
Estimation of Chinese Agricultural Production 
Efficiencies with Panel Data  

 
Baiding Hu and Michael McAleer 

Department of Economics, University of Western Australia 
 
Abstract: Fast and steady economic growth in China during the 1990s attracted much international 
attention. Given the scarcity of resources, it is important for economic growth to depend on production 
efficiency improvement to achieve sustainability. As China is the world’s second largest foreign capital 
recipient, foreign capital plays an important role in investment. If economic growth is fuelled by 
investment, an exodus or a shortage of foreign capital will render growth unsustainable. However, if 
growth is propelled by improvements in production efficiency, it is more likely to be sustained and to 
withstand reduction in production input. This paper estimates production efficiency in the agricultural 
sector in China with a panel data set comprising 30 provinces for the seven year period, 1991-1997. A 
panel data model based on the Cobb-Douglas production function is used to represent the production 
frontier and to compute technical efficiency at the provincial level. Individual effects are tested to 
determine if pooled estimation is preferred to unpooled (panel) estimation. The test confirms significant 
differences between the provinces, and hence warrants panel data estimation. Both fixed and random 
effects models are estimated, with provincial technical inefficiency specified as province-specific intercept 
terms for the former, and regression disturbances for the latter. Although the random effects model is 
rejected in favour of the fixed effects model, the latter did not produce estimates with correct signs, and is 
rejected on economic grounds. Using the random effects model, production efficiency has increased for 
most provinces, but the gap between the affluent coastal region and the hinterland in the west has increased. 
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1. Introduction  
 Carter and Zhang (1994), Wu (1995), Kalirajan 

et al. (1996), Mao and Koo (1997), Li and 
Rozelle (2000), Yao et al. (2001) and Zhang 
(2002) have investigated agricultural production 
efficiency with sample periods preceding the 
high profile eighth five-year period. This paper 
estimates production efficiency in China’s 
agricultural sector with a panel data set 
comprising 30 provinces for the seven year 
period 1991-1997, which encompasses the eighth 
five-year period. A panel data model based on 
the Cobb-Douglas production function is used to 
represent the production frontier and to compute 
technical efficiency at the provincial level. 
Individual effects are tested to determine if 
pooled estimation is preferred to unpooled 
(panel) estimation. The test confirms significant 
differences between the provinces, and hence 
warrants panel data estimation. Both fixed and 
random effects models are estimated, with 
provincial technical inefficiency specified as 
province-specific intercept terms for the former, 
and regression disturbances for latter.  Although 
the random effects model is rejected in favour of 
the fixed effects model, the latter did not produce 
estimates with correct signs, and is rejected on 
economic grounds. Using the random effects 
model, production efficiency has increased for 

Fast and steady economic growth in China 
during the 1990s attracted much international 
attention, with the real GDP annual growth rate 
from 1991 to 1997 averaging over 10%. The first 
half of the 1990s, namely 1991-1995, was 
China’s eighth five-year plan. Economic 
development during the eighth five-year period 
is widely seen as the most successful in PRC 
history, during which the government increased 
its support for agriculture: government 
expenditure on agriculture accounted for 8.8% of 
the total, an increase of 0.4% compared with the 
seventh five-year period, and state bank loans to 
agriculture also rose from 144.9 billion Yuan in 
1992 to 357.2 billion Yuan in 1996 in real terms. 
With scarce resources, economic growth depends 
on production efficiency improvements to 
achieve sustainability. As China is the world’s 
second largest foreign capital recipient, foreign 
capital plays an increasingly important role in 
investment. If economic growth is fuelled by 
investment, then an exodus or a shortage of 
foreign capital will render growth unsustainable. 
However, if growth is propelled by 
improvements in production efficiency, it is 
more likely to be sustained and to withstand 
reductions in production input.  

 



most provinces, but the gap between the affluent 
coastal region and the hinterland in the west has 
increased consistently.   
 
The plan of the paper is as follows: estimation 
framework and data are presented in Section 2, 
Section 3 discusses the empirical results, and 
concluding remarks are given in Section 4.  
 
2. Estimation Framework and Data 
 
Two distinct approaches, namely econometric 
and data envelope analysis (DEA), exist for 
estimating efficiency in production (Greene, 
1993). The DEA approach uses mathematical 
programming methods to construct production 
frontiers. Lovell (1993) notes that “DEA was 
developed in a public sector, not-for-profit 
environment, in which prices were suspect at 
best and missing at worst. Consequently, the vast 
majority of DEA models use quantity data only 
and calculate technical efficiency only, despite 
the fact that the procedure is easily adapted to the 
calculation of economic efficiency in a situation 
in which prices are available and reliable.”  
 
With DEA, the relationship between 
productivity growth and technical efficiency 
cannot be characterised as easily as in the 
econometric approach. As this paper examines 
an important stage in China’s economic 
development where profit-driven private 
ownership and foreign ownership of economic 
entities were vigorously merged the econometric 
approach is preferred to DEA in this paper. 
 
Technical (in)efficiency analysis is conducted 
within the framework of a production frontier 
function, which can be represented by 
 

),( βXfQ =     (1) 
 
where denotes production output, Q X  a vector 
of inputs, and β  a vector of unknown 
parameters. For convenience, it is assumed that 

 takes the form of the Cobb-Douglas 
production function, which is linear in the 
logarithms of Q  and 

f

X , namely 
 

xq 'βα +=     (2) 
 
where lower case letters denote logarithms. 
Production does not reach the frontier because 

there exists technical inefficiency,ε , which has 
a non-zero mean to reflect the deviation of actual 
output from the frontier, and is assumed to enter 
the frontier model additively, as follows: 
 

εβα ++= xq '    (3) 
 
Equation (3) is deterministic as the deviation of 
actual from maximum output, x'βα + , is the 
amount of inefficiency. Such inefficiency can be 
controlled through means such as management 
and the introduction of new technology. 
 
The deterministic approach to the specification 
of a production frontier fails to recognise that 
there are uncontrollable factors, such as an 
unusually high number of random equipment 
failures, and bad weather, that can have an 
impact on production efficiency. In order to 
overcome this limitation, the stochastic approach 
decomposes  ε  in equation (3) into  and u ν , 
whereby  is the inefficiency term and is 
restricted to be non-positive, while 

u
ν  is a white 

noise process that signifies uncontrollable 
factors. The resulting production frontier 
function is given by  
 

vuxq +++= 'βα    (4) 
 
The compound disturbance term, ν+u , has an 
asymmetric distribution. For panel data 
estimation, equation (4) becomes 
 

ititiit vxq ++= 'βα    (5) 
 

iititit uvxq +++= 'βα   (6) 
 
for the fixed and random effects specifications, 
respectively. In equations (5) and (6), the 
subscripts  and  refer to units in the panel and 
the time period for which an observation was 
taken, respectively. 

i t

 
The inefficiency term in both equation (5), , 

and equation (2.6), u , are assumed to be time-
invariant, which is rather strong in most practical 
circumstances. A method for introducing time-
variation (Cornwell et al. (1990)) is to specify 
them as functions of a deterministic time trend in 
both the linear and quadratic forms, so that the 
fixed and random effects models are given by  
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3. Empirical Results 2tta f
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 Equations (5) and (6) are estimated using OLS 

and GLS, respectively. The coefficient estimates 
and diagnostic statistics are presented in Table 1. 
Under the assumption of random effects, the 
intercept term in equation (6), which varies 
randomly between the units in the panel, is 
comprised of deterministic and stochastic 
components. In estimation, the stochastic part is 
absorbed into the error term. The parameter in 
Table 1 is the estimated deterministic part of the 
intercept. Under the assumption of fixed effects, 
the intercept term in equation (5) is different for 
different units in the panel, and is computed as 
the regression residual evaluated at the mean 
values of the dependent and explanatory 
variables for the unit. In the empirical analysis, 
there is one intercept for each of the 30 
provinces. 
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Denote  and  as the estimated residuals 
from equations (5) and (6), respectively. The 
parameters  are estimated from the 

auxiliary regression of  on , and 

 are estimated from the auxiliary 

regression of  on . Thus,  and 

 are calculated as the fitted values from the 
regressions. The technical efficiency of unit  at 
time  is computed as the difference between 

 or  (namely, the logarithm of its technical 

efficiency) and  or u  (namely, the 
logarithm of the technical efficiency of the best 
performance in the panel), namely 
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Table 1 provides the F  statistic for testing group 
effects in (A). The null hypothesis states that the 
panel units are homogeneous in terms of the 
relationship between the dependent and 
independent variables. Clearly, the null is 
rejected, so panel data estimation is warranted. 
The table also provides the coefficient estimates 
for both the random and fixed effects models, 
with asymptotic standard errors in parentheses. 
A Hausman test is then used to test the random 
effects model against the fixed effects model in 
(B). The random effects model is rejected for 
large values of the test statistic, which is 
distributed as chi-squared under the null. For the 
empirical models estimated in this paper, the 
Hausman test rejects the random effects model in 
favour of the fixed effects specification.  
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for the fixed and random effects, respectively. 
The unit that performs the best is the most 
efficient and serves as a proxy for the production 
frontier. A time trend is included in equations (5) 
and (6) to capture simple technological progress. 
 
The data from various issues of the China 
Statistical Yearbook comprises agricultural 
production input and output data for 1991-1997 
for 30 provinces, with the subscripts i  and t  
ranging from 1 to 30 and 1 to 7, respectively.  
Agricultural production output is measured as 
gross output value, defined as the total value of 
products of farming, forestry, animal husbandry 
and fishery. Agricultural production input 
includes capital and labour, the standard inputs 
in the context of the production function. Capital 
takes several forms, namely: (1) land, measured 
in hectares; (2) machinery, measured as total 
mechanical power in watts; and (3) fertiliser, 
measured as tonnage. Labour is the total number 
of people engaged in agricultural production. As 
output is expressed in nominal prices, it is 
deflated using a price deflator derived from the 
price indices of a number of farm products. 

 
This empirical result is in contrast with that of 
Wu (1995), in which the Hausman test was in 
favour of the random effects model. However, an 
examination of the estimated coefficients under 
the fixed effects specification in Table 1 reveals 
that, apart from low t-ratios for most of the 
estimated coefficients, the sign of the Machine 
variable is negative, which conflicts with prior 
expectations. Accordingly, the random effects 
model is selected over the fixed effects model in 
order to estimate technical efficiency. 
 
The coefficient of the time trend,η , reflects the 
rate of technological progress. Most of the 
coefficients are statistically significant at the 5% 
level. Land has played a significantly negative 
role in determining agricultural output. This is 

 



because the total land area under cultivation has 
been in constant decline since the late 1970s due 
to the use of land for construction purposes, 
whereas total agricultural output has been rising 
due to an improvement in output per unit of land. 
Using the estimated coefficients, technical 
efficiency (TE) was calculated according to 
equation (8) for each province. TE measures 
efficiency against the benchmark of best practice 
in the panel. The larger is the TE for a province, 
the smaller is the difference between the 
province and best practice, and hence the less is 
the variability. The best practice was observed in 
Shanghai in 1997. This is convincing, as 
Shanghai has always been perceived to be the 
most developed area in China and the year 1997 
is the latest time period in the sample.  
 
Table 2 presents the national and regional TEs 
over the 7-year period. The national and regional 
TEs were obtained by averaging the provincial 
estimates. There is a general consensus that the 
provinces in China can be classified according to 
their geographical locations into three groups, 
namely the East, Central and West. This 
classification also reflects differences in the 
levels of economic development among these 
regions. The provinces are heterogenous across 
regions and homogeneous within regions in 
terms of economic development. The East 
region, or the eastern coastal area comprising 10 
provinces, including Shanghai and Jiangsu, is 
endowed with a greater developed infrastructure 
and technology, and much higher labour force 
skills, as compared with the other areas in China. 
These favourable conditions have helped to 
attract foreign direct investment and technology. 
The West region covers 12 provinces in the 
interior west, while the Central region includes 8 
provinces in between the East and West regions. 
 
In Table 2, the East region clearly leads the other 
two regions. TE in the East region rose steadily 
from 71% in 1991 to 76% in 1997, and the East 
region led the Central by 10% and the West by 
20%. The East and Central regions had upward 
TE trends, but the West experienced a downward 
trend from 56% in 1991 to 50% in 1997.   
 
For ease of analysis, the estimated TEs within 
each region are given in graphical form in the 
remainder of the paper. Figure 1 shows the 
movements in TE for the ten provinces in the 
East region. Most of the provinces in the East 
region generally attained a TE of between 60 to 
80% throughout the seven years. Guangdong 

constantly remained above 80%, reflecting in 
part the fact that, for the first five years of the 
sample period, its average growth rate of 
agricultural output was 5.8%, and the trade 
proportion of its total agriculture output rose 
from 67% to 72%. In the first two years, 
Guangdong led the rest of the provinces. This 
changed in the next three years when Hainan 
took over the leading position due to its average 
growth rate of 17.9% in the eighth five-year 
period, which was well above the national 
average of 12%, and due to the provincial 
government’s efforts to develop tropical 
agriculture as one of its three polar industries. 
The continuing strong TE growth, coupled with 
the beginning of rural urbanisation in Shanghai, 
made it overtake the other provinces in 1996 and 
1997. A decline in TE was recorded over the 
period for Beijing and Tianjin. This outcome 
arose as non-agricultural activities accounted for 
an increasingly higher proportion of overall rural 
activities, thereby competing for scarce resources 
with agriculture. 
 
In the Central region, all the provinces exhibited 
smooth and generally upward changes in TE, as 
can be seen from Figure 2. Heilongjiang 
achieved a level of TE that is significantly and 
consistently higher than the other provinces in 
the region, starting at a level of 74% in 1991 and 
finishing at 90% in 1997. This compares with a 
range of 46% to 60% at the beginning of the 
sample period for the other provinces, and to a 
range of 52% to 69% at the end of the period. 
This empirical finding reflects the fact that 
Heilongjiang has always been a national base for 
grain, bean, sugar, livestock and milk cows 
throughout history. Associated with its 
importance in agricultural and geographical 
attributes, Heilongjiang has also commanded a 
high degree of machine usage. While 
Heilongjiang has been the most technically 
efficient province, Henan, a well-known poor 
province, had been at the other end of the 
spectrum, with its TE remaining below 50% for 
much of the sample period. 
 
Not surprisingly, the West region was behind the 
East and Central regions in TE. Figure 3 shows 
that, for most of the provinces in the region, TE 
was between 30% and 60%. There seemed to be 
a tendency of a downward TE movement over 
the period for all the provinces except Guangxi, 
Gansu and Shanxi, which managed increases of 
8%, 2% and 3%, respectively, over the full 
sample period. The biggest drop was recorded in 

 



Figure 1. TE by province in the East region 
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Figure 2. TE by province in the Central region 
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Figure 3. TE by province in the West region 
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Tibet, where TE plummeted from 82% in 1991 
to almost 50% in 1997. While the magnitude of 
the fall may not be accurate due to the quality of 
the data that are available in Tibet, the declining 
trend was consistent with the outcomes in the 
majority of the provinces in the region. The 
leading provinces in the region were Sichun, 
Xinjiang and Inner Mongolia, which have unique 
characteristics compared with some of the other 
provinces. For example, Sichun has the largest 

provincial population in China, while Xinjiang 
and Inner Mongolia have the greatest land areas. 
 
4. Concluding Remarks 
 
A panel data set consisting of 30 provinces in 
China over a period of 7 years was used to 
evaluate agricultural production efficiency. 
Technical efficiency was defined as the 
difference between the observed output and the 
maximum possible output, namely output 
derived from the production frontier, which was 
based on the framework of the Cobb-Douglas 
production function. The panel nature of the data 
set was tested to determine if the pooled (OLS) 
or unpooled (panel) estimation procedure was 
preferred empirically. Both the random effects 
and fixed effects models were estimated for the 
Cobb-Douglas production function, where the 
production frontier was approximated by the best 
estimated performance in the panel. On the basis 
of the F test for group effects, panel data 
estimation was preferred. Although the Hausman 
test supported the fixed effects over the random 
effects model, the latter was chosen on economic 
grounds to estimate technical efficiency.  
 
At the national level, technical efficiency 
generally rose consistently over the 7-year 
period. A regional breakdown indicated that the 
provinces in the East region were the primary 
source of greater technical efficiency. Regional 
comparisons revealed that the East region was 
much more efficient than the other two regions. 
Moreover, the efficiency gap between the East 
and the West regions increased during the 
sample. The Central region had a higher growth 
rate in technical efficiency towards the end of the 
period, which helped reduce the difference 
between the Central and East regions. Overall, 
the West region experienced a fall in efficiency 
over time. A graphical analysis summarised the 
temporal movements in technical efficiency for 
each of the provinces over time.  
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Table 1. Diagnostic Tests and Parameter Estimates 
 

(A) Group Effects Test of Ho: Pooled versus H1: Unpooled , =14.812 )175,29(F
Estimation under Random Effects  

a  η  Labour Machine Fertiliser Land 

0.9264 
(1.1057) 

0.0122 
(0.0092) 

0.2347 
(0.0777) 

0.1976 
(0.0979) 

0.5290 
(0.0934) 

-0.1347 
(0.0705) 

Estimation under Fixed Effects  
 0.0500 

(0.0131) 
0.4447 

(0.2845) 
-0.0935 
(0.1774) 

0.1880 
(0.1424) 

-0.0825 
(0.1057) 

(B) Hausman Test of Ho: Random Effects versus H1: Fixed Effects, =17.70 )4(2χ
Note: Asymptotic standard errors are given in parentheses. 
 
 

Table 2. Estimates of Technical Efficiency at the National and Regional Levels 
 

Year National East Central West 
1991 0.61 0.71 0.56 0.56 
1992 0.59 0.71 0.55 0.53 
1993 0.59 0.71 0.55 0.51 
1994 0.59 0.72 0.56 0.49 
1995 0.59 0.73 0.58 0.49 
1996 0.60 0.74 0.61 0.49 
1997 0.63 0.76 0.64 0.50 
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