
analysis, the MLP is able to predict.  



assume these occurrences are constant and do not 
affect the chlorine concentration, which is most 
likely an invalid assumption. 

In terms of assessing the applicability of the 
different modelling approaches for use in 
controlling disinfection, a number of outcomes 
were achieved. The linear regression model 
showed that it had the potential to predict the 
general trends of chlorine evolution in a 
distribution system. The principal advantages of 
the linear regression analysis are the speed of 
calibration and the small number of parameters 
that required optimisation. Based on prediction 
accuracy, the MLP is the more appropriate model 
for assisting in disinfection control. However, the 
difficulties associated with the calibration of this 
more complex model may outweigh the benefits 
of prediction accuracy when compared with linear 
regression.  

 The results obtained indicate that it is quite 
possible to predict the chlorine consumed in a 
water distribution network using intelligent data 
driven methods such as neural networks. 
Rodriguez et al. (1997) implemented a single 
smoothing factor general regression neural 
network to predict the chlorine residual in a 
simple trunk main without offtakes using hourly 
chlorine measurements. The Hope Valley system 
that has been considered in this case study is 
much more complex and not well understood, but 
even with the weekly time step between chlorine 
measurements, the models implemented managed 
to predict the general trends of chlorine 
concentrations. The results indicate the potential 
to implement these methods to assist Water 
Treatment Plant management in determining the 
optimal chlorine dosing rate. 

6.  CONCLUSIONS 

The findings of this research suggest that the 
factors that are important for the prediction of 
chlorine concentrations for the case study 
considered are the North Adelaide tank inlet 
chlorine concentration, temperature at the 
sampling location, WTP chlorine concentration, 
WTP temperature, WTP flow and the previous 
chlorine concentration measurement at the 
sampling point. 

It has been shown that a data-driven modelling 
approach is a suitable method for estimating the 
disinfectant concentrations in a water distribution 
network, especially in the case where the network 
is not well understood and the necessary data for 
a process based model are not available. 

The multi layer perceptron model was found to 
consistently outperform traditional linear 

regression for this case study. The MLP has 
displayed the potential to be implemented as an 
online tool to aid in the determination of chlorine 
dosing rates in a water distribution network.  
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