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EXTENDED ABSTRACT 

A variety of techniques in environmental 
modelling require multiple runs of simulation 
models. These include for instance uncertainty and 
sensitivity analysis, using stochastically generated 
replicate climate inputs, calibration and 
optimisation, and straight batch running of 
multiple scenarios. These techniques are in theory 
applicable to the vast majority of spatial and 
temporal simulation models in use, and fairly 
generic tools exist that implement them. Yet the 
overhead associated with applying these tools to 
the simulation model at hand is often still 
significant in practice, with limited prospect for 
economy of scale. 

This paper illustrates the architectural 
considerations to have in order to facilitate these 
techniques from the ground up in modelling 
frameworks, while allowing the use of existing 
analysis tools. One of the aforementioned 
techniques, uncertainty analysis, is presented and 
is used as a driver to determine an object oriented 
architecture for modelling engines, suitable to 
underpin uncertainty analysis. 

First, a general conceptual framework for 
uncertainty estimation of simulation models driven 
by point time series is presented. This framework 
does not require knowing the inner workings of the 
model, and allows for a generalised description of 

outputs as a random vector with a probability 
distribution. To illustrate the importance of 
accounting for uncertainty in decision support, this 
framework is applied to a simple example of an 
urban water supply with one reservoir, embodied 
in a temporal model running at an annual time 
scale. It demonstrates that the reliability of the 
water supply is sensitive to the value of the mean 
annual streamflow, and that the uncertainty of this 
parameter must be accounted for in the modelling 
process to avoid an excessively optimistic 
reliability assessment. 

The second part of the paper takes this general 
uncertainty framework and the urban water supply 
example as a use case. They are analysed, and a 
summarized design process is presented. The aim 
of the process is to derive, from the mathematical 
description of the conceptual framework, an object 
oriented software architecture for organising 
simulation models and modelling engines, such 
that they are more amenable to being subject to 
uncertainty analysis. To foster a layered design, 
the design process purposely makes no assumption 
about the details of how model runs are 
distributed. This paper concludes with an outline 
of the computing aspects and the current thinking 
about how multiple model runs can be parallelised 
and distributed with different distributed 
computing tools. 
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1. INTRODUCTION 

Mathematical simulation models play a pivotal 
role in decision support for water resources 
planning and operation. These models need to 
simulate temporal and spatial processes that are 
complex, often insufficiently understood and 
subject to stochastic climate forcing. A defining 
feature of these models is uncertainty. Typically 
complexity is accommodated by using conceptual 
models that seek to simulate the dominant 
dynamics of the system. As a result, such models 
have parameters that require calibration and 
produce predictions that are subject to considerable 
uncertainty. Because future climate ranging from 
short to long time scales cannot be predicted with 
confidence, it is necessary to use long historic 
records or preferably long records generated by 
stochastic models to evaluate the behaviour of the 
water resource system. These uncertainties 
complicate matters because metrics of system 
performance will themselves be random variables. 
Moreover, these random variables may change 
over time as a result of underlying changes in 
climate forcing and demand and through 
interventions by managers. 

Modelling tools and frameworks must handle the 
uncertainties that are inherent in water resource 
planning and operation, to provide credible 
decision support. Fundamental to this challenge is 
the capability to supervise multiple runs where a 
run is defined as a simulation conducted over some 
interval of time. This capability is needed in 
calibration, evaluation of system performance, 
sensitivity analysis and in scenario evaluation.  

This paper reports on the current state of the 
thinking in activities undertaken in the eWater 
Cooperative Research Centre 
(www.ewatercrc.com.au), primarily to facilitate 
the development of modelling systems able to 
support or facilitate uncertainty analysis from the 
ground up. It first describes a general conceptual 
framework for evaluating system performance, the 
forward problem, and calibration, the inverse 
problem. A simple case study of a water supply at 
an annual time scale is presented. Then, this 
framework is analysed in order to derive suitable 
software architecture. While this analysis is 
applied to uncertainty analysis in this paper, it is 
hoped that a similar process applied to other 
modelling techniques requiring multiple model 
runs would yield similar software architectures, 
thus allowing for a common approach to better 
handle operationally multiple model runs. 

2. A GENERAL UNCERTAINTY 
FRAMEWORK BASED ON MULTIPLE 
RUNS 

The starting point for a framework capable of 
handling the various forms of uncertainty inherent 
in water resource planning and operation is a 
careful, robust definition of the system and its 
attendant uncertainties. In general, the properties 
of a simulation model can be categorised as: 

• Forcing (inputs): Variables that drive or 
force the system to respond and may 
change at every time step. 

• Parameters. Variables that characterize 
processes within a model and that 
typically do not vary during a run of the 
system. However, if the parameters are 
subject to uncertainty, they may vary 
between runs.  

• States: Variables of the model that are set 
by the model during a time step. Some 
may affect the model at a given 
simulation time by their antecedent 
conditions in previous time steps, and 
may thus need to be set at the start of a 
simulation run, sharing some 
characteristics of an input variable. 

• Outputs. The distinction between a state 
variable and an output is somewhat 
arbitrary: outputs are the state variables of 
prime interest in a given modelling 
context. 

In this paper we limit the scope of our analysis to 
simulation models that simulate time series of one 
or more output variables at discrete times and 
discrete spatial locations. This class of model is 
very general and is likely to encompass most of the 
eWater model applications, and a priori the future 
extension to other types of simulation models is 
not excluded. 

Such models can be reduced to the canonical form 

zt = f(xt)  (1) 

where f() is the vector-valued function which 
represents the simulation model that maps the 
input p-vector xt into the q-output vector zt at time 
t.  

It is important to note that there is no need to know 
the inner workings of the simulation model – all 
that is required is the capability to receive the 
output zt on submission of the input xt. The key 
insight stems from the following observation: If 
one or more elements of the input vector xt are 
random variables, then the output time series zt 
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will be a random vector with a probability 
distribution.  

The object of the exercise is to infer the probability 
distribution of zt. The input xt consists of forcing, 
state and parameter values which have meaning 
within the context of the simulation model. 
However, from the perspective of uncertainty 
propagation, this distinction is unimportant. The 
only requirement is that xt be partitioned into 
subvectors or groups where all the elements within 
the group are sampled at the same time. More 
formally, partition xt into m groups or subvectors 
{xjt, j=1,..,m}. 

During the simulation run, sampling of the 
variables within the groups is conducted at defined 
times defined by the n-vector of sampling times t = 
{ti, i=1,..,n} where ti is the actual time a random 
sample takes place. To retain maximum flexibility 
it is important to allow groups to be sampled at 
different times. This can be accomplished by 
defining a group sampling indicator function 

 

⎩
⎨
⎧

=
otherwise0

tatsampledarevariablesjgroupif1
i)(j,I i

s (2) 

Once it is known that group j is to be sampled at 
time ti, the vector 

ijtx is randomly sampled from 
the probability model associated with the jth group; 
that is, 

)x,..,x ,x,..,x|(xpx
ii1-i1i t1,j-t1ttjjt ←  (3) 

The random variable 
ijtx may be conditionally 

dependent on input vectors sampled at previous 
times 

1-i1 tt x,..,x  and on inputs sampled in earlier 

groups at the current time, 
ii t1,-jt1 x,..,x . This 

conditional dependence offers a rich range of 
possibilities. 

2.1. Forward Problem 

In the forward problem, the group probability 
distributions are known. The objective is to derive 
the probability distribution of zt associated with the 
system (1). The Monte Carlo method offers an 
intuitive and general approach for solving this 
problem. It involves two steps: 

1. Random sampling from the probability models 
for each group at each time step; 

2. Replication of the time series a sufficient 
number of times to enable meaningful 

estimation of the probability distributions of 
the outputs zt, t = {ti, i=1,..,n}. 

It is noted that Monte Carlo simulation only yields 
results of acceptable accuracy when an adequate 
number of runs are sampled. This is because 
accuracy, as measured by the standard error, is 
inversely proportional to the square root of the 
number of runs. This is the Achilles heel of the 
Monte Carlo method and needs careful handling to 
ensure acceptable computational times. 

2.2. Inverse Problem or Calibration 

In the forward problem, multiple runs are 
fundamental to the Monte Carlo method. The same 
applies to the inverse problem which involves 
calibrating the model.  

In calibration the inputs and outputs are observed 
(usually with error), while the parameters are 
unknown and need to be inferred. The objective of 
the calibration is to identify parameter values, or 
more generally distributions, which are most 
consistent with the observed data.  

There are several general approaches to 
accomplishing this. One approach seeks to 
optimize an objective function such as in least 
squares estimation. This involves conducting a 
search involving many trial parameters. For each 
trial parameter set, the model is run using observed 
inputs and the simulated outputs are matched 
against observed outputs. In the Bayesian approach 
the posterior distribution of the parameters is 
reconstructed typically using Markov Chain Monte 
Carlo methods [see Gelman et al., 1995]. This 
involves many runs with different parameters. 

2.3. An example: accounting for 
uncertainty in performance evaluation 

To illustrate the importance of full accounting of 
uncertainty in decision support, we consider a 
simple example involving drought security 
assessment for an urban water supply system. The 
system, illustrated in Figure 2, consists of a single 
reservoir with capacity 1000 units receiving an 
annual streamflow which is uncertain and is 
described by a normal distribution with mean mq 
and standard deviation 200. We shall use the 
shorthand notation N(μ, σ2) to denote a normal 
distribution with mean μ and standard deviation σ. 
The reservoir supplies an urban zone with known 
demand of 500 units. The planner wishes to assess 
the probability of the reservoir running out of 
water in any year – this will be denoted by 
P(empty).  
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There are two sources of uncertainty: Future 
annual streamflow cannot be predicted using 
current forecasting techniques and, as a result, its 
variability is best described by a probability 
model. The second source arises from uncertainty 
in the mean of the annual streamflow, mq. Due to 
short historic flow records, the true value of mq is 
not known. From a statistical analysis of the data, 
suppose the uncertainty about mq can be 
summarized by the normal distribution N(μm, σm

2). 
As a result of this uncertainty in mq, there is no 
single value of P(empty). Rather P(empty) itself is 
a random variable with a mean and standard 
deviation.  

The framework described in Section 2 is used to 
evaluate the distribution of P(empty). With 
reference to Section 2, the input vector xt has two 
groups:  

• The group 1 random variable mq is sampled at 

the start of the simulation run according to  

mq ← N(μm, σm
2) (4) 

• Τhe group 2 random variable, the annual 

streamflow q, is sampled each year t 

according to  

qt ← N(mq, 2002) (5) 

Note that qt is conditionally dependent on the 
mean streamflow mq which is sampled at the 
start of the run. 

 

 Streamflow into 
reservoir N(mq,2002) 

500 

Reservoir with capacity 1000 

Spill Urban 
demand zone 

 
Figure 1 Schematic of reservoir system 

 

Suppose mq is 800. In Figure 3a the mean and 
standard deviation of P(empty) are plotted as a 
function of σm. One observes that both the mean 
and standard deviation of P(empty) are less than 
0.001 until σm exceeds 100.  

In stark contrast, Figure 3b shows that when mq 
equals 600, the mean and standard deviation of 
P(empty) grow alarmingly with σm. Even when σm 
equals 50, the probability of zero water supply to 
the urban area is of the order of a few percent and 
would render the system unacceptable and in need 
of urgent attention.  

If the uncertainty in the parameter mq had been 
ignored, an excessively optimistic, indeed 
dangerous, assessment of drought security would 
have resulted. This highlights the importance of a 
modelling framework that naturally supports the 
characterization and propagation of uncertainty. 
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(a) Expected value for mq= 800. (b) Expected value for mq= 600. 

Figure 2. Mean and standard deviation of P(empty) as a function of the standard deviation of mq.
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3. A SOFTWARE PATTERN FOR THE 
SUPERVISION OF MULTIPLE RUNS  

3.1. Design goals 

The paper is part of an effort to design an object 
oriented software architecture that can support 
techniques such as uncertainty analysis, sensitivity 
analysis and model calibration. The main purpose 
of this architecture is to suggest software patterns 
to organise modelling engines such that they are 
more amenable to batch running in a broad sense. 
As a first step this present section mostly analyses 
the water supply case study and the generalised 
uncertainty framework conceptual previously 
described. It then proposes a software architecture, 
largely focussing on identifying entities in a single 
simulation run such that multiple runs and 
alternate model inputs and outputs are facilitated. 

Other goals are: 

• The pattern proposed should be 
decoupled from the specific means of 
distributed computing. As such the 
question of whether the runs occur on a 
single machine, a cluster or a GRID 
infrastructure is left out of the scope of 
the present section. 

• The architectural elements should allow 
for the use of external tools and libraries 
to instrument the model analysed, for 
instance the Data Uncertainty Engine 
(Brown et al. 2006) or PEST (Doherty 
2002). The eWater CRC also plans to 
produce a set of probability models suited 
to the water management domain. 

• The architectural elements should not be 
coupled to a particular modelling 
framework, platform or language. 
However it is acknowledged that previous 
work based on TIME (Rahman 2003) 
likely has an implicit influence on the 
present design process, as a proof of 
concept implementation is currently based 
on this modelling environment. 

3.2. Uncertainty analysis as a use case 

Based on the presentation of a general uncertainty 
framework in the previous section, the following 
observations are made: 

1. From a software viewpoint, variables that are 
inputs or parameters are properties that can be 
set. Conversely outputs and most state 
variables are properties that are usually read. 
State variables whose antecedent conditions 
matter are an exception, since they can be 

considered as an input or an output, but need a 
differentiated treatment for the purpose of 
setting or getting values only when considered 
at different event times in the system: start of 
run, before a time step, after a time step. 

2. There is no need to know the inner workings 
of the simulation model, at least not explicitly. 
The model needs not know where its inputs 
are coming from (resp. where its outputs are 
feeding into). In particular temporal 
simulation models need not know upfront in a 
simulation run about the whole input time 
series. This is actually paramount to allowing 
for conditional probability density functions 
(PDFs) feeding into the model, e.g. an input 
value conditional on a state value of the model 
at the previous time step(s). 

3. Each simulation run is a priori independent of 
others. If there were a dependency it would be 
indirect and implicit, by way of configuring 
the PDFs attached to the inputs in subsequent 
runs. 

The process in the uncertainty analysis of the water 
supply case study can be represented via a 
simplified sequence diagram (Figure 3). The 
application, here referred to as the “uncertainty 
analyser”, delegates the handling of running 
multiple simulations to a multi-run supervisor. The 
application needs to pass only the high-level 
properties of the analysis to the supervisor, e.g. the 
uncertainty of the mean and standard deviations of 
the input PDFs for the annual reservoir inflow, 
while the supervisor initialises those PDFs for each 
simulation run. This supervisor may run replicates 
serially, in parallel, or a mix thereof, based on 
conditional dependencies between runs and the 
availability of multiple processors. The water 
supply example does not introduce dependencies 
between runs, but the general uncertainty 
framework and inverse problems can do so. Those 
dependencies can be difficult to deal with, but 
mostly from a software implementation viewpoint; 
all analyses with dependencies between runs 
conceptually reduce to a non-cyclic graph. 

There are three entities in charge of each 
simulation run: the simulation model itself (the 
core algorithms for a time step), a model runner (in 
charge of stepping the simulation through time), 
and a “PropertiesHandler” responsible for getting 
and setting the properties of the model. Note that 
figure 3 focuses on identifying the generic events 
and associated actions for each simulation run. 
Clearly identifying this PropertiesHandler as a 
separate entity is central to facilitating multiple 
simulation runs. It allows for transparently using 
alternate sources of (resp. destination for) data, a 
need highlighted by observation (2) above.  
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Uncertainty Analyser Multi-Run Supervisor

Initialise

Model Runner

[Results]

Stop

Model PropertiesHandler

Start
Reset

OnAfterReset

OnBeforeTimeStep

OnAfterTimeStep

OnCompleted
OnCompleted

GetResults

Get number of steps in simulation run
where reservoir was empty

Initialise

Supervisor distributes
replicate runs
(Serial or parallel)

Loop over 
annual time series

RunTimeStep

After reset: sample PDF to get the 
mean of the annual streamflow, and
sample PDF to set initial reservoir level

Before time step: sample PDF to set
annual reservoir inflow of model

After time step: sample reservoir 
level. Increment counter if empty

Calculate overall P(Empty)

[Results]

On initialise, set up PDF representing
the uncertainty of the mean annual inflow

Note: Italics denote events/function pointers defined on the sender

 

Figure 3: Simplified sequence diagram for the uncertainty analysis of the water supply system. 

 

Figure 4: Simplified static structure for a multi-run architecture 

Using a pattern with these three entities for the 
core modelling engine, one can easily scale it up, 
typically from a single simulation run on a set of 
observed climatic input time series, to using one or 
more PropertiesHandler with alternate back-end 
systems for setting or getting the model properties, 
e.g. random number generators from an external 
probability model or sets of stochastically 
generated time series. 

3.3. An architectural pattern to facilitate 
multiple model runs 

From the sequence diagram in Figure 3, a simple 
static structure can be derived as presented in 
Figure 4. This is an abstract static structure, in the 
sense that it is a generalisation inferred from the 
water supply use case dealt with so far. 

The part of the pattern that deals with one 
simulation run comprises IModelRunner, IModel, 

IPropertyGetter and IPropertySetter, the last two 
composing “PropertiesHandler”, setting or getting 
the model variables at appropriate times in the 
simulation. Many recent modelling engines could 
be abstracted as more or less following this 
pattern. One example can be found in (Perraud et 
al. 2005) to “play” (resp. “record”) time series to 
(resp. from) a catchment modelling engine, using 
software reflection to decouple the model from the 
time series. OpenMI (Gisberg et al. 2005) could 
also conceivably be used to handle the exchanges 
of information between IModel, IPropertyGetter 
and IPropertySetter, although the “pull” paradigm 
in OpenMI may impose specific arrangements to 
the sequence of those exchanges. 

While the abstract structure is very sparse, we infer 
that a wide array of techniques requiring multiple 
simulation runs can be cast to follow this pattern. 
A key aspect is the high level of abstraction of 
IPropertyGetter and IPropertySetter. The pattern 
makes no assumptions whatsoever as to the nature 
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of their back-end data (time series, random number 
generators, threshold recorders), nor the type of the 
model properties dealt with (parameters, inputs, 
etc.) 

Though it can not be discussed in details in this 
paper, the entity dealing with the effective 
distribution of simulation runs (ITaskDistribution) 
is essential. How much flexibility it can achieve an 
important indicator of how operational the 
proposed system architecture can be. The 
following section gives initial elements of 
reflection on this topic, currently explored. 

4. COMPUTING ASPECTS 

Monte-Carlo based techniques, such as the one 
described above, are inherently computationally 
intensive. To handle this, strategies focus on the 
parallelisation of work and the utilisation of 
computer hardware beyond the single CPU. 
Specific implementations can vary in scope and 
complexity, ranging from multithreading, designed 
to take advantage of the new range of multi-core 
processors, to parallel architectures designed to 
utilise computational grids and clusters. The types 
of problems explored so far for use using the 
multi-run architecture are largely readily 
parallelisable. This is advantageous, in that 
minimal design changes tend to need to be made in 
order to harness the potentially significant gains 
afforded when using a computational grid. The 
example above pertaining to uncertainty evaluation 
is a prime example where multiple independent 
tasks could be derived and the workload shared 
across multiple machines. 

Conceptually, many distribution frameworks 
operate on very similar principles. Different 
frameworks may operate on differing levels of 
parallelisation, ranging from coarse-grain systems 
that define tasks at the application level, to fine-
grain systems that allow for tasks definition at the 
code level. Both approaches have their strengths 
and weaknesses but share a common need for the 
computational task to be expressed appropriately. 
A key task in this endeavour is to find a way to 
translate each replicate simulation run, as 
described in previous sections, in a form suitable 
for alternate distribution frameworks. 

5. CONCLUSION 

This paper presents a general uncertainty 
framework for mathematical simulation models, 
which entails running a large number of simulation 
runs. A case study of a water supply system 
illustrates the critical importance of taking 
uncertainty into account in decision support. This 

uncertainty framework and the case study are then 
analysed to determine the key desirable 
characteristics of an object-oriented architecture 
for the modelling engine, such that this modelling 
engine is more amenable to be run repeatedly on 
replicate input data sets. This paper is a first step in 
a process aiming to determine a consistent 
software approach to support a range of model 
analysis techniques requiring multiple model runs. 
It is hoped that a common conceptualisation will 
help decoupling the problem formulation from the 
distribution of computing task. This way different 
distributed computing platforms can be used for a 
given analysis technique requiring multiple 
simulation runs. 
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