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EXTENDED ABSTRACT 

The initial general security water allocation 
announcements for water users in the New South 
Wales (NSW) part of the Murray Valley are made 
during July. The initial water allocation 
announcement is very conservative as the 
allocations are based on storage levels and 
historical minimum inflows statistics to dams 
during the irrigation seasons. There is a good 
chance that the water allocations will be  increased 
as the season proceeds. Water availability during 
the cropping season is a major factor influencing 
planting decisions made by irrigators and can have 
a major bearing on the financial viability and 
irrigation efficiency of irrigation areas. Therefore, 
increased knowledge on the likely end-of-season 
allocation by advance predictions can assist in 
minimising cropping risk and can help optimise 
farm returns and achieve better irrigation 
efficiencies. 

Seasonal river flow forecasts are used for 
determining anticipated water allocations; 
however, this paper presents a more direct 
approach that forecasts water allocation instead of 
river flow. The study is based on the hypothesis 
that the sea-surface temperature (SST) and ocean 
based climate variability indices (CVIs) are 
statistically related to water allocation forecasts in 
a river catchment. Over 100-years data on a global 
two degree grid SST, CVIs, and water allocations 
in the Murray Irrigation Area (MIA) were 
analysed. Statistical techniques including 
probability analysis and multiple linear regression 
(MLR) were used to determine the underlying 
relationships among predictor variables and the 
end-of-irrigation-season water allocation (February 
allocation) in the MIA. The SST at three locations 
around the continent; one lying in the equatorial 
Pacific, second in the Indian Ocean and third in the 
Tasmanian Sea, were found highly correlated 
(Pearson Correlation Coefficient up to -0.83) with 
February allocation levels in the MIA based on 
analysis using the CSIRO’s SSTman software.  

The significant variables identified by the MLR 
analyses include; SST, SOI, mean sea level 
pressure, start-of-season (August) and mid-of-
season (October) announced allocations and the 
risk factor. The risk factor can be varied from 0 to 
100% and relates the probability of February 
allocation to announced August allocation and 
translates degree of risk farmer may take based on 
known August allocation. The value of the risk 
factor must be chosen with care because if 
user/farmer decides a higher value of risk factor, 
the model will forecast higher allocation 
suggesting farmer to grow more crops but at the 
same time involve a higher degree of risk of 
actually not getting that level of allocation. The 
model was validated against actual announced 
allocations for the month of February for ten years 
(1996/97 to 2005/06). The validation results are 
presented in Figure 1A. The model underestimated 
allocations for the years 2001 and 2002. This may 
be due to borrowing water from future years 
despite exceptionally low rainfalls during the 
season and not taking into account then emerging 
drought conditions. 
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Figure 1A. Comparison of actual and predicted 
February allocations by regression model 

A simple software tool developed based on the 
findings of this study will provide farmers with 
risk based crop management options.  
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1. INTRODUCTION 

Climatic variability poses a vital influence on 
precipitation and ultimately river flows as well as 
irrigation demand in irrigated agriculture. The 
short to medium term climate forecast can helps 
water regulators in determining water availability, 
water managers in estimating seasonal irrigation 
demand, and farmers in cropping decisions. 
Moreover, use of standard climate variability 
indicators to reduce uncertainty of the water 
supply can help improve regional and on-farm 
water use efficiency (e.g. informed cropping 
decisions rather than later abandoning of crops due 
to non-availability of water, changed irrigation 
practices and irrigation demand management in an 
environmental context) and better management of 
end of irrigation area’s salinity levels through 
reduced drainage volumes. This will lead to 
savings in irrigation water and improved irrigation 
demand patterns which could bring beneficial 
economic and environmental impacts to irrigation 
areas. A water allocation in the New South Wales 
is defined as the percentage of the water user’s 
licensed entitlement available for use in a given 
year depending on the level of storage and priority 
order of the given entitlement.  

In the past a range of studies have been made to 
investigate connections between Australian rainfall 
and the sea surface temperatures (SST), climatic 
indices and prevailing atmospheric circulation 
patterns. For example see, Smith et al. (2000), 
Ansell et al. (2000), Drosdowsky and Chambers 
(2001), and Verdon and Franks (2005). Smith 
(1994) examined the capability of PCA in 
predicting Australian winter rainfall using Indian 
Ocean SSTs with principal components regression 
to find relationships between SST and rainfall 
components. Smith et al. (2005) analysed the 
hindcast results of CSIRO COCA2 climate model 
and estimated the skill of the model at predicting 
large scale climate variability that arises due to El 
Nino Southern Oscillation (ENSO) events. Khan et 
al. (2005) conducted a similar study about the 
Murrumbidgee River Catchment and found 
significant relationship of only two parameters; the 
SST and Southern Oscillation Index (SOI) with the 
water allocation in the valley. The abovementioned 
references have found that winter rainfall in 
Australia is generally correlated with seasonal SST 
and other climate variability indices and have 
explained the underlying synoptic reasons. The 
rationale of research work presented in this paper 
is based on these previous studies however; the 
target area of the problem has been reduced to an 
irrigation system level as well as more climate 
variability indices are included into the analysis. 
The water allocation levels for irrigation are 

decided each season based on available storage 
and the anticipated river inflows to the reservoirs. 
The rainfall in the catchment is the source of river 
inflows and storage volumes and respondent to 
climatic variability. Therefore, a more direct and 
non-traditional approach has been assumed in the 
current study by linking irrigation system water 
allocation levels with the SST and other climate 
variability indices.  

This paper explains the method of development 
and validation of output of a seasonal general 
allocation forecast model for irrigated agriculture 
in the Murray River Catchment (Figure 1). The 
model is implemented with a simple graphical user 
interface which is not discussed in this paper 

2. STUDY AREA 

The Murray is the major river in Murray Darling 
Basin (MDB) which drains about one-seventh of 
Australia’s land mass and comprises three-quarters 
of New South Wales (NSW), over one-half of 
Victoria, a small portion of South Australia, and an 
area of Queensland greater than the total area of 
Victoria (Figure 1). From its source in the 
Australian Alpines in NSW, the Murray River 
flows 2,530 kilometres west then south to meet the 
Southern Ocean in South Australia (MDBC, 
2005). Since gauging began at Swan Hill in 1909, 
the Murray ceased to flow at that point for short 
periods in 1914, 1915, and 1923. Since the Hume 
Reservoir was built in 1936 a flow has been 
maintained throughout the length of the Murray at 
all times, despite several severe drought periods. 
The catchment of the upper Murray above Albury 
contributes more than one-quarter of the total flow 
in the Murray system, from an area which is less 
than two per cent of the catchment area. Of the 
above area of Murray catchment, only five percent 
has an average rainfall in excess of 760 mm and 
the average rainfall over the Murray basin is 430 
mm. As a whole, the Murray Darling Basin has an 
average annual runoff, combined with inter-basin 
transfers, of 23,850 GL. Approximately 11,576 GL 
is extracted for consumptive use and 95.5% of that 
is used for irrigated agriculture.  

The Murray Irrigation Area (MIA) is one of the 
largest irrigation areas in the MDB and is located 
in the south New South Wales (NSW), just north 
of the Murray River across NSW–Victoria state 
border. The Murray Irrigation Limited (MIL) is the 
only player this part of the extensive and integrated 
catchment with a bulk water entitlement of 1479 
GL of which 1475 GL is under general security 
entitlements. MIL enjoys the ownership of 
irrigation supply to the Berriquin, Denimein, 
Deniboota and Wakool Irrigation Districts and 
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Tullakool Irrigation Area. The average annual 
water use (latest five years) of about 853,695 ML 
in the MIL represents approximately 7.7% of water 
used for irrigation in the Basin. MIL diverts water 
from the Murray River at Lake Mulwala via the 
Mulwala Canal off-take and supplies 2,416 
landholdings with a total area of 748,000 ha, as 
well as town water supplies for eight communities 
(MIL, 2004). 

 
Figure 1. The Murray River and its tributaries. 

(Source: Wikipedia.org) 

The summer irrigation season in the Murray 
Valley is from July to April/May of the following 
year. In New South Wales, the volume of water 
that irrigators have access to for any water year is 
based on the seasonal water allocation 
announcements delivered by the Department of 
Natural Resources (formerly called department of 
Infrastructure, Planning and Natural Resources). 
The seasonal water allocation in the valley is 
determined by the amount of storage in the two 
main reservoirs, Hume and Dartmouth dams, the 
Lake Mulwala and minimum expected inflows 
from tributaries and upstream watersheds 
including Snowy Mountains. The two dams; Hume 
and Dartmouth, have maximum water holding 
capacities of 3,038 GL and 3,900 GL respectively. 

In a given year, depending on storage levels of 
dams and inflows, the water is allocated according 
to the following hierarchy: 

• environmental water provisions; 
• basic rights requirements; 
• licensed domestic and stock requirements; 
• local water utility requirements; 
• water carried forward in water accounts; 
• high security and; 
• general security. 

The amount of water required for environmental 
flows, mandatory requirements (such as for 
domestic and stock licences, local water utilities 
and high security licences) and general security 
water carried over from the previous year is set 
aside to ensure that the allocated water will be 
delivered.  In addition, a volume is set aside for 
conveyance losses inside the irrigation 
corporations areas (in accordance with their 
licence) as well as to account for losses in delivery 
of allocated water. The remaining water is then 
allocated to general security licence holders which 
are generally broad acre crops growers. In other 
words, general security access license holders have 
the least priority. If general security allocations are 
below 100%, the system is monitored and if there 
are improvements in the amount of water available 
these allocations are progressively increased. In 
this paper ‘allocation’ refers to the general security 
water allocation unless otherwise stated and is 
always expressed on a percentage scale 

By virtue of the least priority in the water 
allocation hierarchy, and the fact that more water 
allocations will be available as the season 
proceeds, the general security water users require 
advance prediction of what the allocation would 
likely be in the next irrigation season so as to plant 
their crops accordingly, maximise irrigation 
efficiency and economic return from available 
water and avoid potential crop losses by growing 
less if there is a prediction of low allocations. 

3. ANALYSIS FRAMEWORK 

The water year in MIA starts in July and ends by 
the end of June. The intermediate water allocation 
announcements, especially those made in the 
months of August (start of irrigation season), 
October (mid of irrigation season) and February 
(end of irrigation season) are more critical in 
relation to taking cropping decisions by the 
farmers. Therefore, the current study has selected 
February allocation as the variable to be forecasted 
(dependent variable). The methodology framework 
adopted in this study is shown in Figure 2 and is 
explained in the following sub-sections. Final 
allocation in Figure 2 refers to the February 
allocation. 
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Figure 2. Analysis framework  

3.1. High Correlation SST Datasets 

Global scale 2o gridded monthly SST data 
constructed by NOAA scientists (Smith and 
Reynolds, 2004) is available in public domain. 
Spatial correlation analysis was conducted 
between the various combinations of the monthly 
SST data and the February (following year) water 
allocations for the period of 1981 to 1995 using 
SSTman (McIntosh, 2004) software. The aim of 
trying SST datasets with different lags was to find 
the best predictor of the February allocation. 
SSTman plots a map of correlation coefficient ‘r’ 
for each SST dataset. A high level of correlation (r 
range from 0.6 to -0.83) between the average Jan – 
Feb SST at three locations around Australia 
(Figure 3) and the February allocation was 
identified with one-year lag time. The lag time 
looks longer which is due to the fact that SST 
correlation is sought with allocation instead of the 
rainfall. 

 
Figure 3. Spatial pattern of correlation coefficient 
for February water allocation levels versus average 

Jan - Feb SST 

The location of the three highly correlated clusters 
of SST gridded data (Figure 3); one being in 
equatorial Pacific, second in the Indian Ocean and 
third in the Tasmanian Sea confirm the synoptic 
explanation of rainfall patterns in Australia 
(Drosdowsky, 1993, Drosdowsky and Chambers, 
2001).The three SST datasets were included as 
predicator variables (Table 1) in the multiple linear 
regression (MLR) analysis (Section 3.3). 
 
Table 1. Input variables and their data sources 

Variable Data Source  
February allocation IQQM model results 
August allocation IQQM model results 
October allocation IQQM model results 
Probability of  exceedance 
of February allocation  

Computed  

Average Jan – Feb SST at 
cluster C1 

ERSST from NOAA  

Average Jan – Feb SST at 
cluster C2 

ERSST from NOAA 

Average Jan – Feb SST at 
cluster C3 

ERSST from NOAA 

Average Dec – Feb  
Southern Oscillation 
Index 

Australian Bureau of 
Meteorology  

Average Jan – Mar sea 
level pressure at Tahiti  

Australian Bureau of 
Meteorology  

Average annual SST 
anomalies within NINO3 
region 

Climate Analysis Section of 
Climate and Global 
Dynamics, FTP site  

 

3.2. Input Data 

Based on an extensive review of literature and 
analyses; nine independent variables that showed 
some effect on February allocation levels in the 
MIA were identified. These variables and their 
data sources are listed in Table 1. The month of 
August represents the initial water allocation and 
was chosen to be one of the model inputs while the 
October allocation was included as an optional 
input variable. The monthly water allocation data 
used in this study for MIA was generated by 
IQQM (Integrated Quantity and Quality Model) 
simulation for 105 years (1891 – 1995). Using the 
105 years August, October and February 
allocations data, probability of February allocation 
to exceed an allocation level of 85% was computed 
for given levels (0 – 100%) of August allocation 
and October allocation for each year. A 
logarithmic model (Equation 1) fitted best (R2 
value of 0.72) to the scatter plot of August 
allocation and the probability of exceedance of 
February allocation. Similarly a linear model 
(Equation 2) fitted best (R2 value of 0.50) ) to the 
scatter plot between October allocation and the 
exceedance probability of February allocation The 
probability of exceedance of February allocation 
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was also used as predictor variable in MLR as 
given in Table 1. 

( ) 606.0ln357.01 −= XP ,               (1) 

( ) 0364.0011.02 += YP ,                                   (2) 

Where P1 is the probability of exceedance of 
February allocation for known August allocation 
(X) and P2 is the probability of exceedance of 
February allocation for known October allocation 
(Y).  

3.3. Multiple Linear Regression 

To quantify the relationship among more than one 
independent or predictor variables and a dependent 
or criterion variable, MLR is one of the widely 
used statistical approaches. In the MLR technique, 
for each independent variable a regression 
coefficient (the average amount the dependent 
variable increases when the independent variable 
increases by one unit and other independent 
variables are held constant) is calculated. 
Depending on the level of influence (significance 
tests e.g. F-test and t-test) some of the independent 
variables are dropped and MLR analysis is revised 
for the remaining independent variables unless all 
variables fulfil the statistical significance criteria. 
The final relationship is expressed in the form of a 
regression equation/model. MLR analysis has been 
applied by Ahmad et al. (2003) for long term flow 
prediction of the Maipo River in Chile. Regression 
models were developed to forecast February water 
allocation levels by utilising MLR analysis 
capabilities of SPSS software. The MLR was 
performed using backward elimination method of 
variable removal on the 105 year dataset. Since the 
August allocation and October allocation become 
known at points in time, two separate MLR 
analyses were conducted; one using all of the 
predictor variables listed in Table 1 except for 
October allocation and second analysis excluded 
August allocation. All variables were found 
statistically significant, except for SST anomalies 
of NINO3 region in both cases. Hence the MLR 
analysis produced two regression models. The first 
regression model (Model 1) forecasts February 
allocation with lead time of six months and is 
applicable only if the August allocation is known. 
The second regression model (Model 2) is 
applicable if October allocation is known and its 

forecast lead time is reduced to four months. 
October allocation was treated as unknown and 
was not included in the MLR for the Model 1 

3.4. Model Assumptions 

The development of allocation forecast model is 
based on the following assumptions: 

• The model is trained using long term data 
and therefore it is assumed that it 
implicitly accounts for allocation rules 
and management practices that might 
have changed over time, 

• Since the model is based on the long term 
dataset, it is capable to adapt itself to the 
climatic variations. 

4. RESULTS AND DISCUSSION 

Table 2 presents basic statistics about the two 
regression models. It must be noted that 
probability of exceedance calculated from 
Equations 1 and 2 actually represent value of the 
risk factor. For example, manipulation of 
probability to a higher value will force the model 
to forecast a higher level of February allocation 
which may not actually happen on ground and 
hence a higher degree of risk will be involved. 
Opposite is the true for the lowering of probability 
value. Figure 4 shows comparison of actual 
February allocation levels with those forecasted by 
the two models. Model 1 performs relatively better 
while predicting very low allocation levels which 
is a positive point as low allocations are more 
critical during the drought years. Both models 
seem conservative at predicting high allocation 
levels. Overall, accuracy of the both models is 
good with a maximum value of coefficient of 
determination (R2) for Model 1 being 0.74 while 
that of Model 2 being 0.83; however, the two 
models have different start times and therefore are 
not directly comparable. Also the latter has the 
advantage of using more accurately determined 
input variable the October allocation.  

Table 2. Application criteria and error statistics of 
the MLR models 

Model Applicability R2 #SEE 
1 Known August allocation 0.74 11.59 
2 Known October allocation  0.83 9.47 

#standard error of the estimate 
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Figure 4. Comparison between actual February allocation levels and the MLR models output 

4.1. Validation of Models 

The MLR models were developed using 105 years 
(1891 – 1995) data and each model was cross 
validated for ten years from 1996/97 to 2005/06. 
The actual water allocation data for the validation 
period is downloaded from DNR website (DNR, 
2007). Figure 5 and Figure 6 show the comparison 
of actual and forecasted February allocations as 
well as their upper and lower 95% confidence 
limits for Model 1 and Model 2, respectively. The 
validation R2 for Model 1 and Model 2 were 
calculated to be 0.53 and 0.63, respectively, which 
are slightly lower than the regression R2 due to 
different distribution of the error. Forecasts 
produced by Model 2 are expectedly more accurate 
than that of Model 1 however; both models were 
unable to accurately reproduce the 2000/01 high 
allocations.  
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Figure 5. Comparison of actual and predicted 

February allocations by Model 1 
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Figure 6. Comparison of actual and predicted 
February allocations by Model 2 

Both of the models underestimated allocations for 
the years 2001 and 2002. This may be due to 
borrowing of water from the future years despite 
exceptionally low rainfalls during the season and 
not taking into account the emerging drought 
conditions. Borrowing and subsequent repaying of 
water from future further distorts the water 
allocation data and therefore the models become 
less reliable. 

 

5. CONCLUSION 

This study shows that end-of-season allocation can 
be forecasted by incorporating early announced 
allocations, SST, climate variability indices and 
the farmer’s risk factor. The following conclusions 
are drawn from this study: 

• Statistical performance indicators R2 
(0.74 – 0.83) and SEE (9.47 – 11.59) 
computed for the two models suggest 
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reasonable confidence on the model 
predictions. 

• The accuracy of the statistical models is 
biased by the original data series 
generated by the IQQM. The forecast 
process is further complicated by the 
borrowing of water from the future years 
and carrying forward from the previous 
years. 

• The value of the risk factor need to be 
chosen with care while setting model up 
for allocation forecast. A higher value of 
risk factor forces model to predict higher 
allocation thus suggesting to grow more 
crops but at the same time involve a 
higher degree of risk of actually not 
getting that level of allocation. 

• Model validation over the last ten years 
shows reasonably good match between 
the predicted and the historical data with 
some discrepancy in forecasting high 
allocations of the years 2000/01. 
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