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EXTENDED ABSTRACT: 

 In this paper we generalize the single-GPT growth model 
first developed for Lipsey and Carlaw (2006) and 
subsequently elaborated for Lipsey, Carlaw and Bekar 
(2005) to cover any number of GPTs. The model has three 
main sectors: a consumption goods sector that uses the 
results of applied research in its production function, an 
applied research sector that uses the GPTs invented by the 
pure research sector in its production function that is used 
to produce applied knowledge that is in turn used in the 
production of both consumption goods and pure 
knowledge, and a pure research sector that produces pure 
knowledge that occasionally results in the discovery of a 
new GPT. All three sectors also use the economy’s scarce 
resources in their production processes. The full potential 
of any new GPT diffuses to the applied research sector 
according to its own logistic diffusion process. In this 
model, there can be as many pure research activities, as 
many GPTs, as many applied R&D activities, and as many 
consumption goods as desired. Simulation of the model 
matches the accepted stylized growth facts and 
demonstrates the model’s potential for addressing 
important growth policy questions such as what is the 
appropriate mix between applied and pure R&D support 
for sustained long term economic growth. 

I. INTRODUCTION 

In this paper we incorporate the following empirically 
established characteristics of general purpose technologies 
(GPTs).1 These characteristics have been detailed in 
Lipsey, Carlaw and Bekar (2005, hereafter LCB) but have 
been omitted from all previous formal GPT models.  

1. The use of a new GPT spreads slowly through 
the economy and its full diffusion takes decades. 
During that process, its efficiency increases greatly.  

2. GPTs occur in each of several “classes” of 
technology, such as materials, ICTs, power sources, 

transportation equipment, and organizational 
forms (e.g., the factory system).  

3. At any one time, there are typically 
several GPTs in use, at least one “version” from 
each class and often there are several versions of 
any one class in simultaneous use.  

4. Different versions of GPTs in any one 
class typically compete with each other while in 
contrast GPTs of different classes often 
complement each other.  

5. Many of the sources of uncertainty in 
invention and innovation are modeled including: 
(i) how much potentially useful pure knowledge 
will be discovered by any given amount of 
research activity; (ii) the timing of the discovery of 
new technologies; (iii) how productive a newly 
innovated GPT will be over its lifetime; (iv) how 
well the new GPT will interact with GPTs of other 
classes; (v) how long a new GPT will continue to 
evolve in usefulness; (vi) when it will begin to be 
replaced by a new superior version of a GPT of the 
same class (vii) how long that displacement will 
take; and (viii) if the displacement will be 
complete.  

Over the last several years there has been 
substantial activity in applying GPT theory to issues in 
economic history industrial organization and 
economic policy. These applications have been 
hampered by the nature of the first generation of GPT 
models found in Helpman (1998), which cover only 
the evolution of a single GPT that dominates the 
macro performance of the whole economy. This has 
led, for example, to attempts to infer the existence of a 
single GPT by examining the aggregate behavior of 
the economy as measured by its GDP.  

In spite of the need for more empirically relevant 
models, there have been no further developments of 
GPT theory using standard techniques. One reason for 
this is that because these models all use dynamically 
stationary equilibrium concepts that become 
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analytically intractable when more empirically relevant 
assumptions are introduced. We have circumvented this 
modeling problem by building models of GPT-driven 
growth that incorporate the complex structure of 
technology yet are analytically manageable because we 
forgo the use of a stationary foresighted equilibrium. 
Agents face a future that is uncertain and do the best they 
can with limited knowledge of current relations.  

Knowledge is produced at two different levels: a pure 
research level that produces fundamental ideas and an 
applied research level that uses these ideas to produce 
applications. The pure research sector could be producing 
GPTs, or knowledge that is less universal but still provides 
fodder for the applied R&D sector. It could also be 
producing knowledge that allows GPTs developed abroad 
to be used to produce applications.2  

II. THE SIMULTANEOUS GPT MODEL 

In our model we initially incorporate the first four 
numbered characteristics listed in the introduction while 
the various sources of uncertainty outlined in point 5 are 
introduced as we specify our model formally in the next 
section. We introduce multiple activities in each of our 
three sectors. The pure research sector has X laboratory 
complexes, which we call ‘labs’ for short, each producing 
a distinct class of pure knowledge and making use of all 
types of applied knowledge. Each lab occasionally invents 
a new version of a GPT in its particular class. The applied 
R&D sector has Y ‘facilities,’ each producing a distinct 
type of useful knowledge, and employing one version of 
each class of GPT. The consumption sector has I 
industries, each producing a different consumption good, 
and making use of the stocks of applied knowledge. The 
productivity of each GPT, ( )xn t

G , evolves according to a 

logistic diffusion process that is given in equation (8) 
below, until its full potential has been realized. In order to 
allow a new GPT to spread through the economy over 
time, the productivity of each GPT is allowed to differ in 
each of the applied R&D facilities. This is done by 
multiplying each GPT’s productivity by a parameter ν that 
is specific both to that GPT and the R&D facility in which 
it is operating.  

Each R&D facility is initially seeded with one version 
of each class of GPT. When a new ‘challenge’ GPT is 
invented each applied R&D facility must decide whether to 
adopt it or to stay with the version of the ‘incumbent’ GPT 
of that class currently in use. Because of the uncertainties 
listed in (5) above we use a simple comparison of the 
challenger’s current level of productivity with the current 
productivity of the incumbent. If a new challenging GPT 
has a lower current productivity than the incumbent in all 
applied R&D facilities, it is sent back to the pure research 
sector for further development and it is reconsidered for 
adoption in every subsequent period. If it has a higher 

productivity in one or more facilities, it is adopted 
there. Each subsequent period, the facilities that have 
not adopted this new GPT compare its evolving 
productivity with the evolving productivity of their 
incumbent and switch when the former exceeds that 
latter. It is possible that there may be several versions 
of GPT of any one class in use at any one time.  

Some Terminology 

The variable x indicates a specific class of GPT. 
The index nx identifies a GPT in the sequence of 
versions, 1...n, of GPTs in class x that has been 
invented and adopted by at least one applied R&D 
facility. At any one time, the latest version adopted in 
that class is denoted by nx and the previously adopted 
version by (n-1)x. We refer to the productivity of the 
most recently invented GPT from lab x at time t as 
( )G tnx

and the previously invented GPT in that class 

as ( )( 1)G n tx− . The variable 
xnt refers to the invention 

date of the latest version of the class of GPT invented 
by lab x, while ( 1) xnt −  refers to the invention date of 
the previous version from lab x and ( 1)t nx−   refers to 
the period just prior to the invention of GPT of version 
nx.    

Relations Among GPTs 

The productivity coefficient in each applied R&D 
facility is the geometric mean of the productivities of 
the GPTs that it uses, each pre-multiplied by an 
associated ν value (see equation (2) below).  

The νs can be set out in a YxX matrix where a row 
indicates the class of GPT and a column the research 
facility. We call this the ‘operative ν matrix’. When a 
new version of a particular class of GPT is invented, it 
brings with it its own matrix of potential new νs, 
which we call its ‘potential ν matrix’. When each 
R&D facility decides whether or not to adopt the 
challenger, it must form expectations over the 
potential νs required to make the calculation of 
potential output using the challenger. We denote these 
expected values by ν . Because the sν  vary across 
any row, different facilities will evaluate the 
productivity of the challenger differently and so some 
may adopt it while others do not. When a particular 
applied R&D facility adopts the challenger, the 
challenger’s potential νs replace the existing ones in 
that facility’s column vector in the operative ν matrix. 
The resulting change in the νs associated with GPTs in 
classes other than the newly adopted GPT indicates 
whether the new GPT cooperates better or worse with 
the existing GPTs of other types than did the replaced 
incumbent.  
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The full identification of each ν requires four indexes, 

,
nxy zν . The superscript nx tells us that the ν is modifying a 

GPT of class x, version n. The subscript tells us that the 
GPT is being used by research facility y and replaced the 
previous v when a new version of class z GPT was 
adopted.  Thus, z indicates the class of GPT that was last 
adopted by that facility and it is the source of all the νs in 
that column, while nx indicates the version of class-x GPT 
to which the ν is being applied. Only the n and z change 
over time, the n indicating the version of the particular 
class-x GPT being used by the facility in question and the z 
indicating the class of the last GPT adopted by that facility 
(and hence the source of all the νs in that facility’s column 
vector). The νs are determined randomly in this version of 
our model. 

The Model 

For simplicity, we assume a fixed supply of the 
composite resource, R, that is allocated by private price-
taking agents in the consumption and applied R&D sectors 
and by a government that implicitly taxes the applied R&D 
and consumption sectors to fund pure research. We assume 
(1) agents are profit seeking and would maximize their 
profits if they could, (2) agents are price takers, (3) agents 
are operating under conditions of uncertainty for all of the 
reasons set out in characteristic 5 (4) because they cannot 
assign probabilities to alternative future consumption 
payoffs, agents seek to maximize their profits on the basis 
of current prices.   

The constraint imposed by the composite resource is  

(1)            
1 1 1

I Y Xyi xR r r rt t tt
i y x

= + +∑ ∑ ∑
= = =

  

The output of applied knowledge from each applied 
R&D facility, y, depends on the amount of the composite 
resource it uses and its productivity coefficient, which is 
the geometric mean of each ( )Gnx t

term multiplied by its 

corresponding v term, as shown in equation (2).  

(2)   

1

1( ( ) ) ( ), 1
1

X Xny yx x Xa G ry z tt tnxx
β βν

⎡ ⎤
+= ∏⎢ ⎥−

⎢ ⎥=⎣ ⎦
 

(0,1]  ,  (0,1)1x Xx Xβ β∈ ∀ ∈ ∈+  

In the consumption sector, we make the simplifying 
assumptions (1) that there are the same number of applied 
research facilities and consumption industries, I = Y, and 
(2) that the knowledge produced in each of the facilities, y, 
is useful only in the one corresponding consumption 
industry, i = y. The production function for each of the I 
industries in the consumption sector is then expressed as 
follows:  

(3)       1( ) ( )1
yi iy Yc A rt tt

α αμ += − ,  
(0,1] , (0,1)1y Yy Yα α∈ ∀ ∈ ∈+  and i = y 

 The stock of applied knowledge generated from 
each facility accumulates according to:  

(4)     (1 ) 1
y y yA a At t tε= + − − , 

where (0,1)ε ∈ is a depreciation parameter.  

The Pure Knowledge Sector and the Endogenous 
Production of GPTs 

We assume that the productivity coefficient in 
each lab is the geometric mean of the various amounts 
of the Y different kinds of applied knowledge that are 
useful in further pure research (one for each applied 
R&D facility and each raised to a power σy). The 
output of pure knowledge in lab x, x

tg , is a function of 
this productivity coefficient and the amount of the 
composite resource devoted to that lab.  

(5)  ( )
1

1
(1 ) 1

1

Y Yy Yyx x xg A rt t tt
y

σ σ
μ θ

⎡ ⎤ +⎛ ⎞⎢ ⎥= −∏ ⎜ ⎟−⎝ ⎠⎢ ⎥=⎣ ⎦
, 

(0,1],    and (0,1)1y Yy Yσ σ∈ ∀ ∈ ∈+ .  

The term, x
tθ , models the uncertainty surrounding the 

productivity of the composite resource devoted to pure 
research as indicated in uncertainty source 5 (i) listed 
above. 

The stocks of potentially useful knowledge 
produced by each of the X labs accumulate according 
to:  

(6)  (1 ) 1
x x xgt t tδΩ = + − Ω −  

where (0,1)δ ∈  is a depreciation parameter. 

New GPTs are invented infrequently in each of 
the X labs and their invention date is determined when 
the drawing of the random variable 

*x x
tλ λ≥ (uncertainty source 5 (ii)). For simplicity, we 

let the critical value of lambda for each of the X labs 
be the same: * *  x x Xλ λ= ∀ ∈ . When at any time, t, 

*x
tλ λ≥ , indicating that a new version of class-x GPT 

is invented, the index 
xnt  is reset to equal the current 

t, and nx is augmented by one.  

Because agents do not know how productive a 
new GPT will be over its lifetime (uncertainty source 
5 (iii)), they must make their adoption decisions with 
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incomplete information. Out of the many adoption criteria 
that we mentioned earlier, we use for this paper the rule to 
adopt the class-x challenger wherever its initial 
productivity is expected to exceed that of the class-x 
incumbent. The expected productivity from using the 
challenger is determined from its new ( )xn t

G term defined 

in equation (8) below, the productivities of the other 
classes of GPT used by that facility and the challenger’s 
expected sν , which alter those productivities. We assume 
that agents considering adopting the new GPT can 
correctly predict the potential ν associated with the version 
of the challenger, the minimum knowledge that they need 
to make some kind of evidenced-based adoption decision, 
but that they predict the other sν in their facility’s column 
vector will be unchanged. This prediction may be falsified 
since the potential νs brought in by the challenger may 
differ from those in the current operative matrix 
(uncertainty source 5(iv)).  

Since in each applied R&D facility the only ν that 
agents expect to change is the one associated with the 
challenging x-class GPT, we can compare the 
productivities for any of the y facilities by simply 
comparing the ( )( 1)

, ( 1)
n xv Gy z n x tnx

−
− that would be 

produced if the incumbent were left in place with the 

( ),
nxv Gy z nx tnx

that is expected to be produced if the 

challenger were adopted. This comparison is made in each 
of the Y applied R&D facilities at time 

xnt t= so the test, 
stated generally for all applied R&D facilities, is:  

(7) ( ) ( )( 1)
, , ( 1)
x x

x x
n nx x

n n
y z n y z nt t

v G v G−
−

⎡ ⎤ ⎡ ⎤≥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
  for each 

y ∈ [1,Y]. If the test is passed, the new GPT is adopted in 
facility y.         

If none of the y applied R&D facilities adopts the 
GPT, it is returned to its pure knowledge industry. The 
indexes 

xnt and nx are incremented back to their previous 

values⎯it is as if the favorable drawing of λt >λ* had not 
occurred. Pure research then continues to improve the new 
GPT and it is reconsidered every period.  

The diffusion process defined in equation (8) below 
starts for the newly arrived GPT.  

(8)  

( ) ( )( 1) ( 1)

( )
( )( 1)( 1)( )1

xn t
G n x t nx

t tne x x G t nt nt t xn xn xe x

G

τ γ

τ γ

+− −

+ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Ω − −⎜ ⎟⎜ ⎟ −+ − ⎝ ⎠+⎝ ⎠

=

. 

The equation shows actually useful general 

purpose knowledge, ( )xn t
G , becoming available for 

use in applied research according to a logistic 
diffusion process in which 

xnt is the invention date of 

the version nx, of the class-x GPT, x
tnx

Ω  is the full 

potential productivity of the new version of GPT x, 

( 1)
( 1)

G n x t n x

⎛ ⎞
⎜ ⎟−⎝ ⎠ −

 is the potential productivity of the 

version that it replaced, evaluated at the time at which 
that earlier version was last used, ( 1)xnt −  and γ and τ 
are calibration parameters that control the rate of 
diffusion.3  

In addition to modeling uncertainty sources 5 (iii) 
and 5 (vi) which we discussed above, the interaction 
of the G and the ν terms model uncertainty about 
when a new GPT will begin to be replaced by a 
challenger (source 5 (vi)), how long it will take to 
displace the incumbent GPT (source 5 (vii)), and 
whether a GPT will be completely displaced (source 5 
(viii)). Thus, they model the many aspects of the 
general observation that the applied potential of a GPT 
cannot be precisely predicted when it is originally 
being developed.  

In the subsequent periods, the test in equation (7) 
is modified to note the productivity changes that occur 
over time: 

 

(7’)  ( ) ( )( 1)
, , ( 1)

n nx xv G v Gy z n y z nx xt t
−⎡ ⎤ ⎡ ⎤≥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   

for each y ∈ [1, Y] that has not yet adopted GPT 
xnG .  

In our model the economy’s GDP is the current 
period’s output of the consumption and applied R&D 
sectors plus resource costs of the pure knowledge 
sector.4 We count the output of the applied R&D 
sector as additions to the capital stock because it is 
applied R&D that gets embodied in capital goods. 
Pure knowledge is an input into the applied research 
sector, being of no use in producing GDP until it is 
turned into applied knowledge. It is not, therefore, a 
part of the capital stock as usually measured. So for 
our purposes, the stock of applied knowledge is the 
capital stock and the flow of applied knowledge is 
investment.  

Multi-GPT Resource Allocation 

In the pure knowledge sector, the government 
pays for and allocates a fixed amount of the generic 
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resource, R, to each of the pure knowledge producing labs. 
Producers in the applied R&D and consumption sectors 
maximize their profits each period taking prices as given. 
The prices for output from the I consumption industries are 
derived from the maximization of an aggregate utility 
function which we assume is additively separable across 
the I consumption goods. 

(9)   ( ) ' and 1, ' , '
1

i
I i i iU c i i i i I

i

φ
φ φ= = = ≠ ∀ ∈∑

=
 

Maximizing this utility function yields: 

(10)   
( )
( )

1 11 11 1

1 1 1 11 1

i
i ici iMU P

i i iMU P i ic

φ
φ

φ
φ

= −= == =
= =

≠ ≠ ≠ −≠ ≠

  

Since 1    i i Iφ = ∀ ∈  it follows that 1 1i iP P= ≠= .  

We assume a competitive equilibrium in the market 
for the composite resource so it earns the same wage, w, 
regardless of where it is allocated.  

Each consumption industry’s profits are: 

(11)   i i i i y yP c wr P Aπ = − −  

We suppress the time subscripts here because we 
assume each agent in the consumption industry re-
evaluates its profit function every period. Profit 
maximization yields the following FOCs in each of the I 
consumption industries: 

(12)   
r 0

0

i iP mp w

y yiP mpA P

− =

− =
 

where mp represents marginal product. From the first FOC, 
the assumption the Pi = 1, and the definition of the 
production function for industry i we get the reduced form 
demand for the composite resource: 

(13)   ( )
1

1 11*
yi y YYr A

w

α αα μ
⎡ ⎤ − ++=⎢ ⎥
⎢ ⎥⎣ ⎦

, 

From the combination of both FOCs from the profit 
function for consumption industry i and the definition of 

the production function we get, 1
yw AY

y iyP r

α
α
+= which 

implies:  

(14)   ( )
1

1 11*
1

ywy y YYP Ay yAY

α αα μ
αα

⎡ ⎤ − ++= ⎢ ⎥
⎢ ⎥⎣ ⎦+

 

Each applied R&D facility maximizes profits 
(15). The pure knowledge input in the form the 
currently adopted set of X GPTs is provided freely to 
the applied R&D facilities. 

(15)   y y y yP a wrπ = −  

Maximization yields the following demand for 
the composite resource from each applied R&D 
facility: 

(16)  
1

1 1 1** ( ( ) )1 ,
1

XyX X Pny x xr GX y z tn wxx

β
ββ ν

⎡ ⎤ − +⎢ ⎥⎡ ⎤
⎢ ⎥= ∏⎢ ⎥+
⎢ ⎥⎢ ⎥=⎣ ⎦
⎢ ⎥⎣ ⎦

 

With these resource demand equations we now 
have a complete description of the allocation of the 
composite resource across the three sectors.  

Simulation of the Model  

We restrict the model to three industries within 
the consumption sector, three facilities in the applied 
R&D sector and three labs in the pure knowledge 
sector (I = Y = X = 3). We choose 

1 1 1Y X Yα β σ+ + += = and y x yα β σ= =  to impose 
symmetry across sectors and specific activities (i.e., 
industries, facilities and labs) within sectors.  

We choose values of the parameters and initial 
conditions so that the model will replicate the 
accepted stylized facts of economic growth.5 Some 
values are chosen to ensure consistency with observed 
data in the following ways: diminishing returns to our 
composite resource in all activities 
( 1 1 1 0.3Y X Yα β σ+ + += = = ), an average annual growth 
rate between 1.5% and 2% (ε  = δ = 0.25);6 GPTs 
arriving on average every 35 years (λ* = 0.66). We 
choose γ = 0.07 and τ = -7 to so that 90% of a GPT’s 
diffusion occurs over 130 years. We choose μ = 0.95 
in order to set the income shares of the labor and 
capital (physical and human) at approximately 0.3 and 
0.7. We set 1y x yα β σ= = =  to ensure that 
knowledge had constant returns.  

The Table 1 gives the parameter values and initial 
conditions used to simulate the results of the multi-
GPT model as reported in the text and shown in the 
figures.  

TABLE 1 

NUMERICAL SIMULATION OF THE MULTI-
GPT MODEL 

Parameter values: 
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1   [1, ]i Yyα = ∀ ∈    αY+1 = 0.3   1   [1, ]x Xxβ = ∀ ∈  

βX+1 = 0.3  1   [1, ]y Yyσ = ∀ ∈   σY+1 = 0.3 

γ = 0.07  τ  = - 7  1   [1, ]i Iiφ = ∀ ∈   ε = 0.025  

δ = 0.025  μ = 0.95  I = 3  Y = 3  X = 3   

λ* = 0.66  1000
1 1 1

I Y Xyi xR r r rt t ti y x
= + + =∑ ∑ ∑
= = =

 

Initial conditions: 

1   (1, )
0

G x Xnx
⎛ ⎞ = ∀ ∈⎜ ⎟
⎝ ⎠

   1   [1, ]0
yA y Y= ∀ ∈   1nx=   10

xθ =   

2tnx =   1 [1, ]0
iP i I= ∀ ∈   1,d y x=   10w =  

The set of xθ are random variables distributed uniformly 
with support [0.9, 1.1]. The λ’s are derived from beta 
distributions, where each distribution is defined as 

( ) ( )1 1
beta( | , )

Beta( , )
x xx
ψ η

ψ η
ψ η

− −
= . Beta(ψ,η) is the Beta function, 

and ψ and η are parameters which take on positive integer 
values. We choose ψ = 5 and η = 10.   

Next we need to determine the νs in the for the 
challenger’s potential matrix. They are calculated as the νs 
in the operative m matrix modified by the addition of a 
random variable π drawn from a uniform distribution with 
support [-0.05,  0.05]. For the example, the potential νs 
associated with a challenger of version n+1 from class x = 
2 are derived from the incumbent’s νs as follows:  

(16) 

2 2  if  ( ) [0.5,1.5],2 ,2
( 1)2 20.5             if           0.5,2 ,2

21.5             if           1.5,2

n n
y y

n n
y y

n
y

ν π ν π

ν ν π

ν π

⎧ + + ∈⎪
⎪⎪+ = + <⎨
⎪
⎪ + >⎪⎩

 y∈[1, 3]  

To demonstrate the some important properties of the 
model and its applicability for analysis of real world 
problems we do three things. First, we show that 
observable macroeconomic aggregates are not determined 
by a single GPT and therefore are not particularly useful 
for identifying the arrival and diffusion of a given GPT. 
Second, we demonstrate that the model is consistent with 
the accepted Stylized facts of growth. Third, we illustrate 
the model’s ability to address certain important policy 
questions by posing and analysis the question what is the 
appropriate policy mix to support pure versus applied 
research.  

One of our objectives in this paper is demonstrate that 
macro aggregates such as the growth rate of output cannot 
be used to identify the arrival and diffusion of a single 

GPT (or that a single GPT can determine the pattern 
of macro aggregates). Figure 2 shows the growth rates 
of output and of useful pure knowledge generated 
from the X = 3 classes of pure knowledge production.  

Fi gur e  1: Gr owt h Ra t e s of  Out put  a nd Use f ul  
P ur e  Knowl e dge

-5.00%

0.00%

5.00%

10.00%

1 53 105 157 209 261 313 365 417 469 521 573

T i me

Output

Class x = 1 GPTs

Class x = 2 GPTs

Class x = 4 GPTs

 
The figure indicates clearly that the arrival and 

evolution of any one GPT does not necessarily 
determine the pattern of growth of aggregate output. 

At the beginning of this section we laid out our 
rational for calibrating the simulation of our model. 
Here we present some of the general results and we 
refer the reader to the following web URL 
http://www.sfu.ca/~rlipsey/  to see how our model 
meets the rest of the accepted stylized facts.   

As shown in Figure 2, our model exhibits a 
positive long term trend growth of 1.9% but the 
growth rate fluctuates around this trend quite 
dramatically over time.   

Fi gur e  2 : Gr owt h Ra t e s of  Out put

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

1 49 97 145 193 241 289 337 385 433 481 529 577

T i me

Long Ter m Tr end

Actual

 

In Figure 2 there is no pattern of convergence between 
the long run trend and the growth rate. The variance is 
0.0018. The spikes in the growth rate occur as a result 
of the slight jumps in the level productivity. The 
variance of our output growth series is not as large as 
the actual growth rates of GDP for Canada and the US 
calculated from Madison’s data shown in Figure 3. 
However, spikes in the growth rates are present in 
both the real and the simulated data. 
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Fi gur e  3 : Anua l  Gr owt h Ra t e  of  Re a l  GDP  
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The variance of growth rate for Canada is 0.00264 which is 
much higher than that of our simulation. The key point is 
that growth rates are volatile for both the real and the 
simulated data.  

Next, we use the model to address the policy question 
of what is the appropriate mix of support for pure versus 
applied R&D. We run four different simulations that model 
four different mixes of pure and applied R&D public 
funding support. We calibrate the model such that 3.4 % of 
total GDP is allocated by government to pure knowledge 
production. We choose 3.4% because Canada allocates 
1.9% of total GDP to R&D and 2.5% (i.e., 4.4% in total) of 
GDP to post-secondary education and research, but these 
figures count both private and public contributions.7 The 
simulations are run for an initial period of time with all of 
the government support going to pure knowledge 
production then we change the mix of pure and applied 
R&D that is funded publicly. Figure 4 shows the natural 
log of GDP from the point at which the policy change 
occurs forward.  

In the first policy simulation all of the 3.4% of 
government allocated support goes to producing pure 
knowledge and the applied R&D sector privately produces 
applied knowledge. In simulations 2 – 4 some mix of pure 
and applied support is provided. In all cases the pure sector 
is wholly publicly funded and the applied sector produces 
using a mix of private and public funding. The second 
policy simulation evenly splits the government support 
between the pure knowledge and applied knowledge 
sectors. In the third policy simulation 87.5% of the 
government provided support to research goes to applied 
R&D and only 12.5% to pure knowledge production. In the 
fourth policy simulation 98.25% of the public support goes 
to applied R&C and a mere 1.25% goes to pure knowledge 
production.     

Figure 4: Natural log of GDP 
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It is quite clear from Figure 4 that some mix of public 
support is preferable to government support going 
exclusively to the pure knowledge sector. However, 
the appropriate mix of applied and pure R&D that is 
publicly funded is not obvious from the last three 
simulations. Clearly there is an early gain to allocating 
a large amount of public support away from pure 
knowledge to applied R&D, provided that some 
amount of pure knowledge has been accumulated 
prior to the policy change. However, as time goes by 
the gain from allocating the bulk of public support to 
applied R&D is more than offset by the loss from not 
maintaining a sufficiently high proportion of support 
for pure knowledge production. This is shown by the 
fact that Policies 3 and 4 out perform Policy 2 initially 
but later 3 and 4 under perform relative to 2.  

The policy analysis shown here is obviously 
crude and requires significant amounts of context 
specific data to calibrate to the model before explicit 
policy advice can be given in detail. However, what is 
clear in the qualitative results is that a “one size fits 
all” approach of solely funding pure or applied R&D 
is not optimal. And some mix of support to the two 
activities is preferred. It is also clear that within our 
model private activity on its own will under produce 
applied R&D relative to some mix of private and 
publicly supported applied R&D production.  
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1 “A GPT is a single generic technology, recognizable as 
such over its whole lifetime, that initially has much scope 
for improvement and eventually comes to be widely used, 
to have multiple uses, and to have many spillover effects.” 
Lipsey Carlaw and Bekar (2005: 98)    
2 Cohen and Leventhal (1990) call this knowledge 
producing activity the building of “absorptive capacity”.   
3 Agents in our model do not know the values of the 
logistic diffusion parameters and these can be assumed 
fixed or determined randomly in the model each time a 
new GPT arrives. As such, they model uncertainty source 5 
(v).  
4 Because the pure knowledge sector only periodically 
produces a useful GPT, we adopt the accounting 
convention of valuing the output of that sector at its input 
costs in each period. 
5 These facts are the original ones from Kaldor (1961) and 
the more recently proposed facts from Easterly and Levine 
(2001). 
6 This is based on Madison’s historical data set (see 
http://www.ggdc.net/maddison/). The average annual 
growth rate of GDP per person from 1870 to 2003 for the 
USA is 1.86% and for Canada is 1.96%.   
7 See “Education Indicators in Canada: Report of the Pan-
Canadian Education Indicators program, Statistics Canada 
(2003) catalogue 81-582-XIE (Ottawa).  
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