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Abstract: In this paper we describe techniques utilised in the development of a scheme for identifying the 
regions in an 8-dimensional parameter space that gave optimal (or near-optimal) performance in a 
computational simulation of a real-world system.  The system model, developed by Dexcel Ltd, attempts a 
detailed representation of pastoral dairying scenarios.  It incorporates sub-models, themselves complex in 
many cases, of pasture growth, animal metabolism etc.  Each evaluation of the objective function, a 
composite 'farm performance index', requires simulation of at least a one-year period of farm operation with a 
daily time-step and hence is computationally expensive.  Since similar situations are likely to arise in other 
practical optimisation exercises, the results presented should have some quite general applicability.Two quite 
different methods of optimisation - Genetic Algorithm (GA) and Lipschitz Branch-and-Bound (LBB) 
algorithm are investigated and contrasted.  Practical issues related to their efficient implementation in a Linux 
cluster parallel processing environment are discussed and their performance on the above problem is 
compared. The problem of visualisation of the objective function (response surface) in high-dimensional 
spaces is also considered in the context of the farm optimisation problem (where from a practical viewpoint 
knowledge of its behaviour in the region of optima is actually more important than the precise positions or 
values of the optima themselves).  An adaption of the Parallel Coordinates visualization is described which 
helps visualise some important properties of the model’s output  topography. 
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1. INTRODUCTION 

The dairy industry is the largest industry of New 
Zealand and one of the largest dairy exporters in 
the world (The New Zealand Dairy Industry, 
2001). Various research is being pursued to 
further improve the productivity of New 
Zealand’s dairy farms. Among others research to 
improve the management of dairy farms is of one 
the most important fields.  Traditionally, various 
management options are tested in field trials, 
which are costly in time and resources and also 
exposed to the perturbations of uncontrolled 
variables such as climate. As an alternantive in 
1997 Dexcel Ltd developed a computer 
simulation model of New Zealand style dairy 
farms, namely the Dexcel Whole Farm Model 
(WFM) (Sherlock et al, 1997), and Post 
parallelized the model in 2002 (Post, 2002). One 
of the main objects for this computational 
simulation is to reduce the need for field trials and 
also make exploratory evaluations of management 
strategies faster, cheaper, automated and less 
biased. 

However, due to the high complexity of the 
system studied and intensive computation expense 
of the Dexcel WFM evaluating all possible 
variations of New Zealand dairy farm’s behavior 

is impossible within a reasonable time. In 
addition, the vast quantity and 
multidimensionality of the model’s result data 
also increase the difficulty of understanding the 
result. These issues gave rise to our research 
aiming at identifying some solutions to these 
problems. 

This paper describes an attempt to identify an 
appropriate optimization method to investigate the 
interesting region of the output data topography of 
the Dexcel WFM and also to implement the 
investigation and present the resultant data 
topography appropriately so as to facilitate the 
understanding of it. 

2. THE DEXCEL WHOLE FARM MODEL 
(WFM) 

The Dexcel WFM, the simulation model of New 
Zealand style pasture-based dairy farms, is a large 
open system based on the Farm System 
Simulation Framework (FSSF) developed by 
Sherlock et al (1997). The particular version of 
the WFM used in this study was based on 
Dexcel's 'Small Test Farm' specification in which 
just simplistic sub-models of the animal and 
pasture components are used. The model 
simulates a one-year period of farm operation, 

 



and returns a scalar “farm performance index” 
(FPI) of the goodness of farm performance. 
Conceptually the model is regarded as an 8-
variable “black-box” function, which takes 8 farm 
control variables (AGG, MPG, SR, CD, DOD, IS, 
IPC and IAL)as the inputs and yields FPI as the 
output. 

Though the analytical expression of the Dexcel 
WFM is unavailable the following two properties 
have been found to apply to the model.  

 The model can be evaluated on every point 
within its hyper-rectangular domain. Thus 
this is an unconstrained function.  

 The model is deterministic, i.e. evaluations 
on the same point always give the same 
result. 

On the basis of the first property, the second 
property ensures ( ) ( )
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infinitely large, since the  is a bounded finite 
function and 

12 xx −  won’t be zero whilst 

( ) ( )12 xfxf −  is not zero. (  denotes the 
Euclidean norm). Therefore the model has a 
bounded slope. This makes the model a Lipschitz 
function. 

Another fact about the model is that it is 
computationally expensive. It takes about 1.6 
seconds for one evaluation (one year simulation 
of a small farm) on a Pentium 800Mhz processor. 
Considering the vast input variable domain of the 
model an exhaustive search on it is impractical 
with commonly available computing resources. 
As an illustration, even a modest 16  grid search, 
i.e. an enumerating search assuming that each of 
the 8 parameters takes only 16 values, could take 
more than 27 years on an 8-nodes parallel cluster 
with Pentium 800Mhz processors. Therefore a 
major objective in this research is an efficient 
optimization solution. 
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3. OPTIMIZATION TECHNIQUES 

Among many black-box optimization techniques,  
Genetic Algorithm (GA) and Lipschitz Branch-
and-Bound (LBB) Algorithm were chosen for 
further investigation in this work, as they are 
representative methods for stochastic and 
deterministic black-box optimizations 
respectively. 

3.1. Genetic Algorithm 

Genetic Algorithms form a significant branch of 
the Evolutionary Algorithms mainly developed by 
Holland (1975). They are stochastic search 

methods that emulate some processes of natural 
biological evolution. 
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Figure 1:  Structure of a single population 

Genetic Algorithm 

As demonstrated in Figure 1 the algorithm starts 
with a number of individuals (a population) that 
are randomly initialized and where the genomes 
of individuals are candidate solutions of the 
problem. The objective function is then evaluated 
to identify the fitness of each individual and the 
initial population is produced.  To make the 
population evolve towards better fitness the 
algorithm iteratively refreshes the population by a 
new generation of individuals.  This refreshing 
procedure is achieved by selection, 
recombination, mutation and reinsertion. In detail, 
first the best individuals are selected according to 
their fitness for the production of offspring. The 
genomes of these parents are decomposed and 
recombined to produce offspring and the genomes 
of newly produced offspring mutate with a certain 
probability.  Then the objective function is 
evaluated to identify the fitness of each offspring. 
The offspring are reinserted into the population, 
replacing the individuals with worse fitness. This 
refreshing cycle is performed until the 
optimization criteria are reached.   

3.2. Lipschitz Branch-and-Bound Algorithm 

The Lipschitz Branch-and-Bound algorithm is a 
family of deterministic optimization algorithms 
that exploits both a branch-and bound framework 
and the Lipschitz assumption. 

To optimize black box functions by other than 
stochastic methods, some assumption must be 
made to make them less  “black”. Perhaps the 
most modest assumption we could have on black-
box functions is that they have bounded slopes, in 
which case the black-box functions are said to be 
Lipschitz. More formally, a function  defined 
on 

( )xf
nRX ∈  is Lipschitz if it satisfies the 

condition: 

For arbitrary  and , there holds Xx ∈1 Xx ∈2

( ) ( ) 12 xxL −12 xfxf ≤−  

 



3.3. Empirical comparison of GA and LBB 
algorithm 

where L is the Lipschitz constant (upper bound of 
the function’s “slope”) and  denotes the 
Euclidean norm. To identify the most efficient optimization 

technique for use with the Dexcel WFM, we 
conducted a series of comparative experiments on 
two representative serial computational 
implementations of the GA and LBB algorithm. 

Estimation of the least Lipschitz constant (the 
tightest upper bound) for black-box functions 
remains an unsolved problem. Strongin (1973) 
suggested a method to obtain M as the largest 
slope in a large number of random samplings, and 
then obtain the estimation of the least Lipschitz 
constant by multiplying M by a factor  of 2. There 
is no guarantee that the estimation 2M is greater 
than or equal to the least Lipschitz constant. 
However, Strongin’s estimation is the only 
technique available for use with black-box 
functions up to now. 

The experiments were done on 10 sub-domains of 
Dexcel WFM. The optimal farm performance 
indexes (FPI) achieved within 500 evaluations on 
each sub-domain by the GA and LBB 
implementations respectively were recorded. The 
domains were all scaled into 8-dimensional 
hyper-cubical virtual domains with side width 8 in 
B&B implementation.  

The idea behind Branch-and-Bound (B&B) is a 
straightforward “divide and conquer” strategy. As 
Horst, Pardalos and Thoai (1995) described, it 
partitions the problem into smaller sub-problems 
(branching) over which the upper bound of the 
objective function value can be determined 
(bounding). Some of the sub-problems may then 
be deleted from further consideration (pruning) if 
their upper bounds do not meet certain criteria. In 
Lipschitz Branch-and-Bound Algorithms 
problems are partitioned by dividing its domain 
into sub-domains. Thus a sub-problem is the 
original problem on one of its sub-domains.  

The tri-partitioning GHJ Branch-and-Bound 
algorithm is used in the experiments as the tri-
partioning branching rule was considered the 
most efficient one for the GHJ algorithm. The 
parameter configuration of the GA for the 
experiments is as below: 

 Genome represented by integer numbers 
 Population is 10 
 Single-point crossover with probability 1 
 Each gene of the genome is mutated with 

probability 0.2 
 Roulette selection based on individual’s 

rank Among the many variations of LBB algorithm, 
the Gourdin, Hansen and Jaumard’s (GHJ) 
algorithm (Gourdin et al, 1994) was considered 
the most efficient one (Hansen and Jaumard, 
1995). It partitions the original domain along the 
longest dimension, and decides the upper bound 
of a sub-problem according to an evaluation on 
the centre point of its corresponding sub-domain.  

 30% of the population is replaced in each 
generation. 

Table  shows the results of the experiments on the 
Dexcel WFM. 

The results show that GHJ algorithm, the LBB 
algorithm claimed to be most efficient, is still 
inferior to the GA in terms of finding optimal 
points for Dexcel WFM. On average, an optimum 
found by a 500-evaluation GA run is 70 higher in 
FPI than that found by a 500-evaluation GHJ run. 
Although the GA may risk premature 
convergence on local optima, the risk is much 
reduced if it is applied on a fine-cut sub-domain. 

Hansen and Jaumard (1995) made a comparison 
of all these Lipschitz Branch-and-Bound 
algorithms by applying them on a wide range of 
test problems. The result shows that the GHJ 
algorithm needs significantly fewer function 
evaluations than other LBB algorithms to achieve 
an optimization with the same precision ε. The 
computational overhead other than function 
evaluation is also the smallest in general. The 
limitation of this comparison work is that it 
involves only 2-dimensional and 3-dimensional 
test problems. However, the advantage of GHJ 
algorithm on 3-dimensional problems over other 
algorithms is significantly larger than that on 2-
dimensional ones, so it is reasonable to predict it 
will be even more superior on a still higher 
dimensional problem. 

We also conducted comparative experiments on a 
series of test problems other than the Dexcel 
WFM. These experiments show that the higher 
the dimensionality of the problem, the more 
superior the GA is, and also show that the 
superiority of GA has some degree of generality.  

The GA’s efficiency on higher dimensionalities 
can be attributed to its implicit parallelism, i.e. the 
simultaneous allocation of search effort to many 
dimensions.  Figure 2 demonstrates a trace of 
evaluations for the GA and the GHJ algorithm on 
minimization of a simple function . It is 
seen the GHJ algorithm searches along only one 
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dimension in every single step, while the GA 
searches on both dimensions simultaneously. This 
parallelism of GA makes it more powerful in 
high-dimensional problems.  

It is worth mentioning that the GA 
implementation in these experiments was not 
specially configured, otherwise the GA may have 
achieved even better performance. 

 

 
Figure 2: Evaluation trace for GA and GHJ 

algorithms on a simple 2D function.  

 

Table 1: Optimal performance found by GHJ and 
GA within 500 evaluations 
Optimal performance found (in FPI) 

Zone 
By GHJ By GA 

1 1782 1854 
2 1540 1631 
3 1578 1669 
4 1321 1564 
5 1127 1297 
6 1644 1690 
7 1362 1495 

8 1267 1108 
9 1101 944 

10 1554 1722 

3.4. Implementation of GA to investigate the 
Dexcel WFM 

Scheme of Investigation 
The first question in this research is how to detect 
computationally the most interesting prime 
topography of the Dexcel WFM by using 
optimization techniques. Since it is not practical 
to do an exhaustive investigation we instead 
decided to find the most representative points on 
the “landscape” that best outlines the topography. 
These are the extreme points, or local optimal 
points in our case, of the landscape.  For this 
objective we need to diversify our optimality 
search effort evenly on the domain. 

On this basis we divided the domain of the Dexcel 
WFM into 6561 (38) sub-domains by breaking the 
range of each of the 8 parameters into 3 sections 
and applied the Genetic Algorithm, the more 
efficient black-box optimization technique, on 
sub-domains in parallel to find their optimal 
points. We then obtained the overall topography 
of good farms by studying the optimal points 
found in these diverse localities. The result of this 
parallel optima-investigation consists of 6561 
nine-component vectors (8 components for the 
values of the 8 optimising input variables, one for 
the corresponding optimal FPI) representing the 
6561 optimal farm management strategies within 
respective sub-domains. We named this result 
data “The Result Data Set “ and call it so in the 
succeeding parts of this paper. 

The thoroughness of this investigation depends on 
not only the precision of those optimizations on 
sub-domains, but also more crucially on the 
division of the domain. A division that makes the 
Dexcel WFM unimodal on each sub-domain is the 
most favorable to the investigation, but either 
results in an extra fine-cut division, hence a heavy 
computation load, or requires advance knowledge 
of the topography. Thus practically we adopted a 
modest division on the domain of the Dexcel 
WFM, which proved adequate for detecting the 
prime topography in which we are interested. 

Parallelization of GA on the Dexcel WFM 
The parallelization of the GAs optimising Dexcel 
WFM on its sub-domains was achieved by using 
MPI (Message Passing Interface) (Gropp et al, 
1994) functions. The program was designed for a 
parallel network consists of one single master 
node and several slave nodes. In this 
parallellization, the Master delivers a single job 

 



(A job in the parallelization terms the 
optimization on a certain sub-domain) to a slave 
only after it has received a recent response from 
it. Although this causes more communication load 
in the network it is robust in case one or several 
slaves break(s) down, and flexible in job 
rearrangement after breakdowns happen. In 
addition it does an implicit dynamic load 
balancing in the possibly non-dedicated network 
as well, because the non-dedicated and hence 
slower processors consequently receive fewer 
jobs, which is proportional to their processing 
capacity. The master will possibly be overloaded 
and become a bottleneck in this parallelization 
when the number of slaves is very large, but this 
is not the case in our 9-node network.  

4. VISUALIZATION OF THE 
INVESTIGATION RESULTS 

The Result Data Set obtained from the optima-
investigation contains information describing the 
Dexcel WFM’s behavioural topography. 
However, due to the large amount and high 
dimensionality of the data it is difficult to 
understand the topography directly. Therefore, we 
visualized the data by using the Parallel 
Coordinate technique to improve the 
understandability of the data. 

It is important to note that the conclusions drawn 
from the data apply to a very small “Test farm” 
with simplistic models of the animal and pasture 
components. They may not be applicable to more 
realistic whole farm models. 

The Parallel Coordinate visualizations were 
produced by an OpenGL visualization application 
developed in this research. A common problem 
with Parallel Coordinate visualizations is that the 
“lines”, which depict the vectors, will overlap 
each other. This problem handicaps observations 
of the data’s topography. In our visualization, we 
drew the “lines” in a sequence according to the 
FPI values of the vectors, i.e. the “lines” with 
lower FPI were drawn earlier, and the “line” with 
the highest FPI was drawn at last.  This ensures 
that the topography of the good farms, in which 
we are interested, is always “on the top”, rather 
than covered.  On the other hand, to maintain a 
reasonable comprehensiveness for the 
visualization, we made the “lines” slightly 
translucent. Thus the vectors with lower FPI will 
not be totally covered in some intensively 
overlapping areas.    

Figure 3 shows a Parallel Coordinate visualization 
of local optimal vectors in the Result Data Set 
with FPI . It is seen from the visualizations 

that the good farms with FPI FPI ≥  are quite 
diverse in their management strategies, especially 
the calving date shift (CD) and stocking rates 
(SR).   e.g. while a farm with the earliest calving 
date (lowest CD) and highest stocking rate 
(highest SR) achieves a FPI above 2000, that with 
the latest calving date and lower stocking rate also 
does so. It is found from the Parallel Coordinate 
visualization that the farms with FPI above 2000 
are also very diverse in their options on milk- 
production-genetics-scalar (MPG), dry-off date 
shift (DOD), initial silage (IS) and initial pasture 
cover (IPC). The only unalterable prerequisites 
for the farms with FPI above 2000 seem to be 
higher initial-animal-living-weight (IAL) value 
and lower animal-growth-genetics-scalar (AGG) 
value. 

2000≥

2000

5. CONCLUSION 

We compared the efficiency of representative GA 
and LBB implementations in a series of 
computational experiments. It was observed that 
the GA needs fewer function evaluations in 
optimization than the LBB algorithm does. It was 
also shown that the higher the dimensionality of 
the problem the more superior the GA is. 
However, it should not be ignored that the GA is a 
stochastic strategy that performs inconsistently 
from run to run and could possibly be trapped by 
local optima whereas the LBB algorithm can 
provide definite upper bounds.  

In the study of the optimization implementation of 
Dexcel WFM we investigated the farm behaviour 
topography by running the parallel GA on sub-
domains of the Dexcel WFM and visualized the 
result data by using Parallel Coordinate 
techniques. Thanks to the improved 
understandability of the data in the visualizations, 
it is observed that to achieve good farm 
performance with this simple model lower AGG 
value and higher IAL values are indispensable 
while values of other management options are 
more flexible and scenario-dependent. 

6. ACKNOWLEDGEMENT 

The authors are indebted to Dr M. E. Wastney and 
Dexcel Ltd for access to source code and 
permission to use the Dexcel WFM in this study. 

 

 

 

 

 

 



 

Figure 3: Parallel coordinate visualization of the local optimal vectors with FPI  2000≥ * 

 
* The gray-scale version of this coloured figure won’t be equally informative.
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