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EXTENDED ABSTRACT 

The Royal Australian Air Force (RAAF) conducts 
maritime surveillance operations in order to deter 
non-state threats such as terrorism or illegal 
fishing.  RAAF aircraft search various areas of 
ocean in order to classify as many ships as possible 
in the shortest possible time.  This resembles the 
traditional Travelling Salesman Problem (TSP) but 
with many interesting variations – the “cities” 
(ships) are moving, time windows and precedence 
constraints are present, a total route length limit is 
enforced and the position of ships is usually only 
discovered as the route is flown.  While the TSP 
itself is well-studied, these variations are not, 
particularly when grouped together as is the case 
with maritime surveillance. 

This problem was initially presented at the 2007 
Mathematics-in-Industry Study Group (MISG) in 
Wollongong, Australia to improve on a search 
method used by the Defence Science and 
Technology Organisation (DSTO) in modelling 
maritime surveillance.  The DSTO model assumes 
that the ships are stationary due to the speed 
discrepancy between search aircraft and ships.  
MISG delegates chose to explore the problem as 
an application of the TSP.  In this paper, analysis 
is undertaken that compares a nearest neighbour 
(NN) procedure (which best reflects that method 
used by aircrew) with three other techniques based 
on the more robust 2-opt method.   

The parameter space is very large for this problem 
and several simplifying assumptions are made.  In 
this paper, the Area of Interest (AI) size, aircraft 
speed and detection range is held constant, while 
ship speed and ship (target) numbers are varied. In 
total, 100 runs are generated for each case.   

Results indicate that the percentage of targets 
classified steadily increases to a maximum and 
then steadily decreases as target density increases, 

for all cases of ship speed and method used.  As 
target numbers increase, more targets are detected 
and classification rate increases.  This maximum is 
close to 100% if the ships are not moving, down to 
50% if all ships are travelling at 30 knots.  
Maximum flight time is the dominating constraint.  
At this threshold, there are too many targets to 
classify in the time available and the classification 
rate decreases.  

For the input data and cases considered here, using 
a NN technique to solve the maritime surveillance 
TSP is only reasonable for cases where the number 
of targets in the AI is small (eg, up to around 20) 
or when all ships are moving at very fast speeds.  
However, if the number of targets is beyond 
around 50, a solution method based on 2-opt 
generally gives results that are around 10 
percentage points better based on the percentage of 
targets classified for realistic operational scenarios.  
Using a 2-opt technique also produces more 
efficient searches for target numbers between 20-
100, with completion times up to an hour less that 
for NN.  A comparison of solution run times 
shows that NN is substantially faster, while the 2-
opt “stationary ships” method appears better suited 
to larger target numbers as it has the shortest 
computation time of the chosen 2-opt variants.   

Balancing the three Measures of Effectiveness of 
percentage of targets classified, mission time and 
computation time, for the cases considered, NN is 
found to be least suitable, and either the standard 
2-opt method or the 2-opt stationary ships variant 
appear to be the most suitable choice overall.   

These results suggest that the stationary ship 
assumption in the current model has validity.  
They also indicate an operational efficiency 
increase is achievable if on-board assistance 
incorporating a technique superior to NN (such as 
2-opt) is provided to aircrew.   
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1. INTRODUCTION 

Conducting maritime surveillance is an ongoing 
concern of the Australian Government and is a 
mandated role for the Australian Defence Force 
(ADF) under the 2000 Defence White Paper.  
Various platforms, particularly Royal Australian 
Air Force (RAAF) aircraft (such as AP-3C 
Orions), undertake maritime surveillance over 
Australia’s northern approaches on a regular basis.   

The aim in searching an Area of Interest (AI) is to 
find an optimal flight path for an aircraft such that 
it can classify the largest number of ships in the 
shortest possible time. This resembles the 
traditional and well-known Travelling Salesman 
Problem (TSP) in Operations Research (OR), 
where a “salesman” is required to find the shortest 
path that enables him to visit a number of cities 
once only and then return home.   

Various exact techniques and heuristics have been 
developed to solve the TSP (eg, Gutin and Punnen 
(2002)).  When applied to maritime surveillance 
however, there are interesting and complicated 
variations to consider.  For example, the "cities" 
(ships) are moving with random velocities (hence 
it is a moving-target TSP), not all ship locations 
may be known to the aircrew in advance (so it is 
an “on-line” version of the TSP) and the aircraft 
has a finite fuel load (meaning that there is a “time 
window” on the search).  Additionally, in this 
version the tours are “open” – the “salesman” 
(aircraft) does not have to return to the start 
position in the AI (rather, the aircraft will depart 
from and arrive at its home base). 

While the TSP itself is well-studied, the variations 
considered here have a relatively recent history by 
comparison and are generally studied individually.  
For example, Helvig et al. (2003) considered 
various instances of the moving-target TSP 
including the issue of re-supply against some 
specific cases.  Zhou et al. (2003) investigated 
moving cities and the addition/removal of cities 
and tested some evolutionary techniques against 
these cases.  Larsen et al. (2004) examined the 
problem of time windows in a dynamic TSP both 
with and without a priori information and analysed 
whether waiting at specified “idle” points was 
more beneficial than waiting at the “current” 
location for a location’s time window to open.  
Jiang et al. (2005) examined a situation applicable 
to maritime surveillance and tested two genetic 
algorithm (GA) techniques with different 
crossover methodologies against each other. 

A recent paper by Grob (2006) is the most relevant 
direct comparison to the problem considered here.  

He describes a model used to simulate a scenario 
similar to that considered here and compares a 
Nearest Neighbour (NN) technique against an “n-
k” heuristic (ie, consider a tour of edge length n 
and re-evaluate after k steps) for a standard case 
and with a ship prioritisation rule included.  
Similarities include the consideration of moving 
ships, a “cookie-cutter” radar assumption and the 
Measure of Effectiveness (MOE) of identifying 
targets.  However, there are also differences in the 
assumptions used.  Extra complexity considered 
here includes endurance limits to the aircraft and 
the inclusion of the on-line assumption.  While 
Grob (2006) mentions both of these without 
including results, he does consider extra 
complexity not considered here, such as variable 
aircraft altitude, variable ship speed and heading 
during the aircraft’s flight, and attaching priority 
scores to the ships according to ship type. 

This problem was initially presented at the 
Mathematics-in-Industry Study Group (MISG) 
held at the University of Wollongong in 
Wollongong, New South Wales, Australia from 5-
9 February 2007.  The aim in presenting the 
problem at the MISG was to seek assistance in the 
computer modelling of search techniques in 
maritime surveillance.  DSTO uses such modelling 
to conduct OR.  The current methodology 
employed in the model uses a simple Genetic 
Algorithm (GA) technique but assumes that the 
ships are stationary.  Delegates at the MISG chose 
to explore the problem as an application of the 
TSP.  Kilby et al. (2007) describe the outcomes 
from the MISG, and this paper extends the ideas 
generated and work conducted during that event.   

2. PROBLEM DESCRIPTION 

2.1. Scenario 

An indicative diagram of the scenario typical of 
maritime surveillance barrier patrols (Wagner et. 
al. (1999)) is given in Figure 1. The AI is 
represented as a square, although the AI shape is 
variable.  Ships are represented by small triangles 
and move with random velocities.  The aircraft 
radar detection range is indicated by the dashed 
circle.  Waypoints are denoted by solid small 
circles and the default flight path (the minimum 
distance) by solid lines joining the waypoints.   

Maritime surveillance requires classification (to 
the level of ship type) of all ships within the AI.  
The search spacing is pre-briefed and is based on 
the expected radar detection range for the 
particular ship type of interest in that scenario.  
The aircraft maintains a list of ship contacts or 
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targets (priority target list) that need to be flown 
towards to be classified.   

The aircraft must fly to targets not yet classified 
and will deviate from the default flight path to fly 
towards these.  The priority target list changes as 
tracks move in and out of radar detection range 
and as targets are classified by the aircraft. 

 

Figure 1: The maritime surveillance scenario 

2.2. Assumptions and Simplifications 

This problem has a large parameter space, so many 
assumptions have been made in order to simplify 
the problem in the first instance.  The following 
effects are ignored in this paper, but are expected 
to be addressed in later work: 

• Variation of aircraft altitude. 
• Variation of ship speed. 
• Impact of turning circles on tour length. 
• Target prioritisation. 
• Target clustering (eg, at fishing grounds). 
• Impact of a priori third-party information 

on target locations in AI (eg, from 
satellites or other aircraft). 

A simple “cookie-cutter” radar is used – if a ship is 
within radar detection (or classification) range, it is 
detected (or classified), else it is not.  In reality, 
ship detection (involving forming and maintaining 
a track) and classification (determining target type) 
are not simple tasks – eg, the ability to classify a 
target may be affected by sea states. 

2.3. Inputs 

There is a range of potential inputs.  They are: 

• Surveillance aircraft speeds (100-350 kn).  
Aircraft used range from rotary-wing to 
high-altitude unmanned aircraft. 

• Surveillance aircraft radar detection range 
(0-100 n mile).  This can vary depending 
on the environment and target type. 

• Surveillance aircraft classification range 
(0-20 n mile).  This can vary depending 
on sensor performance and environmental 
conditions for a particular mission. 

• AI size (100*100 to 300*300 n mile2).  
While a square shape is used here, the AI 
can be any shape within these limits. 

• Number of ships (0-1000 in real life).  
This can also vary according to seasonal 
factors and within a scenario as tracks are 
generated, or as they exit or enter the AI. 

• Maximum flight time (variable).  This is 
mainly of concern for crewed missions.  
Unmanned aircraft can fly for more than 
24 hours at a time. 

• Individual ship speed (0-30 kn).  Most 
ships encountered will generally be 
travelling at up to 10 kn. 

• Individual ship direction (0-360°). 
• Presence of additional information on 

ship disposition (eg, from satellites). 
• Waypoint position. 

In military aviation and marine navigation, 
nautical miles and knots are used as the default 
units for speed and distance rather than SI units.  
Given that this work has a Defence origin, these 
units will be used throughout.  The accepted 
abbreviations are n mile and kn respectively.  In 
terms of SI units, 1 n mile is equal to 1852 m and 1 
kn (ie, 1 n mile/hr) is equal to 0.514 ms-1. 

2.4. Constraints 

There are two primary constraints: 

1. The aircraft must remain inside the AI.   
2. The aircraft must visit waypoints in order. 

These are designed to keep the aircraft from 
straying too far from the search path.  The first one 
is a modelling constraint – in reality, aircrew can 
decide to chase a target outside the AI if it does not 
adversely affect the mission (eg, the aircraft will 
not run out of fuel in doing so). 

2.5. Measures of Effectiveness (MOEs) 

The MOEs are: 
• The percentage of targets classified. 
• The time taken for the AI to be traversed. 
• Solution run time. 

A challenge of this problem type is balancing 
MOEs.  One algorithm may classify every target 

Radar Detection
Range
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but take a week of flying time; another may follow 
the shortest path and classify nothing; both are 
impractical.  When modelling the mission, an 
algorithm may find the “perfect mix” of target 
classifications and flight time, but if it uses too 
much computational time it is also ineffective. 

3. SOLUTION METHOD 

The existing search technique used in the DSTO 
computational model is determined using a simple 
GA.  A single-swap crossover with no mutations is 
used.  The ships are assumed to be stationary, so 
the aircraft flies to intercept the next ship at its last 
known position.  These positions are only updated 
when an “event” occurs, such as the detection of a 
new target.  The validity of this assumption has not 
been tested.  

The current search technique used by aircrew is 
essentially a NN search, as no software is currently 
provided to assist on operations.  NN is considered 
effective in AIs with a low ship density.  However, 
being a greedy algorithm, it is mathematically sub-
optimal by nature.  It is expected that effectiveness 
will reduce in a higher-density environment. 

A simple alternative to NN is the 2-opt algorithm 
introduced by Croes (1958).  This technique 
removes two segments of an existing path and 
forms a new path with the remaining segments 
(thus involving a change of path direction down 
one of the segments).  If this path is shorter than 
the original, it is kept, else it is rejected.  The 
process repeats until the shortest path is found.  
The method called “2-opt” here also uses the Or-
opt method from Or (1976), where each tour 
segment of 5 consecutive visits is removed, and 
the cost of re-inserting it between every remaining 
pair of visits is calculated and replaced in the 
cheapest spot.  Each segment of 4, 3, 2, and then 1 
visit is then similarly tested. 

Since NN looks only at the next visit, it is not 
greatly affected by ship movement.  Because 2-opt 
plans a tour through all ships and the ships are 
moving, each 2-opt (and Or-opt) change requires a 
new intercept point to be calculated.  The standard 
2-opt version does this recalculation for every 
potential change.  This can be quite expensive, so a 
“stationary ships” variant of 2-opt used here 
effectively ignores the effect of ship movement, 
updating when an event occurs as in the current 
DSTO model.  The “jumping ships” variant of 2-
opt also used here lies between.  It calculates the 
best route treating the ships as stationary.  It then 
recalculates intercept points for the new order, and 
repeats until the tour converges.  If it does not 
converge after 10 iterations, the best one is kept. 

4. RESULTS AND ANALYSIS 

In this section, comparisons are made between the 
NN technique and the three 2-opt variants 
described previously.  The aircraft follows a path 
indicated by the diagram in Figure 1.  As well as 
the constraints, an additional heuristic is included 
that ensures that the aircraft does not chase ships 
too far from its current segment if it determines 
that it will catch it at a later stage of the journey.   

4.1. Input Values 

The constant values used in the model are: 

• AI size: 300 * 300 n mile2 
• Aircraft speed: 300 kn 
• Detection range: 50 n mile 
• Classification range: 0 n mile (so the 

aircraft must fly up to a ship to classify it) 
• Maximum time permitted in AI: 8 hr 

The parameters that are varied in the results are: 

• Solution method: NN, 2-opt, 2-opt 
stationary ships, 2-opt jumping ships 

• Ship speed: 0, 5, 10, 20, 30 kn 
• Number of targets in AI: seven to nine 

values ranging from 10 to 200  

For each solution method, average values are taken 
across 100 datasets, so the number of cases run for 
each method is 5*(7 to 9)*100 = (3500 to 4500).  
Results are presented using actual numbers rather 
than in dimensionless terms (eg, ratio of aircraft 
speed to ship speed), as preliminary work indicates 
that the results do not scale (eg, higher ship speeds 
mean more ships enter the AI during the mission, 
thus affecting the percentage of classified targets). 

4.2. Comparing Ship Speeds 

Results for different ship speeds using 2-opt
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Figure 2. Classification rates using 2-opt for 
various ship speeds 
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Figure 2 shows the results across a range of target 
speeds for the 2-opt method.  Slower ship speeds 
result in more classifications, with a maximum for 
stationary ships of almost 100%, decreasing 
through to the maximum for ships travelling at 30 
kn of around 50%.  For all ship speeds, the results 
show a steady increase in classifications to a local 
maximum as the numbers of targets in the AI 
increases, followed by a steady decrease. Error 
bars indicating the 95% confidence interval about 
the mean using a t-test are also shown.  The largest 
variations are when ship numbers are small and 
ship speed is large, when variability between 
scenarios is likely to be greatest. 

The initial increase can be explained in terms of 
detection ranges and ship density.  If the number of 
targets is small, the aircraft flies through the AI 
rapidly and will finish well inside the maximum 
flight time of 8 hours.  If only a handful of ships is 
present in the AI, the flight time will be close to 
the “default” flight time of 3 hours, as there will be 
little variation from the flight path to chase ships.  
If ship speed is large, the aircraft is more likely to 
miss ships that enter the AI after it has completed 
searching a particular area.  As the number (and 
thus density) of targets increases, the aircraft is 
likely to detect (and classify) more targets.  In turn, 
it will be “drawn” towards other ships which it 
might otherwise have missed if the ship density 
was lower.  An increased detection range leads to 
more detections and the likelihood of more 
classifications (Mercer et al. (2007)).   

The final decrease can be explained in terms of the 
available flight time.  The local maximum in 
classifications is reached around the time that the 
aircraft flight time approaches the limit of 8 hours.  
Beyond that point, the number of targets is so large 
that it becomes impossible for the aircraft to 
classify them all in the available time.   

Average flight time vs number of targets using 2-opt

0

1

2

3

4

5

6

7

8

0 50 100 150 200
number of targets in AI

av
er

ag
e 

fli
gh

t t
im

e 
in

 A
I (

hr
)

speed = 0 kn

speed = 5 kn
speed = 10 kn

speed = 20 kn
speed = 30 kn

 

Figure 3. Flight time in AI versus number of 
targets in AI for 2-opt method 

Figure 3 shows how mission flight time varies 
with number of targets for the 2-opt results and 
shows the link with maximum classification range 
in Figure 2.  Maximum flight time is reached at 
around 100 targets for slower ship speeds, 
increasing to around 150 for speeds of 30 kn. 

4.3. Comparing Solution Techniques 

Comparison of methods - speed 0 kn
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Figure 4. Comparison of NN and 2-opt techniques 
for stationary ships 

Figure 4 shows a comparison between NN and the 
2-opt methods for the case where all ships are 
stationary.  If the number of ships in the AI is up to 
50 targets, NN compares well with the 2-opt 
techniques.  Between 50 and 100 targets, however, 
the difference in percentage of targets classified 
opens up to around 10 percentage points.  Beyond 
100 targets, the impact of maximum flight time 
begins, so the classification rate falls for all 
methods, but the difference of around 10 is 
maintained.  The three techniques based on 2-opt 
provide almost identical results.  The 95% 
confidence interval results show greatest 
variability in the instances where ship numbers are 
lowest, becoming insignificant when maximum 
flight time is reached. 

Comparison of techniques - speed 5 kn
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Figure 5. Comparison of NN and 2-opt techniques 
for ship speed 5 kn 
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Figure 5 shows the results when all ships are 
travelling at 5 kn, which may be deemed as the 
most “typical” real-life operational case.  The 
results are similar to those shown in Figure 4, with 
the gap between the NN and 2-opt techniques 
again emerging at around 50 targets. The gap 
widens to around 15 percentage points in the 
percentage of targets classified and remains there 
beyond the maximum time threshold at around 100 
targets until the 200 target maximum.  The results 
for the three 2-opt techniques are identical until 
200 targets, when the stationary ships method is 
slightly worse.  The 95% confidence intervals are 
±3 percentage points from the mean for lower 
numbers of targets, reducing to around ±1 at 
higher numbers. 

Comparison of techniques - speed 5 kn
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Figure 6. Comparison of mission time for various 
techniques, ship speed 5 kn 

Figure 6 shows the comparison of mission times 
for the four solution techniques.  An interesting 
observation is that while NN gives around the 
same percentage of classifications as 2-opt for up 
to 50 targets, this graph shows that it is less 
efficient in doing so, taking over an hour longer.  
The results for the stationary ship case are similar. 

Comparison of techniques - speed 10 kn
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Figure 7. Comparison of NN and 2-opt techniques 
for ship speed 10 kn 

The results for percentage of ships classified for 
ship speeds of 10 kn is shown in Figure 7.  
Although NN compares well with 2-opt up to 
around 75 targets, the 2-opt methods are superior 
beyond this number, with the standard 2-opt 
technique again slightly better than the others.  The 
mission times at lower target numbers are similar 
to those for the 5 kn case. 

Results for the cases where ship speeds are 20 kn 
and 30 kn are not shown, as these are the least 
realistic operationally.  For the 20 kn case, it is 
noted that while 2-opt is still superior to NN, 
particularly when the number of targets exceeds 
100, this advantage is reduced.  For the 30 kn case, 
all methods provide almost identical results.  The 
rapidly changing surface picture reduces the 
advantages of the 2-opt methods in these cases.  In 
mission time, there is little difference between NN 
and 2-opt stationary ships in the 30 kn case, as the 
event-based nature of this 2-opt method struggles 
in the highly dynamic environment. 

Averaged computation times for different methods
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Figure 8. Comparison of computation time for 
different methods 

The final graph in Figure 8 shows the run time for 
each method averaged over all speeds.  Beyond 75 
targets, the differences become apparent.  As 
expected, NN is by far the quickest, followed by 
the 2-opt stationary ships method (which does not 
calculate the “moving” intercept point) and the 2-
opt method (which does).  The 2-opt jumping ships 
method is significantly worse than any other (due 
to its use of iteration to find the best route). 

5. SUMMARY AND CONCLUSIONS 

For the input data and cases considered here, using 
a NN technique to solve the maritime surveillance 
TSP is only reasonable for cases where the number 
of targets in the AI is small (eg, up to around 20) 
or when all ships are moving at very fast speeds.  
Otherwise, using a solution method based on 2-opt 
gives more efficient searches for between 20-100 
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targets, and better results (by around 10 percentage 
points) for the percentage of targets classified for 
beyond 50-75 targets.  The 2-opt stationary ships 
method appears better suited to larger target 
numbers as it has the shortest computation time of 
the variants, followed by 2-opt and the 
significantly worse 2-opt jumping ships method.  
Combining these results, either the standard 2-opt 
or 2-opt stationary ships method is most suitable. 

This paper has only presented a necessarily limited 
set of results for particular cases.  Variations in 
detection ranges, maximum flight times and other 
parameters may yield different results.  Future 
work will include a fuller exploration of the 
parameter space, progressively relaxing the 
assumptions and simplifications stated earlier.  
Planned examples are a study of the impact of 
aircraft turning circles and varying classification 
rates (Mercer et al. (2007)) on the various solution 
methods, and an analysis of “budgeting” criteria 
that force an aircraft to stay on schedule to 
complete the mission in the required time.   

The initial implications of these results for the 
DSTO model is that using a “stationary ships” 
assumption may be acceptable.  When considering 
the percentage of targets classified, the 2-opt 
stationary ships method gives results that are 
virtually identical to 2-opt through to 100 targets 
and are only 2-3% worse for higher target 
numbers.  Computationally, it is superior to 2-opt 
at higher target numbers.  The next step in this 
work will be to do a direct comparison between the 
GA method currently used in the model and the 
NN and 2-opt methods considered here. 

Preliminary conclusions for maritime surveillance 
operations may also be drawn from these results.  
The generally superior results of 2-opt over NN for 
both target classification and mission time suggest 
on-board software to assist aircrew in conducting 
their search may be worth pursuing.  However, any 
benefits (eg, in fuel savings, higher target 
classifications) would have to be weighed against 
the potential costs (eg, of integrating the radar 
picture with on-board software for real-time 
updates on all maritime patrol aircraft).  
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