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EXTENDED ABSTRACT  

The present analysis is an application of the 
continuous time replicator dynamics to 
economics. There are various types of markets 
ranging from competitive markets to monopoly 
markets. In contemporary industrial society, 
oligopoly markets prevail. In this paper we 
discuss continuous game problems for which 
decision making variable for each player is 
bounded on a simplex by equality and non-
negative constraints. Several types of problems 
are considered under conditions of a normalized 
constraint and non-negative constraints. These 
problems can be classified into two types by their 
constraints. For one type, the simplex constraint 
applies to the variables for each player 
independently such as a product allocating 

problem. For the other type, the simplex constraint 
applies to interference among all the players such as 
a market share problem. In this paper, we consider 
a game problem under the constraints of allocation 
of product and market share simultaneously. We 
assume that the problems have Nash equilibrium 
solution, and then we derive gradient system 
dynamics, which converge to the Nash equilibrium 
solution without violation of the simplex 
constraints. The story of the following models is as 
follows. There are three or more firms in a market. 
They behave so as to maximize their profits defined 
by the difference between their sales and cost 
functions with conjectural variations. In economics, 
there are many models concerning conjectural 
variation and Nash equilibrium. Lastly, the 
effectiveness of the derived dynamics is shown by 
its application to some examples. The present 
approach may be useful to examine the process of 
reaching equilibrium on oligopoly market.
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1. Introduction 
 
There are various types of markets ranging from 
competitive markets to monopoly markets. In 
contemporary industrial society, oligopoly markets 
prevail in manufacturing industries such as 
automobiles, electric appliances, PCs, etc. One of 
the problems facing producers is to decide on how 
much to produce and how to share the market 
among a mix of goods. The Nash equilibrium 
model is a useful tool for clarifying the structure of 
oligopoly markets. Here, we will propose a simple 
model of the Nash equilibrium and use a 
simulation method to derive an optimal solution 
for production decisions by rival firms.  
 
Section 2 explains the three models in general: (i) 
the allocation problem of production quotas for 
plural products in each firm (Constraint 
Independent Type) (cf. Aiyoshi and Maki (2003)), 
(ii) the market share problem for the same product 
among the firm (Constraint Interference Type), 
(iii) double allocation problem of the product 
ability and the market share (Constraint 
Interference Type). In Section 3, we introduce the 
normalized Nash equilibrium solution for the 
profit maximization of players’ functions in the 
models of (ii) and (iii) (cf. Rosen (1965)).  Section 
4 denotes how to search the Nash equilibrium 
solution using numerical methods. The present 
analysis uses the numerical method of the 
continuous time replicator dynamic that is used for 
the game-theoretic problem on ecology, group 
genetics and evolutionary economics (cf. Taylor 
and Jonker (1978). We refer Li and Basar (1987) 
and Bozma (1996) as algorithms for the Nash 
equilibrium solution although they did not describe 
on continuous time dynamics. Section 5 proposes a 
simulation model and the reports results. Finally 
section 6 presents some conclusions. 
 
 
2. Non-cooperative Nash equilibrium model and 
resource allocation  

In this paper, a continuous game problem with 
P players N strategy variables, governed by a 
duplicate simplex constraints, is considered. Let 
the p -th player’s strategy variables be 

Np
N
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(where Ppp ,,1 , L=x  are column vectors and 
Nii ,,1 , L=x are  row vectors). Let the p th 

player’s profit function be )(XE p . An 
unconstrained game problem is formulated as  

PpE Ppp
p

,,1  ),,,,( max 1 LLL =xxx
x

,                                       

                                                                    (2) 
where px is p th player’s only variable, and the 

other players’ variables Ppp xxxx LL 111 ,,, +−  are 
unknown parameters. In the continuous game 
problem Eq.(2) is constrained by a linear equality 
and a non-negative constraint, known as a simplex 
constraint, as  
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with constraints consisting of summations of 
column vectors of  X , and  
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whose constraints consists of summations of row 
vectors of X . In this paper, we consider the game 
problem constrained by (3b) and (4b) 
simultaneously as  
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As an example, P  firms produce N  types of 
products in a market. Then, p  represents a firm 
number and i  represents a product type. The first 
problem defined by Eq.(3) is considered a problem 
that each firm allocates production quotas for the 
N  kinds of products and interferences among 
players exist in player’s own profit function. On 
the other hand, the second problem formulated by 
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Eq.(4) is considered as a market share competition 
problem for the same product i  among the 
production firms, and interferences among players 
is affected by player’s own profit function.  The 
last problem represented by Eq.(5) is called “a 
game problem with a double allocation type of 
constrains”, namely the allocation of the 
production and the market share is considered  
simultaneously. 
 
When we assume Nash equilibrium solutions as 
rational solutions for non-cooperative game 
problems, their properties differ, depending on 
their equality constraints, that is － there is a 
difference between the problem of Eq.(3) 
(Constraint Independent Type in which 
interference does not exist) and the problems of 
Eq.(4) and (5) (Constraint Interference Type in 
which mutual interference does exist).  
 
 
3 . The Normalized Nash Equilibrium Solution 
of the Constraint Interference Type  
 
Let us consider the Nash equilibrium solution X  
regarding the interference type problem denoted by 
Eq.(5) with double simplex constraints. In this case, 
stationary conditions for each player do not exist, 
unlike the situation for the constraint independent 
type. A maximization problem for the p th player, 
under the condition that other players’ strategies 

Ppp xxxx ,,,,, 111 LL +−  are given, is expresses as  
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In Eq.(7), the p th player’s strategy px that 
satisfies Eq.(7c) is determined uniquely, because 
the other player’s strategy variables are already 
given. There is no freedom to maximize the 
function of pE , In order to define nontrivial Nash 
equilibrium solutions for problems of constraint 
interference type, we introduce the normalized 
Nash equilibrium solution, which has a flexibility 
of maximization, and whose stationary condition 
can be derived.  
 
The normalized Nash equilibrium solution X  
regarding  the constraint interference type problem 
is defined by relaxing the interference among 
players in the constraint Eq.(7c) and by 
considering the problem of maximizing the sum of 
all players’ profit functions: 
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Notice that Eq.(8a) is dependent on 
unknown parameters ),,,( 1 PX xx L=  and the 

variable ),,( 1 PX xx L=  is maximized 
simultaneously. Let the function 

1: RRRF PNPN →× ××  be defined by 

.),,,,,();(
1

111∑ =

+−=
P

p
PppppEXXF xxxxx LL

                                                               (9) 
 We  define X  as the local normalized Nash 
equilibrium solution of the constraint interference 
type problem Eq.(5), when there exists a 
neighbourhood PNRXB ×⊆)(  of   X  such that 
the following inequality holds: 
 

,)(  );();( SXBXXXFXXF ∩∈∀≥                                           
 

(10) 
where 

{ }.(8.d) (8c), Eq.(8b), satisfies | XXS =  
Note that the normalized Nash equilibrium 
solution is not a solution of a simple maximization 
problem of the sum of all players’  profit function 

,F  but the maximum point of  F  with respect to 
the variable X  in ,F  given the value X  in F as 
a parameter, namely, it is defined as a fixed point 
of the maximization operation.  
 
 
4. Dynamics to Search the Nash Equilibrium 
Solution of Constraint Interference Type 

Firstly, in the constraint independent type problem 
Eq.(3), let us consider a gradient system in which 
the p th player’s strategy px moves to a direction 

to locally maximize the profit function )(XE p : 
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A trajectory of this dynamics violates the equality 
constraint Eq.(3b). Therefore, we can derive a 
model that orthogonally projects )(XE p

px∇  to 
the hyperplane defined by Eq.(3b) by application 
of the gradient projection method with a 
coefficient matrix for Eq.(3b) ).1,,1( L=A  
However, even if the search can be executed, the 
projected vector violates the non-negative 
constraint Eq.(3c) if the search point lies on a 
boundary of the region defined by the non-
negative constraint Eq.(3c). Hence we derive a 
new projection operator taking the non-negative 
constraint into consideration. So, we introduce a 
variable metric which increase as the search point 
approaches to the boundary of non-negative 
constraint and becomes infinity on the boundary 
according to the NN ×  matrix: 

PpxM p
i

p ,,1  ),diag(1/)( L==x .                                                            
 

(12) 
Each component of the direction vector 

))(( tXE p
px∇  is reduced by multiplication by 

)( pM x , as the search point approaches the 
boundary. The operator is defined as an NN ×  
variable metric projection matrix proposed by 
Faybusovich (1991) in terms of the inverse matrix 
of Eq. (12) and the coefficient matrix 

)1,,1( L=A : 
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Multiplying the gradient vectors regarding all 
variables of the p th player in Eq.(11b) by the 
inverse variable metric matrix Eq.(12) and 
multiplying by the variable metric projection 
matrix Eq.(13), we obtain a dynamics which does 
not violate the simplex constraint and which takes 
the non-negative constraint into consideration:  
          

))(())(())(()( 1 tXEtMtQ
dt

td pppM
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p

pxxxx
∇= −                                          

 
(14) 

 
Expressing in terms of components, we obtain 
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Here, letting p

ix  be the “fraction of individuals in 
the p th species choosing the i th strategy”, and 

p
i

pp
i xXEXf ∂∂= )()( be the “expected profit 

value which an individual in the p th species using 
the i th strategy obtains per unit time”. Then, 
Eq.(15) is a replicator dynamics to solve an 
evolutionary game problem of P  species 
employing mixed strategies. 
 
Next, we derive a dynamics to search for the 
normalized Nash equilibrium solution of constraint 
interference type Eq.(4) using a similar procedure 
as the constraint independent type mentioned 
above. Let us consider a gradient vector 
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with respect to the i th component vector ix  in 

Eq.(9). Note that the partial derivative of p
ix  is 

only employed with respect to pE , because 
pqxXE p

i
q ≠=∂∂  ,0)( in Eq.(9). Multiplying 

Eq.(16) by an inverse PP×  variable metric 
matrix 

NixM p
ii ,,1 ),diag()(1 L==− x ,                                                       

 
(17) 

we obtain a PP×  variable metric projection 
matrix operator which projects each component of 
Eq.(16) to its simplex constraint (Eq.(4b)), by 
taking the inverse matrix of Eq.(17) as the matrix 
for the metric: 
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Using Eq.(17) and Eq.(18), we can consider a 
gradient dynamics on the region defined by the 
simplex constraint: 
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Expressing in terms of components, we obtain 
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Here, letting p
i

pp
i xXEXf ∂∂= )()( , 1=N , 

and px  be the “fraction of population (of a 
species) which choose the p th strategy”, and 

)(xpf be the “expected profit value which 
obtained per unit time by an individual employing 
the p th strategy”. Then, Eq.(20) is a replicator 
dynamics to solve an evolutionary game problem 
with single species. 
 

Lastly, we investigate a dynamics to search for the 
normalized Nash equilibrium solution of constraint 
interference type Eq.(5), in which  double 
constraints with respect to allocations of the 
production ability and the market share are  
imposed  simultaneously. In order to apply the 
results of the above constraint interference type to 
the double constraint case directly, we transform 
the PN × matrix variable X  to the PN ×  
dimensional column vector variable as 

TTPT ),,( 1 xxX L= , and reform the double 
constraints Eq.(5b), (5c) as a linear equality 
constraint of vector-matrix form cAX =  with a 

)()( PNNP ××+  coefficient matrix A . That is, 
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Here, we have to notice that an arbitrary element 
of equality cAX =  is satisfied, because the sum 
of Eq.(8b) is equal to the sum of  Eq.(8c) under the 
balancing condition of  supplies and demands in 
Eq.(6), and then 1rank −+= PNA .  Let A  be 
the )()1( PNNP ××−+ matrix in which an 
arbitrary row of matrix A  is deleted. Trough a 
similar way to constraint interference type Eq.(4), 
we can propose a dynamics to search for the 
normalized Nash equilibrium solution of a game 
problem with a double allocation type of  
interference constraints as follows: 
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Here, we regret that )()( PNPN ××× variable 

metric projection matrix )(XA
MQ  cannot be 

expressed by a simple formula as Eq.(13) or 
Eq.(18), because the inverse 11 ))(( −− TM AXA  
cannot be formulated explicitly.  

 

 

5. Simulations of Dynamic to the Normalized 
Nash Equilibrium for the Double Resource 
Allocation Problem 

For simplicity, we consider a three-person 
( P =3) game with three products ( N =3). Even in 
the simplest model, there is no loss of generality in 
the model described in section 2. As a concrete 
example, there are three automobile companies, 
and three of them produce three types of 
automobiles, namely ordinary, medium and luxury 
cars. The decision variables are  
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where pqiθ is a loss parameter suffered by the i -

product when p -player produces p
ix and q -

player produces q
ix . In economics of firms, gain is 

the corporate profit and loss is various kinds of 
conjectural costs. The constraints are the double 
allocation type of the production ability and the 
market share as Eq.(5b) and Eq (5c)  and set 

1321 === aaa , 1 , 321 === bbb for simplicity.  
Concretely, for firm 1, the gain from products 1, 2 
and 3 are indicated respectively as: 
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The difference in the functions p

if  is due to that of 
production technology for products and firms. The 
profit function ),,( 3211 xxxE  for firm 1 is 
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where 112111,θθ and 113θ are assumed to be zero. 
For firm 2, the gain functions for products 1, 2 and 
3 are, respectively: 
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where 222221,θθ and 223θ  are assumed to be zero.  
 
 The profit function, ),,( 3213 xxxE , for firm 3 is 
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where 332331,θθ  and 333θ are assumed to be zero.   
In the first simulation, we fixed the eighteen 

values of pqiθ ’s as the same as 0.5 and get the 
normalized Nash equilibrium solution for the 
decision variables of ),,( 321 xxx=X . Table 1 
indicates the change in the normalized Nash 
equilibrium value for ),,( 321 xxx=X  from the 
initial values to the converged values. 
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Table 1. Converged values for X  from )0(X   
 

Initial values of )0(X       →       
Converged values of X  

0.001  0.001  0.998 |    0.037  0.418 0.545 
                                | 
0.001  0.998  0.001 |    0.428  0.306 0.266 
                                | 
0.998  0.001  0.001 |    0.535  0.276  0.189 

 
In the second simulation, we changed the 

conjectural variation of firm p  against q  from 
4.0 to 3.0 due to product differentiation. Table 2 
indicates the Nash equilibrium solution for  

),,( 321 xxx=X  by changing the parameters of 

pqiθ ’s. From Table 2, we understand the changes 
of the product mix for firms 1, 2 and 3 due to 
changes in the parameter of pqiθ ’s. In the 
oligopoly market, the conjectural variation plays 
an important role in determining the share of the 
products within a firm and among firms. 
 
Table 2. Converged values for X  from )0(X  
(a) 0.4  0.4  ,0.4 321 === qiqiqi θθθ          

Initial values of )0(X      →        
Converged values of X  

0.001   0.001  0.998  |   0.75   0.25   0.00 
                                  | 
0.001   0.998  0.001  |   0.25   0.75   0.00 
                                  | 
0.998   0.001  0.001  |   0.00   0.00   1.00 

 
(b)  0.4  0.4  ,0.3 321 === qiqiqi θθθ           

Initial values of )0(X      →        
Converged values of X  

0.001  0.001  0.998 | 1.00   0.00  0.00 
                                     | 
0.001  0.998  0.001 |  0.00  1.00  0.00 
                                    | 
0.998  0.001  0.001 |  0.00  0.00  1.00 

 
  (c)  0.4  0.3  ,0.4 321 === qiqiqi θθθ  

Initial values of )0(X      →        
Converged values of X  

0.001  0.001  0.998  |   1.00  0.00  0.00 
                                 | 
0.001  0.998  0.001  |  0.00  1.00  0.00 
                                 | 
0.998  0.001  0.001  |  0.00  0.00  1.00 

 (d) 0.3  0.4  ,0.4 321 === qiqiqi θθθ                

Initial values of )0(X      →        
Converged values of X  

0.001  0.001  0.998 |  0.75  0.25  0.00 
                                | 
0.001  0.998  0.001 |  0.24  0.76  0.00 
                                | 
0.998  0.001  0.001 |  0.00  0.00  1.00 

 
 
6. Conclusion 

Using the Nash equilibrium simulation 
model, we can generate various kinds of optimal 
paths for changing the conjecture between two 
firms. In the simulation the share of products 
produced varies according to changes in 
conjecture. To test the validity of the Nash 
equilibrium model, we need to construct an 
empirical model using existing data for oligopoly 
markets by estimating profit functions. The 
conjectural factor is calculated by the gap between 
observed data and estimated values. 
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