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EXTENDED ABSTRACT 

Native vegetation mapping has historically 
focussed on mapping the extent and composition 
(i.e. species and communities) of vegetation. 
However, policy makers have recently expressed a 
need for maps of native vegetation condition to 
assist with various aspects of native vegetation 
management (see Ecological Management and 
Restoration, Special Issue on Native Vegetation 
Condition Mapping, v.7, 2006). However a major 
challenge confronting researchers is to develop 
appropriate methods for extending site-based 
assessments of native vegetation condition to maps 
of native vegetation condition.  

Zerger et al (2006) and Newell et al (2006) have 
proposed methods for creating maps of native 
vegetation condition by integrating GIS, remote 
sensing and predictive modelling. The methods 
rely on the use of spatially explicit models (e.g. 
statistical or neural networks) which assume a 
relationship between explanatory data available 
through GIS and remote sensing layers; and the 
response at the site or plot. Zerger et al. (2006) 
have argued that remote sensing has the potential 
to be an excellent predictor of native vegetation 
condition, in concert with traditional GIS-derived 
variables in a spatial model.  

However, building remote sensing databases to 
represent such variables as vegetation cover, 
vegetation patch connectivity or the use of remote 
sensing indices such as the normalised difference 
vegetation index (NDVI) can be an expensive and 
time consuming component of a model building 
exercise. This becomes a particular problem for 
practitioners and natural resource managers who 
generally do not have access to high level image 
processing capabilities. For example, depending on 
the size of the study area, a key operational 
challenge may be to make a decision between high 
spatial but smaller swath width SPOT5 imagery, or 
multispectral Landsat TM data. 

 

Via a case study predictive modelling experiment 
in the Murray Catchment of NSW Australia, this 
research compares the relative merits of 
regional/national scale Landsat satellite imagery 
and local scale SPOT5 satellite imagery for 
mapping native vegetation condition. As such the 
analysis provides an indication of the role of scale 
for native vegetation condition modelling.  

The comparison of data scale is conducted by 
comparing the differences which emerge from 
predictive spatial models of native vegetation 
condition. Separate models are constructed for 
each scale of data. For the purposes of the 
comparison, modelling is conducted using 
Generalised Additive Modelling for 249 stratified 
vegetation condition plots acquired specifically for 
this study. Predictive models are evaluated using 
cross-validation methods.  

Results show that there is limited difference 
between models developed using SPOT5 to those 
developed using Landsat TM data. We attribute 
this to issues of image seasonality and the 
challenges of developing image mosaics at 
regional scales, and the finer spectral resolutions 
inherent in Landsat TM data. Results from the 
evaluation have operational relevance to state and 
regional natural resource management bodies 
intending to develop regional maps of native 
vegetation condition to support their planning 
activities.  
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1. INTRODUCTION 

Ongoing research by the authors (Zerger et al. 
2006) has argued that remote sensing, in concert 
with GIS explanatory variables, should play an 
important role in any predictive spatial modelling 
of native vegetation condition. Remote sensing can 
complement the use of GIS-derived variables such 
as topographic position, land use, vegetation cover 
as it is a direct predictor of vegetation attributes. 
GIS variables on the other hand can be seen as 
indirect or surrogate variables. As it senses 
primary vegetation attributes, remote sensing also 
has the potential to contribute to the development 
of monitoring tools for native vegetation condition. 

This paper examines the relative merits of two 
scales of remote sensing data (Landsat TM and 
SPOT5) in concert with GIS surrogates, as 
possible predictors of native vegetation condition. 
The assessment of scale is important for 
operational reasons as both satellite products are 
the most common operational platforms in 
Australia. Each platform provides a number of 
advantages and disadvantages including cost, ease 
of processing and spectral/spatial resolution. For 
example, the swath width of Landsat TM imagery 
means that complex edge-matching for regional 
scale mapping is not required. On the other hand, 
SPOT 5 provides spatial resolutions of 
approximately 10 metres ensuring that it is 
possible to map smaller vegetation remnants and 
scattered paddock trees.  

This paper introduces the study area and discusses 
the predictive modelling methods with a particular 
emphasis on the remote sensing data and the 
respective indices and predictor variables derived 
from satellite imagery. Generalised additive 
modelling (GAM) results are presented for two 
structural vegetation attributes and model 
performance is evaluated using cross-validation 
methods. The relative contribution of SPOT5 and 
Landsat TM to the predictive models is examined 
and the discussion provides possible reasons for 
the observed differences. 

2. STUDY SITE 

The New South Wales Murray Catchment spans 
approximately 35,362 square kilometres extending 
from east of Khancoban to some 50 km west of 
Swan Hill. The catchment is considered one of the 
most modified regions in Australia owing to a 
history of agricultural production resulting in 
extensive clearing of native vegetation. It is 
estimated that 22% of the catchments’ woody 
native vegetation remains with half of this reserved 
in several major national parks (Miles 2001). 

Consequently, a large proportion of the remnant 
native vegetation occurs either on private land, 
roadside vegetation and travelling stock reserves. 
As with other agricultural regions, the landscape is 
highly fragmented with many small isolated 
patches of remnant vegetation not linked to any 
major conservation easements. The project study 
area is situated across two 1:100,000 scale map 
sheets (561,316 ha) in the Murray Catchment Area 
(CMA) of NSW (Figure 1).  

 

Figure 1. Study site map showing the location of 
BioMetric plots in the Murray CMA. 

3. METHODS 

There are a number of studies where statistical 
modelling, combined with GIS has been used to 
spatially predict vegetation species and community 
composition, rather than vegetation condition. 
Methods can include generalised linear and 
additive modelling, genetic algorithms (Newell et 
al. 2006) and classification and regression trees to 
name only a few. Elith et al. (2006) provide a 
detailed comparison of these methods from the 
perspective of model performance. 

These methods all take advantage of regional-scale 
GIS databases such as high-resolution digital 
elevation models and their derived variables 
(slope, aspect, and topographic indices), soil and 
geology layers, climatic variables, land use and 
land tenure. Owing to the scale of generally 
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available GIS data, modelling is typically 
conducted at regional or larger scales (catchments 
and sub catchments). 

In this study, spatially explicit explanatory 
variables are explored as possible predictors of 
native vegetation condition. Spatially explicit 
predictors include remote sensing indices 
(Normalised Difference Vegetation Index, 
Perpendicular Vegetation Index, Greenness, Soil 
Adjusted Vegetation Index), and a suite of GIS 
predictors including digital elevation models, land 
use, landscape connectivity and vegetation cover 
to name a few. Landscape connectivity and 
vegetation cover layers are also derived from 
satellite imagery (SPOT5 and Landsat TM).  

The relationship between explanatory variables 
and the vegetation condition attributes are explored 
and modelled using Generalised Additive 
Modelling (GAMs) under the GRASP framework 
(Lehman et al. 2003). Prior to model building, 
explanatory variables were tested for collinearity 
(r2 > 0.8) and informed decisions were made 
regarding which variable should be removed from 
further analysis. Variables which are relatively 
simpler to derive or interpret, and ecologically 
intuitive variables were retained as candidates for 
modelling. Results are expressed in the scale of the 
additive predictor before transformation into the 
prediction scale by a link function. Variable 
selection was made using a stepwise (forward & 
backward) selection process using an Akaike 
Information Criteria (AIC) test.  

Site data were collected using the ‘BioMetric’ 
methodology which underpins the NSW Property 
Vegetation Planning (PVP) process 
(http://www.nationalparks.nsw.gov.au/ 
npws.nsf/Content/BioMetric_tool Last Accessed: 
July 10, 2007). Although the BioMetric 
methodology contains 10 attributes (Table 2), this 
paper presents the results for only two of these. 
These include cover of native grasses and the 
volume of fallen logs at a site. These site condition 
attributes were chosen because they are important 
components of the composite site condition score 
in BioMetric and because it was thought they were 
likely to be described well by predictor variables 
derived from remote sensing and GIS data. 

Table 2. ‘BioMetric’ Attributes captured at each 
field site (variables marked * are those examined 

in this paper) 

‘BioMetric’ Attribute 

Native Plant Species Richness 
Exotic Plants 
* Native Ground Cover - Grasses 
Native Ground Cover - Other 
Native Ground Cover - Shrubs 
Native Mid Storey Cover 
Native Over Storey Cover 
Organic Litter Cover 
* Volume of Fallen Logs 
Tree Hollows 
Regeneration 
Final BioMetric Score 

Geo-referenced SPOT5 panchromatic and 4-band 
multi-spectral imagery and Landsat 5 TM 7-band 
multi-spectral imagery were acquired for the 
Murray CMA study area. Landsat 5 imagery was 
used rather than Landsat 7 owing to continued 
problems with the Landsat 7 platform (scan line 
correction failure). SPOT5 data consist of six 
scenes captured on four different dates in three 
seasons (spring, summer and autumn). The two 
western images were captured on 30/10/2004 and 
the two eastern images on 26/01/2005. The two 
central images were captured on 19/03/2005 
(upper image) and 26/05/2005 (lower image).  

The Landsat 5 TM data consist of two scenes; the 
western image was taken on 04/02/2007 and the 
eastern image on 25/12/2006. The spatial 
resolution of the SPOT5 multi-spectral data are 10 
metres compared to the Landsat resolution of 30 
meters, allowing the crowns of individual large 
trees to be distinguished. Landsat has more bands, 
particularly in the thermal and shortwave infrared. 
The increased spectral resolution of the Landsat 
sensor should compensate for the reduced spatial 
resolution when vegetation classifications are 
undertaken.   

A key requirement for this research was to derive 
maps of woody vegetation cover to assist with 
landscape context analysis (patch size and 
landscape connectivity), and remotely sensed 
image indices which could help explain the 
condition of native vegetation through spectral 
analysis of pixel values. The following discussion 
describes the methods used to map vegetation 
configuration and density.  
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2.1. Vegetation Configuration and Density 

Percentage crown cover was derived using a 
woody vegetation layer derived from SPOT5 and 
Landsat 7 multispectral satellite imagery using a 
supervised classification. Percentage cover was 
then derived by applying a moving window 
technique where the output is the sum of values 
found in the window. This is converted to per cent 
cover, or vegetation density. Three moving 
window dimensions were tested to account for any 
model sensitivity to analysis window size. Moving 
windows of 5 x 5, 10 x 10 and 20 x 20 cells were 
tested in the model (cell size of 10 metres for 
SPOT5 and 25 metres for Landsat TM). In 
addition to the mapping of per cent crown cover, 
the classified woody vegetation layer was also 
used to develop a ‘habitat connectivity’ layer using 
the methods of Drielsma et al. (2007). Remnant 
patch size was also calculated using the vegetation 
layer. 

2.2. Remote Sensing Indices 

Using Landsat and SPOT multi-spectral mosaics, 
Normalised Difference Vegetation Index (NDVI), 
Perpendicular Vegetation Index (PVI), Soil 
Adjusted Vegetation Index (SAVI) and Greenness 
indices were calculated by applying the relevant 
vegetation index function to the band-math tool of 
ENVI 4.3. The NDVI index is the ratio of near 
infrared to red fraction in the radiated or reflected 
spectrum. NDVI uses the band-math expression 
(NIR – red) / (NIR – red), calculating values for 
each pixel in an image. Values of zero indicate 
bare dry soil or water. NDVI values between zero 
and one indicate the presence of vegetation, the 
higher the NDVI value the greater the vegetation 
vigour.  

PVI defines for each pixel in a dataset the distance 
that the vegetation radiance is located from the 
plane of soil reflectance. PVI is calculated using 
the expression sin(a)NIR – cos(a)red where the 
value a is the angle that lies between the soil line 
and the near infrared axis. The soil line is a 
hypothetical line in spectral space that describes 
the variation in the spectrum of dry bare soil in an 
image. PVI has poor dynamic range but it is 
sometimes better at discerning vegetation in scenes 
of low plant cover compared to NDVI.   

SAVI minimises soil brightness induced variation 
that occurs in other vegetation indices, as such it is 
the best index where low plant cover is concerned. 
Somewhat of a hybrid between the perpendicular-
based indices and the ratio-based indices SAVI is 
the ratio of near infrared to red fraction with the 
addition of a parameter to the red reflectance. The 

parameter L is empirically derived and ranges from 
zero for very high plant cover to a value of one for 
data with very low plant cover. Initially the 
Landsat and SPOT SAVI models included a 
constant value of 0.5 however it was found that 
increasing the constant to account for the low 
vegetation cover of the study area improved 
classifications. Greenness or Ratio Vegetation 
Index is the division of brightness values within 
the near infrared band by the corresponding red 
band values.  

To ensure that remotely sensed vegetation indices 
were representative of the response observed 
across an entire BioMetric plot, the mean index 
value was calculated across the plot. To examine 
the role of spectral heterogeneity, the standard 
deviation of each index over a 1000 m2 area 
(BioMetric plot) was also derived. 

3. RESULTS & DISCUSSION 

Figure 2 shows the frequency distribution for two 
of the BioMetric structural attributes for the 
Murray CMA. The histograms show patterns 
which can be expected in these fragmented and 
intensely modified landscapes. For example, some 
50 sites have no observed fallen logs and the 
distribution is skewed. Similarly, the percentage of 
native grasses along a BioMetric transect are 
relatively small, perhaps reflecting the drought 
conditions in these regions. Alternatively the 
effectiveness of the stratification may drive these 
patterns.  
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Figure 2. Frequency histogram showing 
distribution for two BioMetric variables including 
the volume of fallen logs and native ground cover 

(grasses) scores for 249 plots 
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Table 2. Candidate vegetation condition predictor 
variables – correlated  variables ( r2 > 0.8) have 

already been removed  
 

Predictor Variables Name 
Remote Sensing SPOT  
SPOT5 RSI (greenness)  Focal Mean grn_sp_fmrc25 
SPOT5 NDVI Focal Mean ndvi_sp_fmr25 
SPOT5 RSI (greenness) Focal Std. Dev. grn_sp_fstd 
SPOT5 NDVI Focal Std. Dev. ndvi_sp_fstd 
SPOT5 PVI Focal Std. Dev. pvi_sp_fstd 
SPOT5 Vegetation Cover (10 x 10) svcover10 
SPOT5 Vegetation Patch Area woodypatch_sp 
SPOT5 Landscape Connectivity sp_cba_07 

Remote Sensing Landsat TM  
Landsat 5 TM PVI pvi_ls5tm 
Landsat 5 TM NDVI Focal Mean ndvi_ls_fmr25 
Landsat 5 TM NDVI Focal Standard 
Deviation 

ndvi_ls_fstd 

Landsat TM Vegetation Cover (4 x 4 
window) 

lcover4 

Landsat TM Vegetation Cover (10 x 10 
window) 

lcover10 

Landsat TM Landscape Connectivity ls_cba_07 
Landsat TM Vegetation Patch Area woodypatch_ls 

DEM Related  
Elevation (25 metre DEM) dem25 
Topographic Position Landform (4 
classes) 

landform 

Topographic Position (Continuous) tpos150 
Topographic Roughness (2 x 3 window) demfsd3 

Other  
Land Use landuse 
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Figure 3.  Partial response curves -  Volume of 
Fallen Logs (Landsat TM) - dashed lines represent 
upper and lower point wise twice-standard-error 

curves. 
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Figure 4.  Partial response curves -  Ground Cover 
Grasses (Landsat TM) – dashed lines represent 

upper and lower point wise twice-standard-error 
curves. 
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Figure 5.  Partial response curves -  Volume of 
Fallen Logs (SPOT5) - dashed lines represent 

upper and lower point wise twice-standard-error 
curves. 
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Figure 6.  Partial response curves -  Ground Cover 
Grasses (SPOT5) - dashed lines represent upper 

and lower point wise twice-standard-error curves. 

Table 3. Final GAM model performance (r2) for 
selected BioMetric attributes derived from cross 

validation (249 samples and 10 groups) 
 

Vegetation Attribute SPOT5 Landsat 

Volume of Fallen Logs 0.21 0.27 

Native Ground Cover 
Grasses 

0.50 0.47 

 

Figure 6.  Example spatial prediction from 
GRASP modelling – Landsat TM derived 

prediction of volume of fallen logs . 

Table 2 shows the final list of candidate variables 
after removal of variables correlated above an r2  

value of 0.8. This reduces a relatively large 

number of candidate modelling variables to 15 
(SPOT5) and 14 (Landsat TM). Figures 3, 4, 5 and 
6 show the response curves for selected predictor 
variables for both volume of fallen logs (SPOT5 
and Landsat TM) and native grasses (SPOT5 and 
Landsat TM).  

For all models, a remotely sensed predictor was 
selected in the final model. This ranged from a 
simple mean NDVI for the plot (native grasses 
SPOT5 model) to a combination of greenness and 
NDVI (volume of fallen logs SPOT5). If we look 
at the final models, results are consistent with what 
we would expect in these landscapes. For example, 
for the volume of fallen logs (Landsat TM), 
topographic position (tpos150) is selected as a 
predictor where we see a pattern of higher quality 
vegetation in low parts of the landscape (drainage 
channels or riparian corridors), decreasing 
vegetation quality on the flats and slopes where the 
primary intensive land uses (grazing and cropping) 
occur and then higher quality vegetation on ridges, 
albeit not as high quality as that observed along 
drainage channels. Of particular interest is Figure 6 
and the contribution of vegetation cover 
(svcover10) to the final native grass model. 
Namely, we see lower densities of grasses where 
vegetation cover is less, increasing steadily as the 
cover increases but then witness a steady decrease 
as the cover passes a threshold. This is 
ecologically sensible as it summarises the 
relationship between overstorey competition and 
the impact of this on declining densities of native 
grasses. 

Interesting patterns are observed when we look at 
elevation (dem25) as a surrogate for vegetation 
condition for the SPOT5 models (Figure 5). 
Namely we witness a steady increase in the 
volume of fallen logs when we move to higher 
positions in the landscape. Where a remotely 
sensed variable has been selected as a predictor of 
the structural attribute, modelled responses are also 
sensible. For example, in the case of volume of 
fallen logs and NDVI we see an increase in NDVI 
as the volume of fallen logs increases. As NDVI 
typically provides some indication of vegetation 
‘vigour’ we would expect this to lead to a greater 
density of fallen logs at the plot. 

Table 3 summarises the results from modelling by 
cross validation using a k-folds process with ten 
groups. Results are expressed in terms of r2 values.  
Results highlight that there is little difference 
between the results obtained for the volume of 
fallen logs and native ground cover (grasses) when 
modelling with either Landsat TM or SPOT5 data. 
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4. CONCLUSION 

Results have shown that for some vegetation 
condition attributes (volume of fallen logs and 
native grasses) it is reasonably difficult to obtain 
predictive accuracies in excess of an r2 of 0.5 when 
building regional scale spatial predictions. For the 
models tested in this study, spectral remote sensing 
indices were always selected as significant 
predictors of native vegetation condition. This is 
important as remote sensing data senses primary 
attributes of native vegetation rather than acting as 
surrogates for disturbance as is the case with most 
GIS derived variables (e.g. topographic position). 
This provides some important opportunities for 
developing monitoring systems. 

The results have also shown that there is very little 
statistical difference between outcomes when 
different scale remote sensing data is used in the 
GAM modelling (SPOT5 versus Landsat 5). We 
attribute the relatively limited predictive power of 
SPOT5 to image seasonality issues and the 
challenges of developing appropriately corrected 
mosaics at regional scales. Landsat TM data do not 
have the same limitations as it has a significantly 
larger swath width. This has important operational 
implications as generating SPOT5 mosaics at 
regional scales is a challenging and expensive 
process owing primarily to image seasonality. In 
addition, when using spectral indices derived from 
remote sensing, Landsat TM data also provides 
greater spectral resolution which may overcome its 
relatively poorer spatial resolutions (30 metres 
versus 10 metres for SPOT5).  

This study has also found that relying on archival 
satellite imagery such as SPOT5 and Landsat has 
inherent limitations as it is difficult to obtain 
neighbouring scenes of similar seasonality and 
which are cloud free at regional scales. Image 
seasonality plays an important role in determining 
the effectiveness of the modelling as was seen by 
the limited utility of the SPOT5 imagery compared 
to Landsat TM. Consequently for both operational 
purposes and for optimal model performance it is 
more effective to utilise Landsat TM data for 
regional scale native vegetation condition 
mapping. Although not discussed in this paper, 
modelling results for other BioMetric variables are 
consistent with these conclusions. 

5. ACKNOWLEDGEMENTS 

The authors acknowledge the contribution of the 
Murray CMA and its staff (Emmo Willinck, 
Alexandra Knight and Jack Chubb), the NSW 
Environmental Trust and the Australian 
Government Department of Environment and 

Water Resources (Peter Lyon) for their ongoing 
support of the project. 

6. REFERENCES 

Drielsma, M., G. Manion and S. Ferrier (2007). 
The spatial links tool: Automated mapping 
of habitat linkages in variegated landscapes. 
Ecological Modelling 200(3-4): 403-411. 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, 
S. Ferrier, A. Guisan, R. J. Hijmans, F. 
Huettmann, J. R. Leathwick, A. Lehmann, 
J. Li, L. G. Lohmann, B. A. Loiselle, G. 
Manion, C. Moritz, M. Nakamura, Y. 
Nakazawa, J. McC. M. Overton, A. 
Townsend Peterson, S. J. Phillips, K. 
Richardson, R. Scachetti-Pereira, R. E. 
Schapire, J. Soberón, S. Williams, M. S. 
Wisz and N. E. Zimmermann (2006). Novel 
methods improve prediction of species' 
distributions from occurrence data. 
Ecography 29(2): 129-151. 

Lehman, A., Overton, J. McC. and Leathwick, J. 
R., (2003) GRASP: generalized regression 
analysis and spatial prediction, Ecological 
Modelling 160: 165-183. 

Miles, C. (2001) NSW Murray Catchment 
Biodiversity Action Plan, Nature 
Conservation Working Group, pp. 86. 

Newell, G. R., M. D. White, P. Griffioen and 
Conroy, M. (2006). Vegetation condition 
mapping at a landscape-scale across 
Victoria. Ecological Management & 
Restoration 7(s1): S65-S68. 

Zerger, A., P. Gibbons, S. Jones, S. Doyle, J. 
Seddon, S. V. Briggs and D. Freudenberger 
(2006) Spatially modelling native 
vegetation condition. Ecological 
Management & Restoration 7(s1): S37-S4 

 

1314




