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Abstract: Water distribution systems (WDSs) are costly infrastructure in terms of materials, construction, 
maintenance and energy requirements. Much attention has been given to the application of optimisation 
methods to minimise the costs associated with such infrastructure. Historically, traditional optimisation 
techniques have been used, such as linear and non-linear programming, but within the past decade the focus 
has shifted to the use of Evolutionary Algorithms, for example Genetic Algorithms, Simulated Annealing and 
more recently Ant Colony Optimisation (ACO). Advancements on the basic formulation of ACO have been 
developed, these advancements differ from one another in their utilisation of information learned about the 
search-space to manage the trade-off between exploitation and exploration in the algorithms searching 
behaviour. Exploration is the algorithms ability to search broadly through the problems search space and 
exploitation is the algorithms ability to search locally around good solutions that have been previously found. 
One such advanced ACO algorithm, which is presented within this paper, is the Max-Min Ant System 
(MMAS). This algorithm encourages local searching around the best solution found in each iteration while 
implementing methods to slow convergence and facilitate exploration. The performance of MMAS is 
compared to that of the most basic ACO formulation Ant System (AS) for two commonly used WDS case 
studies. The sophistication of MMAS is shown to be effective as it outperforms AS for both case studies and 
performs competitively in comparison to other algorithms in the literature.  
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1. INTRODUCTION 

Due to the high costs associated with the 
construction of water distribution systems 
(WDSs) much research over the last 25 years has 
been dedicated to the development of techniques 
to minimise the capital costs associated with such 
infrastructure. This process has been given the 
title of “optimisation” or “optimal design” of 
WDSs. 

Within the last decade, many researchers have 
shifted the focus of WDS optimisation from 
traditional optimisation techniques based on 
linear and non-linear programming to the 
implementation of Evolutionary Algorithms 
(EAs) namely; genetic algorithms (GAs) (Dandy 
et al. 1996, Savic & Walters 1997, Lippai et al. 
1999, Wu et al 2001), simulated annealing 
(Cunha & Sousa 1999) and ant colony 
optimisation (ACO) (Maier et al. 2003). Noted 
advantages that exist with the use of EAs for 
application to WDSs are; (i) only commercial 
pipe diameters are considered (e.g. they treat the 
optimisation problem as discrete), (ii) they deal 

only with objective function information and 
avoid complications associated with determining 
derivatives or other auxiliary information, (iii) 
they are global optimisation procedures, and (iv) 
as they deal with a population of solutions 
numerous optimal or near-optimal solutions can 
be determined. 

Due to the iterative nature of the solution 
generation of EAs, they can be intuitively seen as 
algorithms that incrementally search through the 
solution-space using knowledge about solutions 
that have already been found to further guide the 
search. The searching behaviour of EAs can be 
characterised by two main features (Colorni et al. 
1996), (i) exploration, which is the ability of the 
algorithm to search broadly through the solution-
space and (ii) exploitation, which is the ability of 
the algorithm to search more thoroughly in the 
local neighbourhood where good solutions have 
previously been found. By definition, these 
attributes are in conflict with one another. 

ACO is an EA based on the foraging behaviour of 
ants (Dorigo et al. 1996). It has seen a wide and 
successful application to many different 
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3. ANT COLONY OPTIMISATION optimisation problems (see Dorigo et al. (1999) 
for an overview) and recently it has been seen to 
perform very competitively for WDS optimisation 
(Maier et al. 2003). 3.1. General Analogy 

ACO, developed by Dorigo et al. (1991) (cited in 
Dorigo et al. 1996) is a discrete combinatorial 
optimisation algorithm based upon the foraging 
behaviour of ants. Over a period of time a colony 
of ants are able to determine the shortest path 
from their home to a food source. The ‘swarm 
intelligence’ of the ant colony is achieved via an 
indirect form of communication that involves the 
ants following and depositing a chemical 
substance, called pheromone, on the paths that 
they travel. Over time, shorter (or more desirable) 
paths are reinforced with greater amounts of 
pheromone, as they require less time to be 
traversed, thus becoming the dominant paths for 
the colony.  

Advancements have been developed on the initial 
and most simple formulation of ACO, Ant System 
(AS) (Dorigo et al. 1996), to improve the 
operation of the decision policy and the manner in 
which the policy incorporates new information, to 
help in exploring the search space. These 
developments have primarily been aimed at 
managing the trade-off between the two 
conflicting search attributes of exploration and 
exploitation.  

Many notable advances on the simple AS have 
been developed (Dorigo et al. 1999), however, 
only one of these is considered in this paper; the 
Max-Min Ant System (MMAS) (Stützle & Hoos 
2000). To apply ACO to a combinatorial optimisation 

problem, it is important to outline some basic 
concepts. Within ACO, the optimisation problem 
is represented as a graph consisting of n decision 
points where each decision point is connected to 
its adjacent decision point via a set of edges1. For 
example, θi is the set of edges available from 
decision point i. A solution, termed a path in 
ACO (symbolised by S), is comprised of a 
selection of an edge at each decision point. 
Therefore a path (i.e. solution) can be seen as a 
vector of the selected edges, that is  

The objective of this paper is to assess the 
efficacy of the additional mechanisms 
incorporated in the Max-Min Ant System, 
compared to the more basic Ant System, for WDS 
optimisation. To undertake this, a comparison 
between the performance of AS and MMAS for 
two case studies has been presented. These 
algorithms have also been compared to the best 
performing algorithms previously presented in the 
literature for the two case studies considered. 

2. THE WATER DISTRIBUTION SYSTEM 
OPTIMISATION PROBLEM 

S = (selectioni | selectioni ∈  θi, i = 1,…,n) (1) ∀

The ACO algorithm operates by iteratively 
generating a population of solutions where each 
solution is representative of the path that a single 
ant has travelled. An ant generates a solution by 
selecting an edge at each decision point based 
upon a decision policy. Once each ant has 
generated a solution, an amount of pheromone 
proportional to the quality of the solution is 
deposited upon all the edges on the path. In this 
way, better solution components (i.e. edges) are 
reinforced with greater amounts of pheromone. 

The optimisation of WDSs is loosely defined as 
the selection of the lowest cost combination of 
appropriate component sizes and component 
settings such that the criteria of demands and 
other design constraints are satisfied. In practice 
the optimisation of WDSs can take many forms as 
WDSs are comprised of a number of different 
components and have many different performance 
criteria.  

Traditionally in the literature the optimisation of 
WDSs has dealt with a relatively simple and 
idealised problem. The decision variables have 
primarily been the pipe diameters within the 
system, where more specifically, the decision 
options have typically been the selection of (i) a 
diameter for a new pipe, or (ii) a diameter for a 
duplicate pipe. The design constraints on the 
system have normally been the requirement of 
minimum allowable pressures at each of the 
nodes. In addition to the design constraints the 
hydraulic equations governing fluid flow through 
a network (e.g. nodal continuity and conservation 
of energy around a closed loop) must also be 
satisfied. 

As stated, at each decision point, an ant selects an 
edge governed by a non-deterministic decision 
policy. This policy considers a trade-off between 
the pheromone intensity on a particular edge and 
the desirability of that edge with respect to its 
individual influence on the objective function. 
The desirability has different definitions for 
different problems. For example, if the objective 
is to minimise cost, the desirability of an edge 
maybe set equal to the inverse of the cost 
                                                           
1 The definition of the graph in this case slightly differs from 
that represented in other papers (e.g. Dorigo et al. 1999) to 
allow for a more intuitive application to WDS optimisation. 



associated with that edge (e.g. cheaper edges are 
more desirable). Taking these two properties of an 
edge into account, ACO algorithms effectively 
utilise heuristic information that has been learned 
(represented as pheromone intensity) in addition 
to incorporating a bias towards edges that are of a 
greater desirability. 

Incorporated within this process is a mechanism 
to model the pheromone evaporation. Pheromone 
evaporation is analogous to a gradual loss of 
memory and is important as it allows for ACO 
algorithms to forget poor information that was 
learned early on in the search and focus on using 
the better information that has been gained at later 
stages of the search. 

The mathematical formulations of the ACO 
algorithms presented in this paper, namely AS 
and MMAS, are given in the following sections. 

3.2. Ant System 

Ant System (Dorigo et al. 1996) is the original 
and most simplistic ACO algorithm. As such, it 
has been the most influential in the development 
of more advanced ACO algorithms (Dorigo et al. 
1999). The decision policy used within AS is as 
follows: the probability that edge (i,j) will be 
selected at decision point i is given by (Dorigo et 
al. 1996) 
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where pi,j(t) is the probability that edge (i,j) is 
chosen in iteration t, τi,j(t) is the concentration of 
pheromone associated with edge (i,j) in iteration t, 
ηi,j is the desirability of edge (i,j) and α and β are 
the parameters controlling relative importance of 
the pheromone intensity and desirability, 
respectively, for each ants’ decision. If α >> β 
then the algorithm will make decisions based 
mainly on the learned information, as represented 
by the pheromone and if β  >> α the algorithm 
will act as a greedy heuristic selecting mainly the 
shortest or cheapest edges, disregarding the 
impact of these decisions on the final solution 
quality.  

At the end of an iteration (i.e. each ant has 
generated a solution) the pheromone on each edge 
is updated. The pheromone updating equation for 
AS is given by (Dorigo et al. 1996) 

( )ttt jijiji ,,, )()1( τρττ ∆+=+  (3) 

where ρ is the coefficient representing pheromone 
persistence (note: 0 ≤ ρ ≤ 1) and ∆τi,j(t) is the 
pheromone addition for edge (i,j). The pheromone 

persistence factor is the mechanism by which the 
pheromone trails are decayed, enabling the colony 
to ‘forget’ poor edges and increasing the 
probability of selecting good edges. For ρ → 1 
only small amounts of pheromone are decayed 
between iterations and the convergence rate is 
slower, whereas for ρ → 0 more pheromone is 
decayed resulting in faster convergence. ∆τi,j(t) is 
a function of the solutions found at iteration t and 
is given by (Dorigo et al. 1996) 
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where m is the number of ants and ∆  is the 
pheromone addition laid on edge (i,j) by the k

( )tk
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th 
ant at the end of iteration t. This is given by 
(Dorigo et al. 1996) 
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where Q is the pheromone addition factor (a 
constant) and Sk(t) is the set of edges selected by 
ant k in iteration t and f(·) is the objective 
function. From (5) it is clear that better solutions 
(e.g. solutions with lower f(·) values) are 
rewarded with greater pheromone additions. 

3.3. Max-Min Ant System 

Premature convergence to sub-optimal solutions 
is an issue that can be experienced by all EAs, 
especially those that have a greater emphasis on 
exploitation. To overcome this issue the Max-Min 
Ant System (MMAS) was developed by Stützle 
and Hoos (2000). The basis of MMAS is to 
provide dynamically evolving bounds on the 
pheromone trail intensities such that the 
pheromone intensity on all paths is always within 
a specified limit of the path with the greatest 
pheromone intensity. As a result all paths will 
always have a non-trivial probability of being 
selected and thus wider exploration of the search 
space is encouraged.  

MMAS uses upper and lower bounds to ensure 
pheromone intensities lie within a given range, 
that is τmin(t) ≤ τi,j(t) ≤ τmax(t). The upper bound 
τmax(t) is given by2 (Stützle & Hoos 2000) 
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=
tSf

Qt gbρ
τ  (6) 

and the lower bound τmin(t) is given by (Stützle & 
Hoos 2000) 
                                                           
2Stützle and Hoos (2000) omit Q from their formulation, but 
for continuity sake with AS, it is included in this study. 
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where pbest is the probability that the current 
global-best path, Sgb(t), will be selected given that 
all non-global best edges have a pheromone level 
of τmin(t) and all global-best edges have a 
pheromone level of τmax(t), n is the number of 
decision points and NOavg is the average number 
of edges at each decision point.  

Theoretical justifications of the bounds are given 
in Stützle and Hoos (2000). An analysis of (7) 
shows that lower values of pbest indicate tighter 
pheromone bounds, that is τmin(t) → τmax(t) as pbest 
→ 0. 

As the bounds serve to encourage exploration, to 
provide an emphasis on exploitation, MMAS 
updates only the iteration best ant’s path at the 
end of an iteration to ensure that good information 
is being retained and reinforced. Consequently the 
updating scheme is given as in (3) where ∆τi,j(t) is 
given by2 (Stützle & Hoos 2000) 

( ) ( )( ) ( ) (




 ∈

=∆
otherwise

tSjiif
tSf

Q
t

ib
ib

ji

0

,
,τ

)  (8) 

where Sib(t) is the iteration best path found in 
iteration t. The pheromone paths are initialised to 
an arbitrarily high value such that in iteration 2 
the paths are set to τmax(t). MMAS, as formulated 
in Stützle and Hoos (2000), also incorporates 
additional mechanisms that are not included here. 

3.4. Application of Ant Colony 
Optimisation to Water 
Distribution System Optimisation 

Transformation of problem 
ACO, as for all EAs, is unable to deal directly 
with constrained optimisation problems as it 
cannot adhere to constraints that separate feasible 
regions of the search space from infeasible 
regions. The standard technique to convert 
constrained problems to unconstrained problems 
is to use a penalty function. To guide the search 
away from the infeasible region and towards the 
feasible region, the penalty function increases the 
cost of infeasible solutions such that they are 
considered to be poor solutions. The 
unconstrained optimisation problem takes the 
form  

( ) ( ) ( )Ω+Ω=Ω PCCNCmin  (9) 

where NC(Ω) is the network cost for design Ω,  
C(Ω) is the material and installation cost of Ω and 

PC(Ω) is the penalty cost incurred by Ω. Within 
this study, PC(Ω) was taken to be proportional to 
the maximum nodal pressure deficit induced by Ω 
as in Maier et al. (2003). 

Modification of ACO elements 
Visibility is a measure of the desirability of an 
option with respect to its influence on the 
objective function value. As the objective is to 
minimise cost, cheaper options are more 
desirable. Therefore the visibility of an option is 
taken as the inverse of the cost of implementing 
that option (Maier et al. 2003). In other words  
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where ci,j is the unit cost of implementing 
diameter j at pipe i. As cheaper diameter options 
are more desirable, a higher bias in the probability 
of selection for cheaper diameters results. For 
options with zero cost, a virtual-zero-cost was 
selected such that it was in proportion to the other 
costs. 

A summary of the conversion of the general ACO 
problem formulation to the WDS optimisation is 
given in Table 1.  

Table 1. Conversion from the general ACO 
problem formulation to the WDSP 

General ACO problem 
formulation WDSP equivalent 

Element Symbol Element Symbol 

Path S Design Ω 

Edge (i,j) Diameter option diai,j 

Set of edges 
available from 
decision point i 

iθ  
Set of diameter 

options 
available for 

pipe i 












iNOi

i

dia
dia

,

1,

..,
,.

 

Objective 
function ( )  Sf Network cost ( )ΩNC  

4. CASE STUDIES 

The simulations were performed on two different 
case studies, the New York Tunnels Problem 
(NYTP) and the Hanoi Problem (HP). The AS 
program was coded in FORTRAN 90 with 
EPANET2 as the hydraulic solver. The MMAS 
program, coded in FORTRAN 77, used WADISO 
as the hydraulic solver with adjustments to the 
head-loss coefficients such that they were 
equivalent to EPANET2. Simulations were 
typically performed on a dual processor 1 GHz 
Pentium LINUX system. For each simulation, the 
runtime was long enough to allow the ACO 
algorithms to converge to a solution. 



4.1. Parameter Settings Table 2. Comparison of algorithmic performance 
for the New York Tunnels Problem. Performance 

statistics are ordered as follows; minimum, 
[mean] and {maximum}. 

Based on a preliminary sensitivity analysis the 
parameters were set as follows for both AS and 
MMAS within both of the case studies; α  = 1.0, 
β  = 0.5, ρ  = 0.98. The other parameters τ0 and Q 
(for AS only), pbest (for MMAS only) and m (for 
both) were found to be case study dependent and 
were consequently calibrated independently. 

Algorithm 
Best-cost ($M),  

(% deviation from 
known optimum) 

Search-time 

(evaluation number)

AS 

39.221, (1.5) 

[39.784, (3.0)] 

{40.318, (4.3)} 

26,329 

[37,001] 

{43,971} 

MMAS 

38.638, (0.0) 

[38.7, (0.2)] 

{38.949, (0.8)} 

23,542 

[24,978] 

{27,285} 

GAa 38.796, (0.4) 96,750 

ACOAb 38.638, (0.0) 7,014 

NOTES: aDandy et al. (1996), b Maier et al. (2003). AS and 
MMAS results are based on 5 runs.  

4.2. Case Study 1: The New York 
Tunnels Problem 

The WDS for the NYTP is a gravity fed system 
from a single reservoir and consists of 20 nodes 
connected via 21 tunnels. There is a single 
demand case for the problem (see Dandy et al. 
(1996) for network details). For each of the 
tunnels there is the option to leave the tunnel (e.g. 
a ‘do nothing’ option) or the option to provide a 
duplicate tunnel with one of fifteen different 
diameter sizes.  

4.3. Case Study 2: The Hanoi Problem As there is a ‘do nothing’ option, a virtual-zero-
cost of $110 per metre was used in this study. 
This is approximately 1/3 of the cost of the 
cheapest duplicate option. This case study has a 
search space of approximately 1.934 ×  1025 
possible designs. For AS, τ0 = 140 and m = 90. 
For MMAS, m = 84 and pbest = 0.01. Q was set to 
2.94 ×  108 for both algorithms. 

The Hanoi Problem (HP) has been considered by 
numerous authors in its discrete problem 
formulation (Savic & Walters 1997; Cunha & 
Sousa 1999; Wu et al. 2001). Unlike the NYTP, it 
is a new design as there are no existing pipes in 
the system. The network consists of 34 pipes and 
32 nodes organised in three loops. The system is 
gravity fed by a single reservoir and has only a 
single demand case (see Wu et al. (2001) for 
network details). For each link there are six 
different new pipe options where a minimum 
diameter constraint is enforced.  

The known-optimum solution is $38.638 million 
found first by ACOA (a version of ACO with a 
similar updating scheme to MMAS but without 
the pheromone bounds) in Maier et al. (2003) 
with a minimum search-time of 7,014 evaluations. 
It is important to note that other authors (Savic & 
Walters 1997; Lippai et al. 1999; Wu et al. 2001) 
have proposed cheaper solutions to the NYTP, 
however these solutions were assessed as being 
infeasible by EPANET2 (Maier et al. 2003), 
which was the benchmark hydraulic analysis tool 
used in this research. 

This case study has a problem size of 
approximately  possible designs. For 
AS, τ

261087.2 ×
0 = 26 and m = 80. For MMAS, m = 83 and 

pbest = 0.9. Q was set to 1.1 ×  107 for both 
algorithms. 

The known-optimum solution in the literature is 
$6.182 million found by the fast messy genetic 
algorithm (fmGA1) in 113 626 evaluations (Wu 
et al. 2001). Again it is important to note that 
other authors found solutions cheaper than this 
(Savic & Walters 1997; Cunha & Sousa 1999; 
Wu et al. 2001), but these were determined as 
infeasible by EPANET2. 

Table 2 shows a comparison of the two ACO 
algorithms with current best performing 
algorithms from the literature; an improved GA 
(GA) (Dandy et al. 1996), and ACOA (Maier, et 
al. 2003).  

From Table 2, it is seen that AS does not find the 
known-optimum, and its lowest solution deviates 
1.5% from the known-optimum. MMAS was able 
to find the known-optimum for four out of five 
runs with a mean best-cost deviating only 0.2% 
from the known-optimum. Even though ACOA 
searches more efficiently it is known that it was 
not able to find the known-optimum as frequently 
as MMAS. MMAS is more efficient than AS and 
GA. 

Table 3 shows a comparison of the two ACO 
algorithms with two other algorithms; GA-No.2, a 
version of the standard GA (Savic & Walters 
1997) and fmGA1 (Wu et al. 2001). 

No feasible solutions were found by AS in any 
run for the HP. As the lowest cost solution for the 
HP contains many of the larger size diameters it 
can be deduced that the problem has a small 



feasible region, thus explaining AS’s poor 
performance. MMAS found a minimum best cost 
that deviated 3.7% and a mean best cost that 
deviated 8.1% from the known-optimum. This 
performance is worse than that of GA-No.2 and 
fmGA1, however it is a great improvement on 
AS, which was unable to even find the feasible 
region. 

Table 3. Comparison of algorithmic performance 
for the Hanoi Problem. Performance statistics are 

ordered as follows; minimum, [mean] and 
{maximum}. 

Algorithm 
Best-cost ($M) 

(% deviation from 
known optimum) 

Search-time 

(evaluation number) 

AS cNFS - 

MMAS 

6.412,(3.7) 

[6.685, (8.1)] 

{6.905, (11.7)} 

25,092 

[31,595] 

{38,693} 

GA-No.2a 6.195, (0.2) ~106 

fmGA1b 6.182, (0.0) 113,626 

NOTES: a Savic & Walters (1997), b Wu et al. (2001). c NFS 
means no feasible solutions were found. AS and MMAS 
results were based on 5 runs.  

5. CONCLUSIONS 

Within this paper, the advanced ACO algorithm, 
MMAS, is compared to the simplistic ACO 
algorithm, AS, and other best performing 
algorithms from the literature for two WDS case 
studies. For both case studies MMAS is shown to 
outperform AS. 

Within the first case study, the New York Tunnels 
Problem, MMAS found the known-optimum 80% 
of the time and at a faster rate than AS, which did 
not find it once. This degree of robust 
performance for the NYTP has previously been 
unseen in the literature.  

For the second case study, the Hanoi Problem, AS 
was unable to find any feasible solutions. MMAS 
was unable to find known-optimum in the 
literature, however, its performance was a vast 
improvement on that of AS. Even though the GAs 
performed better on the HP, the ACO algorithms 
were found to be more computationally efficient. 

The additional mechanisms incorporated in 
MMAS to manage the exploit-explore 
relationship have been seen to be effective in 
improving performance compared with AS. 
MMAS has also been seen to perform 
competitively with respect to other algorithms in 
the literature.  

As MMAS is only one of many advanced ACO 
algorithms, future work should focus on the 
testing of the other algorithms to determine the 
algorithmic characteristics that are most suited to 
WDS optimisation. 
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