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Abstract: Many studies have used artificial neural networks (ANNs) for the prediction and forecasting of 
hydrological variables, including runoff, precipitation and river level, which are subsequently used for design 
or management purposes.  However, although it is widely recognised that hydrological models are subject to 
parameter uncertainty, ANNs in this field have been almost exclusively deterministic with little attention paid 
to the uncertainty in the network weights.  The inherent variability of hydrological processes means that no 
finite set of observations will give exact parameter values and therefore it is important to express network 
weights as a range of plausible values such that one, possibly incorrect, weight vector does not completely 
dominate the predictions.  In this paper a synthetically generated data set is used as a tool for demonstrating 
the potential advantages of explicitly accounting for parameter uncertainty.  A Markov chain Monte Carlo 
approach is used to sample from the distribution of possible network weights in an attempt to eliminate or 
reduce the potential problems that can be encountered during network training. By expressing the network 
weights as a distribution it is also possible to express the level of confidence with which ANN predictions are 
made.   
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1. INTRODUCTION 

Many studies have used artificial neural networks 
(ANNs) for the prediction and forecasting of 
hydrological variables, including runoff, 
precipitation and river level (ASCE, 2000), which 
are subsequently used for design or management 
purposes. It has been shown that, when applied 
correctly, ANNs are able to perform at least as 
well as more conventional modelling approaches. 
However, although it is widely recognised that 
hydrological models are subject to parameter 
uncertainty, ANNs in this field have been almost 
exclusively deterministic with little attention paid 
to the uncertainty in the network weights. 

The connection weights of an ANN are adjustable 
and can be compared to coefficients in statistical 
models. The network is “trained” or calibrated by 
iteratively adjusting the connection weights such 
that a predetermined objective function is 
minimised and the best fit between the model 
predictions and the observed data is obtained. 
However, the task of training a network is not 
always straightforward and may be complicated 
by the existence of local minima in the solution 
surface or the potential of overfitting the training 
data. 

Using standard neural network approaches, the 
aim is to find an “optimal” set of network 
weights. However, no finite set of observations 
can be expected to give exact model parameter 
values, as the inherent variability of the 
hydrological process itself means that each 
different set of data would yield different 
parameter values. Therefore, it is important to 
express network weights as a range of plausible 
values such that one, possibly incorrect, weight 
vector does not completely dominate the 
predictions.  

In this paper Bayesian methods are employed in 
order to demonstrate the potential advantages of 
explicitly accounting for parameter uncertainty. In 
particular, Bayesian methods will be applied to 
determine a robust range of connection weights 
that may then be used to express the degree of 
confidence with which predictions are made. 

2. METHODS 

2.1. Determination of Robust Connection 
Weights 

The nonlinear characteristics of ANNs lead to the 
existence of multiple optima on the solution 
surface and, consequently, many combinations of 
network weights may result in similar network 



performance. There is currently no training 
algorithm that can guarantee that the network will 
converge on the global optimal solution as 
opposed to a local minimum in the solution 
surface.  

Local or global optimisation algorithms may be 
used to train an ANN. Backpropagation, a first 
order local method, is currently the most widely 
used algorithm for optimising feedforward ANNs 
(Maier and Dandy, 2000). This algorithm is based 
on the method of steepest descent, where the 
network weights are updated according to: 

wn+1 = wn + γndn (1) 

where w is the vector of connection weights, γ is 
the step size and d is a vector defining the 
direction of descent. This algorithm is an effective 
way of optimising weights, however, like all local 
search methods, it is susceptible to becoming 
trapped in local minima in the error surface. 
Global methods have the ability to escape local 
minima, as they employ random search 
techniques to allow the simultaneous search for 
an optimum solution in several directions. They 
are often more computationally intensive than 
local search techniques, but with improving 
computer technologies, the use of global 
optimisation methods is increasing. Duan et al. 
(1992) developed the shuffled complex evolution 
(SCE) algorithm that uses multiple “simplexes”, 
started from random locations in the search space, 
to direct the search towards the global optimum. 
At periodic stages of the search, the points in the 
simplexes are shuffled together to ensure that 
information is shared and that each simplex is not 
conducting an independent search of the global 
optimum. 

It is not sufficient for an ANN to simply fit the 
training data, however, as the purpose of ANNs is 
to generalise, i.e. to provide good predictions 
when presented with new data. When ANNs learn 
specific characteristics in the training data set that 
are not true in general the network has been 
“overtrained”. Cross validation is a method that 
can be used to stop training before this occurs and 
ensures that only the general trends in the data are 
learnt. A test data set is employed to determine 
the optimal stopping time, which is when some 
objective function of the test set is a minimum 
(ASCE, 2000). However, to do this the available 
data must be split into two data sets, thus reducing 
the size of the training set and limiting the 
information that may be learnt during training, 
particularly if the original data set is not large.  

Alternatively, the size of the network, and 
therefore the number of free parameters, may be 
reduced in an effort to prevent overtraining, as it 

has been suggested that overtraining does not 
occur if the number of samples in the training 
data set is at least 30 times the number of free 
parameters (Maier and Dandy, 2000). However, if 
the data set is of a limited size, it may not be 
possible to reduce the number of free parameters 
to achieve this ratio. 

The methods currently employed to improve the 
generalisation ability and prediction performance 
of an ANN do not guarantee that the global 
solution of the network will be found. By 
explicitly accounting for parameter uncertainty it 
is acknowledged that it is difficult and often 
unlikely to find a single optimal weight vector. A 
more robust model can be developed if a range of 
plausible values is specified for each connection 
weight, rather than allowing one weight vector to 
completely dominate the predictions.  

Bayesian Methods for Quantifying Uncertainty 
Bayesian methodology offers an approach for 
handling uncertainty explicitly. Under this 
paradigm all uncertain quantities are expressed as 
probability distributions which represent the state 
of knowledge of the quantities. In Bayesian 
inference, any prior beliefs regarding an uncertain 
quantity are updated, based on new information, 
to yield a posterior probability of the unknown 
quantity.   

Using Bayes’ Theorem, the parameters of a model 
may be inferred from the data under the 
assumption that the model (structure) is “true” as 
follows: 
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where w is a vector of model parameters, M is the 
model and D are the data. The likelihood, 
P(D| w, M), in this case comes from comparing 
the actual measurements to the model predictions 
and is the function through which the prior 
knowledge of w is updated by the data. The prior, 
P(w|M), supplies any knowledge regarding the 
model parameters such as information gained 
from previous measurements or general 
information such as their range and whether they 
are non-negative.   

Stochastic Neural Networks 
The application of Bayesian methodology to 
ANN training was pioneered by Neal (1992) and 
MacKay (1995). The calibration of a Bayesian or 
stochastic ANN involves sampling from the 
posterior distribution of network weights, 



P(w | D, M) rather than finding a single “optimal” 
set of weights. As a result, a weight vector that 
fits the data only slightly better than others will 
contribute only slightly more to the prediction 
rather than completely dominating it. 

If it is assumed that the noise model, which 
describes the residuals between model predictions 
and observations, is Gaussian, then the 
conditional probability of the observations given 
the input and weight vectors and network 
structure is as follows: 
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where σ is the scale of noise and n is the number 
of observations in the data set. This is the 
likelihood of the model parameters. 

The Metropolis Algorithm 
The high dimensionality of the conditional 
probabilities in (2) makes it difficult to calculate 
the posterior weight distribution numerically. 
Consequently methods have been introduced to 
approximate (2). Neal (1992) introduced a 
Markov chain Monte Carlo (MCMC) 
implementation to sample from the posterior 
weight distribution. 

A common MCMC approach is to use the 
Metropolis algorithm, which makes use of a 
symmetrical proposal distribution (e.g. Gaussian) 
and an adaptive acceptance-rejection criterion to 
generate a random walk Markov chain which 
adapts to the true posterior distribution of an 
unknown variable, e.g. connection weights. 
Although the Metropolis algorithm is not the most 
efficient MCMC method, it is often employed 
because of its simplicity. Details of its 
computational implementation can be found in 
Thyer et al. (2002). 

Given sufficient iterations, the Markov chain 
induced by the Metropolis algorithm should 
converge to a stationary distribution. From this 
point samples from the Metropolis algorithm can 
be considered to be samples from the posterior 
distribution. However, it is difficult to determine 
whether convergence has been achieved and how 
many iterations are required for convergence. 
Haario et al. (2001) introduced a variation of the 
Metropolis algorithm that was developed to 
provide improved convergence properties. In this 
algorithm the proposal distribution continually 
adapts to the posterior distribution by taking into 
account all previous states of the weight vector. 
Therefore a Markov chain is no longer produced. 
The adaptive Metropolis algorithm requires that 
the vector of network weights be first initialised 

with arbitrary starting values. Generally the 
weights which correspond to the maximum 
likelihood would be used for this purpose. The 
adaptive Metropolis algorithm was used in this 
study. 

2.2. Quantifying Uncertainty in Predictions 

If samples are taken from the posterior 
distribution of the network weights and new data 
are input into the network, a distribution of the 
network outputs will be produced. It is important 
to keep in mind, however, that connection 
weights of ANNs are not unique and can be 
highly correlated if too many hidden nodes are 
included in the network. It is therefore necessary 
to retain this correlation structure when the 
weights are sampled from their respective 
distributions. 

Once the posterior distribution of the predictions 
is produced, confidence intervals may also be 
determined enabling predictions to be made with 
a known level of confidence. If the confidence 
bounds are tight, there is little uncertainty in the 
prediction and vice versa. 

3. CASE STUDY 

3.1. Data and Model Structure 

Autoregressive (AR) models are commonly used 
to model hydrological time series data. The 
autoregressive model, AR(9), given by (4), was 
used to generate a set of synthetic time series data 
which were in turn used to demonstrate the 
importance of accounting for parameter 
uncertainty.  

xt = 0.3xt-1 - 0.6xt-4 - 0.5xt-9 + εt (4) 

In the above equation εt is a normally distributed 
random noise component with mean of 0 and 
standard deviation of 1. The use of synthetic data 
enables the capabilities of the proposed method to 
be investigated without the complication of other 
sources of uncertainty. By using this model the 
driving inputs and error model were known and as 
much data could be generated as required.  

It is generally difficult to determine the 
appropriate number of hidden nodes that will 
allow adequate representation of the underlying 
function and the inclusion of unnecessary hidden 
nodes increases the uncertainty in the network 
weights, making the task of finding an optimal 
solution more complicated. As the relationship 
given by (4) is linear, the optimal network 
structure is one that contains no hidden layer 
nodes. However, in order to investigate the effects 
of parameter uncertainty when unnecessary nodes 



are included, the network used in this study 
included one hidden node, as shown in Fi .  gure 1

Figure 1. Network structure and parameter 
numbers 
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3.2. Determination of Robust Connection 
Weights 

Two investigations were carried out in order to 
determine whether Bayesian methods could be 
applied to provide a more robust estimate of the 
connection weights than standard ANN 
optimisation procedures. 

Local Minima 
To determine the effectiveness of different 
training algorithms in finding the correct 
underlying relationship in the presence of local 
minima the following approaches were used and 
the results compared: 

(a) Train the ANN with the backpropagation 
algorithm. 

(b) Train the ANN with the SCE algorithm. 

(c) Use the weights obtained from 1 to initialise 
the adaptive Metropolis algorithm and obtain 
a range of weight values. 

A training data set of 300 data points was used to 
train approaches a, b and c. A test set of 200 data 
points was also used in approaches a and b for 
cross-validation.  

Overtraining 
A data set of 150 data points was used to 
investigate the ability of ANNs to find the correct 
underlying relationship given limited data. The 
following approaches were used and the results 
compared: 

(d) Train the ANN on all 150 data points. 

(e) Split the data into a training set of 100 data 
points and a test set of 50 data points and 
train the ANN, applying cross-validation. 

(f) Use the weights obtained from d to initialise 
the adaptive Metropolis algorithm and obtain 
a range of weight values. 

Given that the network in  has 6 free 
parameters and there were only 150 data points in 

the data set (i.e. data points/free parameters < 30), 
it was assumed that the ANN would be 
overtrained using approach d. In each approach 
the SCE algorithm was used to train the network 
in an attempt to reduce the effects of becoming 
trapped in local minima.  

3.3. Quantification of Prediction Uncertainty 

Samples from the posterior distribution of each 
connection weight were given as the output from 
the adaptive Metropolis algorithm. 10,000 of 
these weight vectors were randomly sampled and 
the ANN was run for each weight vector selected. 
This resulted in a distribution of output values 
from which 95% confidence intervals were 
calculated.  

To investigate the effect of retaining the 
correlation structure of the weight vectors, 
random samples were generated from each weight 
distribution, ignoring the correlation between 
weights. This was done by calculating the mean 
and standard deviation of each weight distribution 
and then generating samples from a normal 
distribution. The assumption that the weight 
distributions were Gaussian is a simplification, 
however, it was sufficient for the purposes of 
assessing the effects of ignoring the correlation 
structure. 95% confidence intervals were again 
calculated and compared to those determined 
when the correlation structure was retained. 

4. RESULTS & DISCUSSION 

The parameter numbers in the following results 
correspond to those displayed in Fi . Results 
are also given for a seventh parameter, which is 
the standard deviation of the model residuals (σ in 
(3)). Results will be presented in terms of the 
overall connection weights of network inputs, as 
it is considered that this measure provides a better 
indication of how well the underlying relationship 
has been estimated than an error measure such as 
the RMSE. Details regarding this measure can be 
found in Kingston et al. (2003). 

4.1. Determination of Robust Connection 
Weights 

The results of the investigations described in 
Section 3.2 are given in . The values in the 
shaded cells were calculated using the modes of 
the weight distributions determined by the 
adaptive Metropolis algorithm. The mode of the 
distribution is considered to give a good 
indication of the average weight value, as it is this 
value that would be used to make predictions with 
the greatest frequency. The error measure given in 

Table 1
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Table 1. Results of trained networks 

Table 1

Table 1

 was calculated by: 
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where Ci is the overall connection weight of input 
i and Ai is the actual weight for input i. 

  Approach used to Estimate Weights 

Input Actual a b c d e f 

xt-1 0.3 0.31 0.33 0.29 0.40 0.40 0.36 

xt-4 -0.6 -0.75 -0.68 -0.66 -0.77 -0.76 -0.65 

xt-9 -0.5 -0.62 -0.57 -0.54 -0.61 -0.58 -0.52 

Error - 0.112 0.065 0.040 0.128 0.122 0.046 

 
 shows that when the adaptive Metropolis 

algorithm was used to obtain a distribution of 
values for each parameter (c), the network was 
able to improve upon not only the results of the 
network trained by backpropagation (a), but also 
the results of the network trained by the SCE 
algorithm (b), in terms of determining the correct 
weightings of the model inputs. 

It is also shown in  that, by obtaining a 
distribution of values for each parameter, the 
network was able to find a robust estimate of the 
weight vector given limited data (f). This 
approach was therefore able to overcome the 
effects of overtraining while still using all of the 
information contained in the data set. The results 
of the network that used cross-validation to 
prevent overtraining (e) showed little 
improvement over the overtrained network (d). 
This is most likely due to the loss of information 
resulting from the reduced size of the training set.  

Approaches b and e are essentially the same, 
except that approach b was trained on twice the 
amount of data that approach e was trained on. 
The improvement in the results of b compared to 
e is significant. On the other hand, by comparing 
the results of approaches c and f it can be seen 
that only a minor improvement in the results was 
achieved by using twice the amount of data when 
Bayesian methods were employed. It is expected 
that with increasing data the results obtained 
using Bayesian methods would continue to 
improve, however, it has been shown that in order 
to produce reasonable results a large data set is 
not necessary. 

Overall, the network trained on 300 data points 
and employing Bayesian methods (c) performed 
the best. However, the network trained on 150 
data points, also employing Bayesian methods (f) 

performed better than both of the networks 
trained with 300 data points using standard neural 
network methods (a and b).  

4.2. Quantification of Prediction Uncertainty 

The Metropolis output for parameter 1 is plotted 
against the output for parameter 2 in Fi . For 
comparison, the Metropolis output for a network 
with no hidden nodes (optimal structure) has also 
been included in the figure. It can be seen that the 
parameter ranges for the network with 1 hidden 
node are significantly wider than the ranges when 
there are no hidden nodes, indicating a higher 
degree of uncertainty. Additionally, the 
parameters display a high degree of correlation 
when a hidden node is included in the network.  

gure 2

Figure 2. Metropolis output of parameters 1 & 2 
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A plot of output from approach c (detailed in 
Section 3.2) is displayed in F . 95% 
confidence intervals are included in the figure for 
the cases when the correlation structure between 
network weights was retained and when it was 
not. 

igure 3

An inspection of the covariance matrix of the 
parameters showed that parameters 1, 2, 3 and 5 
were highly correlated with covariance values 
greater than 0.85. Given the reasonably wide 
ranges of the parameters (e.g. ), the 
tightness of the 95% confidence intervals 
obtained by retaining the correlation structure in 
the weights indicates that, although the values for 
the weights are not unique, as long as the 
correlation structure between the weights is 
preserved, predictions may be made with 
confidence. This was confirmed by inspecting the 
95% confidence intervals obtained when the 
correlation structure was ignored. These bounds 
are much wider, indicating that there is much 
greater uncertainty in the predictions. 

5. CONCLUSIONS 

This study has demonstrated that the explicit 
assessment of parameter uncertainty can be 
extremely beneficial in generating accurate 
predictions from ANNs. The investigations 
carried out enabled the following conclusions
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Figure 3. Plot of outputs from ANN with 95% confidence intervals. 

 
to be made: 

• The incorporation of Bayesian approaches 
provide ANNs with the ability to find robust 
weight estimates in the presence of local 
minima. 

• The incorporation of Bayesian approaches 
provide ANNs with the ability to find robust 
weight estimates given limited data and 
these ANNs are capable of performing better 
than networks trained on larger data sets 
using standard approaches. 

• The results obtained using ANNs that 
incorporate Bayesian methods improve with 
increased data, however comparable results 
may be obtained with a significantly smaller 
data set and therefore a large data set is not 
essential for the success of this approach. 

It has also been shown that, although the 
connection weights of an ANN are not unique, 
confident predictions may be made with ANNs as 
long as the correlation structure between the 
weights is considered. Future investigations will 
include examining the correlations between 
weights to help determine the optimal network 
structure. 
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