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Abstract: Models that implement the bio-physical components of agro-ecosystems are ideally suited for 
exploring sustainability issues in cropping systems. Sustainability may be represented as a number of 
objectives to be maximized or minimized. Models provide a means to evaluate system performance for 
alternative strategic, tactical and operational decisions. The full decision space is usually very large and 
simplifications based on insight into agronomic relations and farming practice are necessary to safeguard 
computational feasibility. Different optimisation approaches have been proposed in the literature, usually 
based on mathematical programming techniques. The disadvantage of these techniques is that they can only 
deal with greatly simplified system descriptions, thus excluding the direct use of bio-physical system models. 
Here, we present a global search approach based on an Evolutionary Algorithm (EA). We introduce a multi-
objective evaluation technique within this EA framework, linking the optimisation procedure to the APSIM 
cropping systems model, and perform simulations in parallel over an existing computer network.  

A case study addressing crop choice and sowing rules in north-east Australian cropping systems is used to 
illustrate the EA methodology. Sustainability of these systems is evaluated in terms of economic performance 
(gross margin, financial risk) and resource use (erosion). Because of the limited size of the problem, the 
quality of the EA optimisation can be assessed by comparison to a large sample of the full problem domain. 
Results demonstrate that the EA procedure, parameterized with generic parameters from the literature 
converges to a useable solution set within a reasonable amount of time. Frontier “peels” or pareto-optimal 
solutions as described by the multiobjective evaluation procedure provide useful information for discussion 
on trade-offs between conflicting objectives. Application to a more realistic decision problem is 
recommended to evaluate the usefulness of the approach in informing discussions on agro-ecosystem design. 
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1. INTRODUCTION 

We seek to optimise a cropping systems design 
problem involving crop choice and sowing rules 
in North-East Australian cropping systems. The 
systems are evaluated in terms of economic 
performance (gross margin, financial risk) and 
resource use (erosion). We investigate the use of 
Evolutionary Algorithms (EA), a class of 
stochastic optimisation techniques based on 
concepts of natural selection and genetic 
inheritance that improve by selection, 
recombination and mutation. While such 
optimisation of agricultural systems is not unique 
(Mayer, 2002; El-Nazer, 1986; Rossing et al., 
1997) to our knowledge there is no existing work 
that demonstrates the use of EAs in cropping 
systems design, which allow the concept of pareto 
– optimality. 

While in single objective optimisation the optimal 
(highest ranking) solution is usually clearly 
defined, this does not hold for multiobjective 

problems. Instead of a single optimum, there is a 
set of compromise solutions, known as the 
Pareto-optimal solution after the Italian 
economist Vilfredo Pareto (1848-1923). These 
solutions represent the best tradeoff across all 
criteria as no other solutions are superior to them 
when all objectives are considered. Figure 1 
shows these sets as a series of “peels”. To 
arbitrate between members of the Pareto-optimal 
set, a human decision maker is needed. These two 
aspects of multiobjective optimisation, search and 
decision making (Zitzler, 1999), may be 
combined in three ways in optimisation 
algorithms (Horn, 1997): (i) decision making 
before search where the objectives are aggregated 
into a single objective, by implicitly taking into 
account the decision maker’s preferences; (ii) 
search before decision making, where the 
decision maker selects an acceptable compromise 
solution from the set of solutions resulting from 
the search process; (iii) decision making during 
search, where preferential information is used to 
guide the search process. Methods that aggregate 



multiple objectives into a single objective function 
are known to be sensitive to the shape of the 
Pareto-optimal front (Zitzler, 1999). In this paper, 
no preference information is used, consistent with 
the aim of enhancing learning associated with 
design of cropping systems.   

Since the pioneering work on evolutionary 
algorithms for multiobjective optimisation in the 
mid-1980s (Schaffer, 1984), many variations have 
been published. In general terms, a multiobjective 
EA should meet the following requirements 
(Zitzler, 1999): 

• The distance of the non-dominated front 
found to the true Pareto-optimal front is 
minimized. 

• Solutions are adequately (usually 
uniformly) distributed along the front. 

• The spread of the obtained non-
dominated front is maximised, i.e. for 
each objective a wide range of values is 
covered by the non-dominated solutions. 
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Figure 1: The top 3 Pareto-Optimal solution 

frontiers joined by solid lines. Objectives were to 
maximise Gross Margin and minimise Erosion. 

Inherent to the heuristic nature of EAs, 
convergence to the true Pareto-optimal front is not 
guaranteed, nor are there hard rules that describe 
‘optimal’ configuration: the method of fitness 
assignment, selection of parents, generation of 
offspring and replacement of parents affects 
performance in a problem-specific manner. Since 
few general guidelines are available, the empirical 
configuration of an EA is part and parcel of its 
application.  

The fitness of an individual is based on the rank 
determined by a non-dominated sorting procedure. 
The procedure starts by finding the set of 
individuals that are Pareto-optimal in the current 
population, to which the highest rank is assigned. 
This set is called the first Pareto stratum. The 
individuals that are Pareto optimal in the 

remaining population are assigned the next 
highest rank. These individuals comprise the 
second Pareto stratum. This process continues 
until all the individuals are ranked. Figuratively 
speaking, the subsequent non-dominated fronts 
are peeled off step by step as illustrated in figure 
1. 

In this paper we construct an EA to investigate 
applicability and usefulness to cropping systems 
design. Its performance is compared to a method 
in which the solution space is sampled using a 
factorial design. 

2. METHODS 

2.1. Cropping Systems 

Dryland cropping in the grain region of northern 
Australia is characterised by the opportunity to 
produce a range of cereal, pulse, oilseed, forage 
and fibre crops. Both summer and winter crops 
are grown, with yields largely determined by 
water supply from either in-season rainfall or 
water stored in the soil at planting. High 
variability in seasonal rainfall implies that 
prospects for any one crop are often risky 
(Hammer et al., 1996), although major 
differences in water requirement exist among 
crops. Fallowing the soil between crops is a 
recommended activity to reduce dependence on 
in-season rainfall by building up moisture levels 
in the soil. Disadvantages of fallowing are the 
lack of financial return, and possible resource 
degradation through increased soil erosion and 
solute leaching. Thus, crop choice and fallowing 
are critical elements in the balance between 
economic and ecological objectives for northern 
Australian cropping systems. 

Although performance of cropping systems is 
primarily assessed in economic terms, farmers 
and legislators increasingly consider efficiency of 
resource use as a performance criterion. The 
farmer can optimise a cropping systems 
performance through appropriate choice and 
management of crops and fallow. Cropping 
systems management is a complex optimisation 
problem. Performance indicators can be assigned 
as measures of the objectives to be maximised or 
minimised, with management actions or rules as 
the variables to be optimised.    

The number of combinations of decisions on land 
cultivation, crop choice and crop management is 
extremely large, and restrictions have to be made 
to define a relevant yet feasible optimisation 
problem: some decisions are set at agronomically 
plausible levels, while others, considered less 
obvious, are candidates for optimisation.  



This experiment presents the EAs operation in a 
known environment. The variables optimised are 
a discrete choice of land use in four seasons, and a 
threshold level of plant available water to consider 
planting (one of four) crops. The cropping system 
is designed as a two-year rotation, with cotton and 
sorghum as potential summer crops, and wheat 
and chickpea as winter crops. Fallowing may take 
place in either season. Decisions to be optimised 
comprise which crop to plant and when, and the 
timing of planting in relation to current soil 
moisture conditions.  

2.2. Problem Representation 

APSIM (McCown, et al, 1995) version 2.00 was 
configured to simulate crop rotations grown on a 
Brigalow soil type of 5% slope at Dalby (27S, 
153E) over a 40 year historical weather record. At 
the start of each cycle within the rotation, soil 
water level was set to 260mm available soil water, 
representing a 100% full profile to 1800mm 
depth. Sowing rules for each crop consisted of a 
fixed sowing window, i.e. a period during which 
sowing was possible, the requirement of 30 mm 
rainfall over a 3 day period prior to sowing, and a 
minimum necessary level of plant available soil 
water. Sowing windows were 1 October to 30 
November for cotton, 15 September to 15 January 
for sorghum, and 15 May to 1 August for both 
chickpea and wheat. At sowing, cotton was 
fertilized with 100 kg N/ha, wheat and sorghum 
with 50 kg N/ha and chickpea was left 
unfertilized. Prices of inputs and outputs  (Table 
1) are assumed fixed over the period of the 
simulation.  

Each individual within the EA encodes land use 
type and requirements of plant available soil water 
at sowing for each crop into 8 ‘genes’, as 
described in Table 2. Within the GENIAL 
framework, a gene is represented by a real 
number, a useful extension of the binary encoding 
methods of the more traditional binary EA 
implementations. 

The simulations expose each system to 40 years 
of climate, evaluated in similar terms as in 
Carberry et al. (1999): 1) Average yearly gross 
margin ($/ha); 2) Risk of economic loss, defined 
as the percentage of years when actual gross 
margin was less than $250 (an estimate of the 
fixed costs required to maintain a typical farm at 
Dalby); and 3) Soil loss, defined as the simulated 
average annual soil erosion (t/ha).  

Table 1: Costs and prices used in the 
optimization studies.  Values reflect levels 

prevalent in 1999.  

Crop Market 
Price 

Fixed costs  Variable 
costs 

Cotton $450/bale $811/ha+ 
$90/ha N 

$80/bale 

Wheat $150/t $180/ha+ 
$45/ha N 

 

Sorghum $180/t $114/ha+ 
$45/ha N 

 

Chickpea $300/t $180/ha  

 

As each APSIM simulation (one individual of the 
EA population) takes several minutes to 
complete, we were keen to exploit the implicit 
parallelism of the EA paradigm by evaluating 
simulations in parallel, potentially reducing the 
time taken for one generation of the EA from 
several hours to a matter of minutes. Given that 
our hardware resources were limited, we 
developed a networked, fault tolerant system that: 
marshalled simulation tasks at a central server; 
employed workstation clients that connect to this 
server, collected simulation tasks, performed 
them, and returned results to this server. The EA 
process creates the tasks, uploads them to the 
server, waits until they are finished, retrieves the 
results and proceeds to the next generation. 

 
Table 2: Functions and values for ‘genes’ used in the optimisation procedure.  

Esw: Extractable Soil Water 
Gene Range Function 
Summer Crop 1,2 1,2,3 for Cotton, 

Sorghum, or Fallow 
Land use in 1st and 2nd summer 

Winter Crop 1,2 1,2,3 for Wheat, 
Chickpea, or Fallow  

Land use in 1st and 2nd winter 

Cotton Esw  100, 160, 220mm mm extractable soil water required for a cotton planting 

Sorghum Esw  20, 120, 220mm mm extractable soil water required for a sorghum planting 

Wheat Esw  20, 120, 220mm mm extractable soil water required for a wheat planting 

Chickpea Esw  20, 120, 220mm mm extractable soil water required for a chickpea planting 
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Figure 2. The problem domain. Simulation results for cropping system over 4 seasons with choice of 3 crops, 

and  3 levels of starting water for planting each crop. 
 

2.3. Numerical Experiments 

We created 6 numerical experiments to firstly 
ensure that the EA was capable of finding its way 
to an optimal solution set within a known domain 
of 2800 points (Figure 2), and secondly to 
examine how the choice of EA parameters 
affected efficiency. 
In an effort to understand how genetic operators 
affected the behavior of the EA, 2 selection 
pressures were trialled: i) Small population (N = 
50), high replacement rate (Q = 50%) (high 
selection pressure), and ii) large population (N = 
200), low replacement rate (Q = 25%) (low 
selection pressure) 

This choice of population size and replacement 
rate has operational considerations: for peak 
efficiency, the number of new individuals 
introduced to the population should be a multiple 
of the number of client workstations available.  

For both selection pressure routes, the weight of 
two genetic operators, probability of uniform 
crossover puni, and probability of mutation pmut, 
were varied. The three cases were (puni =10%, pmut 
=10%), (puni =10%, pmut =30%), and (puni =30%, 
pmut =10%), giving 6 experiments in total. 

3. RESULTS 

When the feasible solution space was explored 
using simulations with all possible combinations 
of crops, fallows, and planting conditions, a wide 
range of outcomes resulted (Fig. 2). The most 
desirable outcomes combined high gross margins 
with low erosion and low financial risk.  At gross 
margins up to about $750/ha, there were systems 
with erosion as low as 1-2t/ha among the 
combinations examined.  To reach higher levels 
of gross margin a trade-off with increased erosion 
was required. A similar outcome was evident with 
financial risk.  It was only at high gross margin 

levels that the trade-off between profit and risk 
came into play.  These envelopes represented the 
Pareto-optimal frontiers for this problem.  There 
were numerous redundant combinations behind 
these frontiers, where for any given level of gross 
margin, high erosion or financial risk resulted. 

Figures 4 & 5 show the results of searching this 
solution space with the two configurations of the 
evolutionary algorithm.  The boxes indicate the 
position of the pareto optimum frontier for the 
trade-off between gross margin and erosion as the 
execution of the EA advanced through 
generations. Financial risk was closely related to 
GM for this cost/price regime (data not shown). 
In both cases, the Pareto-optimum frontier closely 
reflected that found when the full solution space 
was explored (compare Fig. 2).  This indicated the 
efficacy of the EA in searching the feasible space 
using the multi-objective criterion and Pareto-
optimum methodology.  It was clear, however, 
that the Pareto-optimal frontier had more uniform 
coverage with the higher population size (Fig. 4). 
Five of the six experiments behaved in a similar 
manner (data not shown), arriving at a stable 
population close to the optimal frontier within 20 
generations. The combination of small population 
and high random mutation rate (population =50, 
puni =10%, pmut =30%) failed to converge to a 
stable frontier.  

An adaptation landscape of crop ‘genes’ is shown 
in Figure 3. The figure shows the change in 
frequency of ‘alleles’ retained in the population as 
it progressed through generations of selection.  At 
the outset, all crop types (including fallow) were 
given equal representation.  The population 
moved rapidly to an increased proportion of 
winter crop, preference for wheat over chickpea 
as the winter crop, a reduced proportion of cotton 
as summer crop, and more winter fallow.  These 
shifts reflected the price and cost differentials 
defined for these simulations (Table 1) and the 



4. CONCLUSIONS greater consequences on erosion of including 
cotton or chickpea in the crop rotation.   The 
frequencies associated with this landscape include 
all combinations remaining in the population, 
even though most will be sub-optimal.  Hence, it 
is instructive to examine the Pareto-optimal set 
individually. 

We have shown that an EA can be successfully 
employed to search the feasible solution space for 
a complex cropping systems design problem that 
involves multiple criteria. The concept of Pareto-
optimal frontier has proved useful for exploring 
trade-offs among important conflicting criteria 
(such as economic and environmental 
consequences) associated with the system design 
problem.   The quantification of attributes of 
cropping systems that represent Pareto-optimal 
combinations of economic and environmental 
objectives provides highly interesting material for 
informed discussions on strategic decision 
making with decision makers. 

   
The attributes of the Pareto-optimal set from 
Figure 3 showed that increased intensity of 
cropping, and the inclusion of summer cropping 
of sorghum, was needed to achieve high gross 
margins (Table 3).  However, this also increased 
financial risk. Further, increased winter cropping 
of wheat was required to minimise erosion.  
While these trade-offs were specific to the 
conditions specified for this analysis, they 
provided an ideal basis to inform discussion about 
design of cropping systems with practitioners.  
Our experience with discussion support for 
decisions associated with single crop management 
(Nelson et al., 2002) has shown this to be an 
effective means to interact with decision makers 
and their key advisers.   
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Substantial time investment was needed to create 
the EA system, largely due to the parallel 
processing capabilities that were needed to 
overcome computational time constraints. 
However, the advantage over cropping system 
optimisation approaches based on mathematical 
programming is that the full explanatory power of 
the agro-ecosystem model can be used. With the 
system now in place, insights on approaches to 
cropping system management can be enhanced  
via direct and on-going interaction with 
managers.  Their ideas can be incorporated and 
discussed.  It would be appropriate to address a 
more realistic decision problem in this way to 
evaluate the usefulness of the approach in 
informing discussions on agro-ecosystem design. 

Figure 3. Relative proportion of crop type and 
fallow in the cropping system versus generation 
for the numerical optimisation experiment with 

N=200, puni =10%, pmut =10%. 
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Figure 4. 60 iterations of the EA in the numerical experiment with N=50, Q=50%,  puni =10%, pmut =10%. 1st 

,2nd and 3rd  pareto rankings are joined by lines.  



Table 3: The Pareto-optimal sets of parameter values from generation 60 of the numerical experiment with 
N=200, Q=25%, puni =10%, pmut =10%.  The first 4 columns describe the crop sequence, the next 3 the soil 
water thresholds for planting each crop, and the last three show the outcomes for each management system. 

Note that cotton does not appear in this set. 
 

First 
Summer 

First 
Winter 

Second 
Summer 

Second 
Winter 

Sorghum
(mm) 

Wheat
(mm) 

Chickpea
(mm) 

Gross 
Margin ($) 

Risk 
(%) 

Erosion
(t/ha) 

Sorghum Wheat Fallow Wheat 20 120 329 8 1.07

Sorghum Wheat Fallow Wheat 120 120 332 5 1.08

Sorghum Fallow Sorghum Wheat 120 20 828 15 2.04

Sorghum Wheat Sorghum Chickpea 20 120 20 937 19 2.65

Sorghum Wheat Sorghum Wheat 120 120 761 15 1.12
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Figure 5. 60 iterations of the EA in the numerical experiment with N=200, Q=25%, puni =10%, pmut =10%.  
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