
Towards a Software Architecture to Facilitate Multiple
Runs of Simulation Models

Perraud, J.-M. 1, 3, G. Kuczera 2, 3 and R.J. Bridgart 1,3

1 Commonwealth Scientific and Industrial Research Organisation, Land and Water, Australian Capital
Territory

2 School of Engineering, University of Newcastle, New South Wales
3 eWater Cooperative Research Centre
Email: jean-michel.perraud@csiro.au

Keywords: Monte-Carlo simulations, uncertainty analysis, modelling engine

EXTENDED ABSTRACT

A variety of techniques in environmental
modelling require multiple runs of simulation
models. These include for instance uncertainty and
sensitivity analysis, using stochastically generated
replicate climate inputs, calibration and
optimisation, and straight batch running of
multiple scenarios. These techniques are in theory
applicable to the vast majority of spatial and
temporal simulation models in use, and fairly
generic tools exist that implement them. Yet the
overhead associated with applying these tools to
the simulation model at hand is often still
significant in practice, with limited prospect for
economy of scale.

This paper illustrates the architectural
considerations to have in order to facilitate these
techniques from the ground up in modelling
frameworks, while allowing the use of existing
analysis tools. One of the aforementioned
techniques, uncertainty analysis, is presented and
is used as a driver to determine an object oriented
architecture for modelling engines, suitable to
underpin uncertainty analysis.

First, a general conceptual framework for
uncertainty estimation of simulation models driven
by point time series is presented. This framework
does not require knowing the inner workings of the
model, and allows for a generalised description of

outputs as a random vector with a probability
distribution. To illustrate the importance of
accounting for uncertainty in decision support, this
framework is applied to a simple example of an
urban water supply with one reservoir, embodied
in a temporal model running at an annual time
scale. It demonstrates that the reliability of the
water supply is sensitive to the value of the mean
annual streamflow, and that the uncertainty of this
parameter must be accounted for in the modelling
process to avoid an excessively optimistic
reliability assessment.

The second part of the paper takes this general
uncertainty framework and the urban water supply
example as a use case. They are analysed, and a
summarized design process is presented. The aim
of the process is to derive, from the mathematical
description of the conceptual framework, an object
oriented software architecture for organising
simulation models and modelling engines, such
that they are more amenable to being subject to
uncertainty analysis. To foster a layered design,
the design process purposely makes no assumption
about the details of how model runs are
distributed. This paper concludes with an outline
of the computing aspects and the current thinking
about how multiple model runs can be parallelised
and distributed with different distributed
computing tools.

846

1. INTRODUCTION

Mathematical simulation models play a pivotal
role in decision support for water resources
planning and operation. These models need to
simulate temporal and spatial processes that are
complex, often insufficiently understood and
subject to stochastic climate forcing. A defining
feature of these models is uncertainty. Typically
complexity is accommodated by using conceptual
models that seek to simulate the dominant
dynamics of the system. As a result, such models
have parameters that require calibration and
produce predictions that are subject to considerable
uncertainty. Because future climate ranging from
short to long time scales cannot be predicted with
confidence, it is necessary to use long historic
records or preferably long records generated by
stochastic models to evaluate the behaviour of the
water resource system. These uncertainties
complicate matters because metrics of system
performance will themselves be random variables.
Moreover, these random variables may change
over time as a result of underlying changes in
climate forcing and demand and through
interventions by managers.

Modelling tools and frameworks must handle the
uncertainties that are inherent in water resource
planning and operation, to provide credible
decision support. Fundamental to this challenge is
the capability to supervise multiple runs where a
run is defined as a simulation conducted over some
interval of time. This capability is needed in
calibration, evaluation of system performance,
sensitivity analysis and in scenario evaluation.

This paper reports on the current state of the
thinking in activities undertaken in the eWater
Cooperative Research Centre
(www.ewatercrc.com.au), primarily to facilitate
the development of modelling systems able to
support or facilitate uncertainty analysis from the
ground up. It first describes a general conceptual
framework for evaluating system performance, the
forward problem, and calibration, the inverse
problem. A simple case study of a water supply at
an annual time scale is presented. Then, this
framework is analysed in order to derive suitable
software architecture. While this analysis is
applied to uncertainty analysis in this paper, it is
hoped that a similar process applied to other
modelling techniques requiring multiple model
runs would yield similar software architectures,
thus allowing for a common approach to better
handle operationally multiple model runs.

2. A GENERAL UNCERTAINTY
FRAMEWORK BASED ON MULTIPLE
RUNS

The starting point for a framework capable of
handling the various forms of uncertainty inherent
in water resource planning and operation is a
careful, robust definition of the system and its
attendant uncertainties. In general, the properties
of a simulation model can be categorised as:

• Forcing (inputs): Variables that drive or
force the system to respond and may
change at every time step.

• Parameters. Variables that characterize
processes within a model and that
typically do not vary during a run of the
system. However, if the parameters are
subject to uncertainty, they may vary
between runs.

• States: Variables of the model that are set
by the model during a time step. Some
may affect the model at a given
simulation time by their antecedent
conditions in previous time steps, and
may thus need to be set at the start of a
simulation run, sharing some
characteristics of an input variable.

• Outputs. The distinction between a state
variable and an output is somewhat
arbitrary: outputs are the state variables of
prime interest in a given modelling
context.

In this paper we limit the scope of our analysis to
simulation models that simulate time series of one
or more output variables at discrete times and
discrete spatial locations. This class of model is
very general and is likely to encompass most of the
eWater model applications, and a priori the future
extension to other types of simulation models is
not excluded.

Such models can be reduced to the canonical form

zt = f(xt) (1)

where f() is the vector-valued function which
represents the simulation model that maps the
input p-vector xt into the q-output vector zt at time
t.

It is important to note that there is no need to know
the inner workings of the simulation model – all
that is required is the capability to receive the
output zt on submission of the input xt. The key
insight stems from the following observation: If
one or more elements of the input vector xt are
random variables, then the output time series zt

847

will be a random vector with a probability
distribution.

The object of the exercise is to infer the probability
distribution of zt. The input xt consists of forcing,
state and parameter values which have meaning
within the context of the simulation model.
However, from the perspective of uncertainty
propagation, this distinction is unimportant. The
only requirement is that xt be partitioned into
subvectors or groups where all the elements within
the group are sampled at the same time. More
formally, partition xt into m groups or subvectors
{xjt, j=1,..,m}.

During the simulation run, sampling of the
variables within the groups is conducted at defined
times defined by the n-vector of sampling times t =
{ti, i=1,..,n} where ti is the actual time a random
sample takes place. To retain maximum flexibility
it is important to allow groups to be sampled at
different times. This can be accomplished by
defining a group sampling indicator function

⎩
⎨
⎧

=
otherwise0

tatsampledarevariablesjgroupif1
i)(j,I i

s (2)

Once it is known that group j is to be sampled at
time ti, the vector

ijtx is randomly sampled from
the probability model associated with the jth group;
that is,

)x,..,x ,x,..,x|(xpx
ii1-i1i t1,j-t1ttjjt ← (3)

The random variable
ijtx may be conditionally

dependent on input vectors sampled at previous
times

1-i1 tt x,..,x and on inputs sampled in earlier

groups at the current time,
ii t1,-jt1 x,..,x . This

conditional dependence offers a rich range of
possibilities.

2.1. Forward Problem

In the forward problem, the group probability
distributions are known. The objective is to derive
the probability distribution of zt associated with the
system (1). The Monte Carlo method offers an
intuitive and general approach for solving this
problem. It involves two steps:

1. Random sampling from the probability models
for each group at each time step;

2. Replication of the time series a sufficient
number of times to enable meaningful

estimation of the probability distributions of
the outputs zt, t = {ti, i=1,..,n}.

It is noted that Monte Carlo simulation only yields
results of acceptable accuracy when an adequate
number of runs are sampled. This is because
accuracy, as measured by the standard error, is
inversely proportional to the square root of the
number of runs. This is the Achilles heel of the
Monte Carlo method and needs careful handling to
ensure acceptable computational times.

2.2. Inverse Problem or Calibration

In the forward problem, multiple runs are
fundamental to the Monte Carlo method. The same
applies to the inverse problem which involves
calibrating the model.

In calibration the inputs and outputs are observed
(usually with error), while the parameters are
unknown and need to be inferred. The objective of
the calibration is to identify parameter values, or
more generally distributions, which are most
consistent with the observed data.

There are several general approaches to
accomplishing this. One approach seeks to
optimize an objective function such as in least
squares estimation. This involves conducting a
search involving many trial parameters. For each
trial parameter set, the model is run using observed
inputs and the simulated outputs are matched
against observed outputs. In the Bayesian approach
the posterior distribution of the parameters is
reconstructed typically using Markov Chain Monte
Carlo methods [see Gelman et al., 1995]. This
involves many runs with different parameters.

2.3. An example: accounting for
uncertainty in performance evaluation

To illustrate the importance of full accounting of
uncertainty in decision support, we consider a
simple example involving drought security
assessment for an urban water supply system. The
system, illustrated in Figure 2, consists of a single
reservoir with capacity 1000 units receiving an
annual streamflow which is uncertain and is
described by a normal distribution with mean mq
and standard deviation 200. We shall use the
shorthand notation N(μ, σ2) to denote a normal
distribution with mean μ and standard deviation σ.
The reservoir supplies an urban zone with known
demand of 500 units. The planner wishes to assess
the probability of the reservoir running out of
water in any year – this will be denoted by
P(empty).

848

There are two sources of uncertainty: Future
annual streamflow cannot be predicted using
current forecasting techniques and, as a result, its
variability is best described by a probability
model. The second source arises from uncertainty
in the mean of the annual streamflow, mq. Due to
short historic flow records, the true value of mq is
not known. From a statistical analysis of the data,
suppose the uncertainty about mq can be
summarized by the normal distribution N(μm, σm

2).
As a result of this uncertainty in mq, there is no
single value of P(empty). Rather P(empty) itself is
a random variable with a mean and standard
deviation.

The framework described in Section 2 is used to
evaluate the distribution of P(empty). With
reference to Section 2, the input vector xt has two
groups:

• The group 1 random variable mq is sampled at

the start of the simulation run according to

mq ← N(μm, σm
2) (4)

• Τhe group 2 random variable, the annual

streamflow q, is sampled each year t

according to

qt ← N(mq, 2002) (5)

Note that qt is conditionally dependent on the
mean streamflow mq which is sampled at the
start of the run.

 Streamflow into
reservoir N(mq,2002)

500

Reservoir with capacity 1000

Spill Urban
demand zone

Figure 1 Schematic of reservoir system

Suppose mq is 800. In Figure 3a the mean and
standard deviation of P(empty) are plotted as a
function of σm. One observes that both the mean
and standard deviation of P(empty) are less than
0.001 until σm exceeds 100.

In stark contrast, Figure 3b shows that when mq
equals 600, the mean and standard deviation of
P(empty) grow alarmingly with σm. Even when σm
equals 50, the probability of zero water supply to
the urban area is of the order of a few percent and
would render the system unacceptable and in need
of urgent attention.

If the uncertainty in the parameter mq had been
ignored, an excessively optimistic, indeed
dangerous, assessment of drought security would
have resulted. This highlights the importance of a
modelling framework that naturally supports the
characterization and propagation of uncertainty.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200

Std dev of mean streamflow

P(
em

pt
y)

Mean
Std dev

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200

Std dev of mean streamflow

P(
em

pt
y)

Mean
Std dev

(a) Expected value for mq= 800. (b) Expected value for mq= 600.

Figure 2. Mean and standard deviation of P(empty) as a function of the standard deviation of mq.

849

3. A SOFTWARE PATTERN FOR THE
SUPERVISION OF MULTIPLE RUNS

3.1. Design goals

The paper is part of an effort to design an object
oriented software architecture that can support
techniques such as uncertainty analysis, sensitivity
analysis and model calibration. The main purpose
of this architecture is to suggest software patterns
to organise modelling engines such that they are
more amenable to batch running in a broad sense.
As a first step this present section mostly analyses
the water supply case study and the generalised
uncertainty framework conceptual previously
described. It then proposes a software architecture,
largely focussing on identifying entities in a single
simulation run such that multiple runs and
alternate model inputs and outputs are facilitated.

Other goals are:

• The pattern proposed should be
decoupled from the specific means of
distributed computing. As such the
question of whether the runs occur on a
single machine, a cluster or a GRID
infrastructure is left out of the scope of
the present section.

• The architectural elements should allow
for the use of external tools and libraries
to instrument the model analysed, for
instance the Data Uncertainty Engine
(Brown et al. 2006) or PEST (Doherty
2002). The eWater CRC also plans to
produce a set of probability models suited
to the water management domain.

• The architectural elements should not be
coupled to a particular modelling
framework, platform or language.
However it is acknowledged that previous
work based on TIME (Rahman 2003)
likely has an implicit influence on the
present design process, as a proof of
concept implementation is currently based
on this modelling environment.

3.2. Uncertainty analysis as a use case

Based on the presentation of a general uncertainty
framework in the previous section, the following
observations are made:

1. From a software viewpoint, variables that are
inputs or parameters are properties that can be
set. Conversely outputs and most state
variables are properties that are usually read.
State variables whose antecedent conditions
matter are an exception, since they can be

considered as an input or an output, but need a
differentiated treatment for the purpose of
setting or getting values only when considered
at different event times in the system: start of
run, before a time step, after a time step.

2. There is no need to know the inner workings
of the simulation model, at least not explicitly.
The model needs not know where its inputs
are coming from (resp. where its outputs are
feeding into). In particular temporal
simulation models need not know upfront in a
simulation run about the whole input time
series. This is actually paramount to allowing
for conditional probability density functions
(PDFs) feeding into the model, e.g. an input
value conditional on a state value of the model
at the previous time step(s).

3. Each simulation run is a priori independent of
others. If there were a dependency it would be
indirect and implicit, by way of configuring
the PDFs attached to the inputs in subsequent
runs.

The process in the uncertainty analysis of the water
supply case study can be represented via a
simplified sequence diagram (Figure 3). The
application, here referred to as the “uncertainty
analyser”, delegates the handling of running
multiple simulations to a multi-run supervisor. The
application needs to pass only the high-level
properties of the analysis to the supervisor, e.g. the
uncertainty of the mean and standard deviations of
the input PDFs for the annual reservoir inflow,
while the supervisor initialises those PDFs for each
simulation run. This supervisor may run replicates
serially, in parallel, or a mix thereof, based on
conditional dependencies between runs and the
availability of multiple processors. The water
supply example does not introduce dependencies
between runs, but the general uncertainty
framework and inverse problems can do so. Those
dependencies can be difficult to deal with, but
mostly from a software implementation viewpoint;
all analyses with dependencies between runs
conceptually reduce to a non-cyclic graph.

There are three entities in charge of each
simulation run: the simulation model itself (the
core algorithms for a time step), a model runner (in
charge of stepping the simulation through time),
and a “PropertiesHandler” responsible for getting
and setting the properties of the model. Note that
figure 3 focuses on identifying the generic events
and associated actions for each simulation run.
Clearly identifying this PropertiesHandler as a
separate entity is central to facilitating multiple
simulation runs. It allows for transparently using
alternate sources of (resp. destination for) data, a
need highlighted by observation (2) above.

850

Uncertainty Analyser Multi-Run Supervisor

Initialise

Model Runner

[Results]

Stop

Model PropertiesHandler

Start
Reset

OnAfterReset

OnBeforeTimeStep

OnAfterTimeStep

OnCompleted
OnCompleted

GetResults

Get number of steps in simulation run
where reservoir was empty

Initialise

Supervisor distributes
replicate runs
(Serial or parallel)

Loop over
annual time series

RunTimeStep

After reset: sample PDF to get the
mean of the annual streamflow, and
sample PDF to set initial reservoir level

Before time step: sample PDF to set
annual reservoir inflow of model

After time step: sample reservoir
level. Increment counter if empty

Calculate overall P(Empty)

[Results]

On initialise, set up PDF representing
the uncertainty of the mean annual inflow

Note: Italics denote events/function pointers defined on the sender

Figure 3: Simplified sequence diagram for the uncertainty analysis of the water supply system.

Figure 4: Simplified static structure for a multi-run architecture

Using a pattern with these three entities for the
core modelling engine, one can easily scale it up,
typically from a single simulation run on a set of
observed climatic input time series, to using one or
more PropertiesHandler with alternate back-end
systems for setting or getting the model properties,
e.g. random number generators from an external
probability model or sets of stochastically
generated time series.

3.3. An architectural pattern to facilitate
multiple model runs

From the sequence diagram in Figure 3, a simple
static structure can be derived as presented in
Figure 4. This is an abstract static structure, in the
sense that it is a generalisation inferred from the
water supply use case dealt with so far.

The part of the pattern that deals with one
simulation run comprises IModelRunner, IModel,

IPropertyGetter and IPropertySetter, the last two
composing “PropertiesHandler”, setting or getting
the model variables at appropriate times in the
simulation. Many recent modelling engines could
be abstracted as more or less following this
pattern. One example can be found in (Perraud et
al. 2005) to “play” (resp. “record”) time series to
(resp. from) a catchment modelling engine, using
software reflection to decouple the model from the
time series. OpenMI (Gisberg et al. 2005) could
also conceivably be used to handle the exchanges
of information between IModel, IPropertyGetter
and IPropertySetter, although the “pull” paradigm
in OpenMI may impose specific arrangements to
the sequence of those exchanges.

While the abstract structure is very sparse, we infer
that a wide array of techniques requiring multiple
simulation runs can be cast to follow this pattern.
A key aspect is the high level of abstraction of
IPropertyGetter and IPropertySetter. The pattern
makes no assumptions whatsoever as to the nature

851

of their back-end data (time series, random number
generators, threshold recorders), nor the type of the
model properties dealt with (parameters, inputs,
etc.)

Though it can not be discussed in details in this
paper, the entity dealing with the effective
distribution of simulation runs (ITaskDistribution)
is essential. How much flexibility it can achieve an
important indicator of how operational the
proposed system architecture can be. The
following section gives initial elements of
reflection on this topic, currently explored.

4. COMPUTING ASPECTS

Monte-Carlo based techniques, such as the one
described above, are inherently computationally
intensive. To handle this, strategies focus on the
parallelisation of work and the utilisation of
computer hardware beyond the single CPU.
Specific implementations can vary in scope and
complexity, ranging from multithreading, designed
to take advantage of the new range of multi-core
processors, to parallel architectures designed to
utilise computational grids and clusters. The types
of problems explored so far for use using the
multi-run architecture are largely readily
parallelisable. This is advantageous, in that
minimal design changes tend to need to be made in
order to harness the potentially significant gains
afforded when using a computational grid. The
example above pertaining to uncertainty evaluation
is a prime example where multiple independent
tasks could be derived and the workload shared
across multiple machines.

Conceptually, many distribution frameworks
operate on very similar principles. Different
frameworks may operate on differing levels of
parallelisation, ranging from coarse-grain systems
that define tasks at the application level, to fine-
grain systems that allow for tasks definition at the
code level. Both approaches have their strengths
and weaknesses but share a common need for the
computational task to be expressed appropriately.
A key task in this endeavour is to find a way to
translate each replicate simulation run, as
described in previous sections, in a form suitable
for alternate distribution frameworks.

5. CONCLUSION

This paper presents a general uncertainty
framework for mathematical simulation models,
which entails running a large number of simulation
runs. A case study of a water supply system
illustrates the critical importance of taking
uncertainty into account in decision support. This

uncertainty framework and the case study are then
analysed to determine the key desirable
characteristics of an object-oriented architecture
for the modelling engine, such that this modelling
engine is more amenable to be run repeatedly on
replicate input data sets. This paper is a first step in
a process aiming to determine a consistent
software approach to support a range of model
analysis techniques requiring multiple model runs.
It is hoped that a common conceptualisation will
help decoupling the problem formulation from the
distribution of computing task. This way different
distributed computing platforms can be used for a
given analysis technique requiring multiple
simulation runs.

6. REFERENCES

Brown, J. D. and G. B. M. Heuvelink (2006) The
Data Uncertainty Engine (DUE): A
software tool for assessing and simulating
uncertain environmental variables,
Computers and Geosciences, (33), 172-190

Doherty, J. (2002), PEST, Model-independent
parameter estimation, fourth edition (2002),
User manual, Watermark Numerical
Computing, pp. 279

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin,
D.B.(1995). Bayesian data analysis,
Chapman and Hall.

Gijsbers, P.J.A. and J.B..Gregersen (2005),
OpenMI A glue for model integration. In
Zerger, A. and Argent, R.M. (eds)
MODSIM 2005 International Congress on
Modelling and Simulation. Modelling and
Simulation Society of Australia and New
Zealand, December 2005, pp. 648-654.
ISBN: 0-9758400-2-9

Perraud, J.-M. , S. P. Seaton, J. M. Rahman, G. P.
Davis, R. M. Argent and G. D. Podger
(2005) The architecture of the E2 catchment
modelling framework. In Zerger, A. and
Argent, R.M. (eds) MODSIM 2005
International Congress on Modelling and
Simulation. Modelling and Simulation
Society of Australia and New Zealand,
December 2005, pp. 690-696. ISBN: 0-
9758400-2-9

Rahman, J.M., S.P. Seaton, J-M. Perraud, H.
Hotham, D.I. Verrelli and J.R. Coleman,
(2003), It’s TIME for a New Environmental
Modelling Framework, MODSIM 2003, pp.
1727-1732

852

