
The Effect of LiDAR Data Density on DEM Accuracy  
Liu, X. 1,2, Z. Zhang 2, J. Peterson 2 and S. Chandra 2 

¹Australian Centre for Sustainable Catchments and  
Faculty of Engineering and Surveying 

University of Southern Queensland 
Toowoomba, Qld 4350, Australia  

2Centre for GIS, School of Geography and Environmental Science 
Monash University, Clayton, Vic 3800, Melbourne, Australia 

Email: Liux@usq.edu.au 
 

Keywords: DEM, LiDAR, data reduction, accuracy 
 

EXTENDED ABSTRACT 
 
Digital Elevation Models (DEMs) play an important 
role in terrain related applications, and their accuracy 
is crucial for DEM applications. There are many 
factors that affect the accuracy of DEMs, with the 
main factors including the accuracy, density and 
distribution of the source data, the interpolation 
algorithm, and the DEM resolution. Generally 
speaking, the more accurate and the denser the 
sampled terrain data are, the more accurate the 
produced DEM will be. Traditional methods such as 
field surveying and photogrammetry can yield high 
accuracy terrain data, but are very time consuming 
and labour intensive. Moreover, in some situations 
such as in densely forested areas, it is impossible to 
use these methods for collecting elevation data. Light 
Detection and Ranging (LiDAR) offers high density 
data capture. The high accuracy three dimensional 
terrain points prerequisite to very detailed high 
resolution DEMs generation offers exciting prospects 
to DEM builders. However, because there is no 
sampling density selection for different area during a 
LiDAR data collection mission, some terrains may be 
oversampled thereby imposing increases in data 
storage requirements and processing time. Improved 
efficiency in these terms can accrue if redundant data 
can be identified and eliminated from the input data 
set. With a reduction in data, a more manageable and 
operationally sized terrain dataset for DEM 
generation is possible (Anderson et al., 2005a). 
 
The primary objective of data reduction is to achieve 
an optimum balance between density of sampling and 
volume of data, hence optimizing cost of data 
collection (Robinson, 1994). Some studies on terrain 
data reduction have been conducted based on the 
analysis of the effects of data reduction on the 
accuracy of DEMs and derived terrain attributes. For 
example, Anderson et al. (2005b) evaluated the 

effects of LiDAR data density on the production of 
DEM at different resolution. They produced a series 
of DEMs at different horizontal resolutions along a 
LiDAR point-density gradient, and then compared 
each of these DEMs to a reference DEM produced 
from the original LiDAR data, this having been 
acquired at the highest available density. Their 
results showed that higher resolution DEM 
generation is more sensitive to data density than is 
lower resolution DEM generation. It was also 
demonstrated that LiDAR datasets could withstand 
substantial data reductions yet still maintain 
adequate accuracy for elevation predictions 
(Anderson et al., 2005a) 
 
This study explored the effects of LiDAR point 
density on DEM accuracy and examined to scope 
for data volume reduction compatible with 
maintaining efficiency in data storage and 
processing. Something of the relationship between 
data density, data file size, and processing time also 
emerges from this study.  
 
The study area (113 km²) falls within the 
Corangamite Catchment Management Authority 
(CCMA) region, (south western Victoria, 
Australia). LiDAR data points were first randomly 
selected and separated to two datasets: 90% for 
training data and 10% for check points. Training 
datasets were used for subsequent reduction to 
produce a series of datasets with different data 
density, representing the 100%, 75%, 50%, and 
25%, 10%, 5%, 1% of the original training dataset. 
Reduced datasets were used to produce 
correspondent DEMs with 5 m resolution. Results 
show that there is no significant difference in DEM 
accuracy if data points are reduced to 50% of the 
original point density. Processing time for DEM 
generation can thus be reduced to half of the time 
needed when using the original dataset.  
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1. INTRODUCTION 

Digital Elevation Models (DEMs) play an important 
role in terrain-related applications, the success of 
which refers, among other things to accuracy. Of the  
many factors that affect the accuracy of DEMs, the 
accuracy, density and distribution of the source data, 
the interpolation algorithm, and the DEM resolution 
or grid size are the main factors (Gong et al., 2000; 
Kienzle, 2004; Li et al., 2005; Fisher and Tate, 2006). 
Generally speaking, the more accurate and the denser 
the sampled terrain data are, the more accurate the 
derived DEM will be. Competent application of 
traditional methods such as field surveying and 
photogrammetry yields high accuracy terrain data, but 
they are time consuming and labour intensive. In 
some terrains, for example, in densely forested areas, 
it is even impossible to use these methods for 
collecting elevation data. Light Detection and 
Ranging (LiDAR) provides an alternative high 
density and high accuracy three dimensional terrain 
point data acquisition. The principles of LiDAR and 
using LiDAR data to produce high quality DEMs 
have been well documented (Lohr, 1998; Wehr and 
Lohr, 1999; Lloyd and Atkinson, 2006; Liu et al., 
2007). LiDAR data accuracy and density are such that 
reliable and high accuracy, high resolution DEM 
generation can be confidently contemplated.  
  
The primary objective of data reduction is to achieve 
an optimum balance between density of sampling and 
volume of data, hence optimizing the cost of data 
collection (Robinson, 1994). If the input data are not 
strictly regular in distribution, much depends on 
choice of and access to a suitable interpolation 
method. Tests of alternative approaches (Zimmerman 
et al., 1999) show that none of them is of universal 
applicability. If sampling data density is high, the 
IDW (inverse distance weighted) method performs 
well (Ali, 2004; Blaschke et al., 2004; Chaplot et al., 
2006). Because LiDAR data have high sampling 
density, the IDW method is sufficient for 
interpolating LiDAR data (Anderson et al., 2005a; 
Liu et al., 2007). 
 
Using appropriate interpolation, very detailed high 
resolution DEMs with high accuracy can be generated 
from high density LiDAR data. However, because 
there is no scope to match data acquisition density by 
terrain type during a LiDAR data collection mission, 
some oversampling is usually inevitable. As a result,   
the data storage requirement and processing times 
will be higher than necessary. Strategies for handling 
the large volumes of terrain data without sacrificing 
accuracy are required (Kidner and Smith, 2003) if 

efficiency is to be considered (Bjørke and Nilsen, 
2002; Pradhan et al., 2005). Through informed 
reduction in data (i.e. ratio of the information 
content to the volume of the dataset) (Chou et al., 
1999), a more manageable and operationally sized 
terrain dataset for DEM generation is possible 
(Anderson et al., 2005a).  
 
Some studies on terrain data reduction have been 
conducted based on the analysis of the effects of 
data reduction on the accuracy of DEMs and 
derived terrain attributes. For example, Anderson et 
al. (2005b) evaluated the effects of LiDAR data 
density on DEM production at a range of 
resolutions. They produced a series of DEMs at 
different horizontal resolutions along a LiDAR 
point density gradient, and then compared each 
DEM produced with different LiDAR data density 
at a given horizontal resolution, to a reference DEM 
produced from the original LiDAR data (the highest 
available density). Their results show that higher 
resolution DEMs are more sensitive to data density 
than lower resolution DEMs. It was demonstrated 
that LiDAR datasets could withstand substantial 
data reductions yet maintain adequate accuracy for 
elevation predictions (Anderson et al., 2005a).  
 
This study explored the effects of LiDAR data 
density on the accuracy of DEMs and examined to 
what extent a set of LiDAR data can be reduced for 
improving storage and processing efficiency in a 
moderate complex terrain area. It also attempted to 
examine the relationship between data density, data 
file size, and processing time. The choice of suitable 
DEM resolution based on terrain data density for 
the generation of an efficient DEM was discussed in 
detail.  
 

2. MATERIAL AND METHODS 

2.1. Study Area 

The study area is in the region of Corangamite 
Catchment Management Authority (CCMA) in 
south western Victoria, Australia. Terrain types 
vary between the comparatively treeless basins of 
internal drainage on Victoria Volcanic Plains (VVP) 
to dissected terrains north and south. The plains 
have high priority for a range of research projects 
pertaining to environment management issues 
addressed in the catchment management strategy 
plan. In this study, a 113 km² sub-catchment area of 
moderate terrain complexity and covered by LiDAR 
data was selected as the test site, shown in Figure 1.  
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Figure 1. Study area: terrain height varies between 303m and 139m 
 

 

2.2. Data 

LiDAR data for an area of 6900 km², covering most 
part of VVP in the CCMA region, were collected over 
the period of 19 July 2003 to 10 August 2003. The 
primary purpose of this LiDAR data collection was to 
facilitate more accurate terrain pattern representation 
for the implementation of a serious of environment 
related projects. The LiDAR data were delivered by 
AAMHatch Pty Ltd as tiles in ASCII files containing 
x, y, z coordinates and intensity values. The data have 
been classified into ground and non-ground points by 
using data filter algorithms across the project area. 
Manual checking and editing of the data led to further 
improvement in the quality of the classification. The 
resulting data products used for DEM generation are 
irregularly distributed ground 3D points, with an 
average spacing of 2.2 m. The accuracy of LiDAR 
data was estimated as 0.5 m vertically and 1.5 m 
horizontally (AAMHatch, 2003). 

2.3. Methods 

Using the Geostatistical Analyst extension of 
ArcGIS 9.1, LiDAR data points were first randomly 
selected and separated to two datasets: 90% for 
training data and 10% for check points. Training 
datasets were used for subsequent reduction to 
produce a series of datasets with different data 
density, representing the 100%, 75%, 50%, 25%, 
10%, 5%, 1% of the original training dataset. 
Reduced datasets were used to produce a series of 
DEMs. In this study, all the DEMs were generated 
with 5 m resolution, thus isolating the effects of 
DEM resolution. The reason for separating training 
data as 90% and test data as 10% of the original 
dataset is to ensure the high density of the training 
dataset and provision of enough test dataset check 
points. In this case, the average density of training 
data is about 2.4 m (space interval), nearly same as 
the original dataset. In the test dataset, a total of 
465,136 points can be used as check points to assess 
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the accuracy of each of the range of DEMs produced. 
 
With the IDW interpolator, a DEM was produced for 
each of the seven datasets. Data density, file size and 
processing time for generating each of these DEMs 
were listed in Table 1. 
 
To assess the accuracy of DEMs generated from 
reduced LiDAR datasets with different data density, 
independent elevation checking is conducted by 
comparing elevation values of test data with 
correspondent elevation values interpolated from the 
DEM were calculated for each generated DEM. Root 
mean square errors (RMSEs) and standard deviation 
σ for each DEM were calculated to evaluate the 
overall accuracy of the DEM. The RMSE and σ were 
calculated with: 
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where, DEME is the elevation value from the DEM, 

and fERe is the correspondent reference elevation 

value from check points. n is the number of check 

points. E  is a calculated mean error with: 

E nEE fDEM∑ −= )( Re .  

 
Details of results are listed in Table 2. 

 
 

Table1. Data density, file size and processing time for DEM generation 
 

Reduced datasets Data density  
(points/per m²) 

Point data file size 
(MB) 

Processing time for 
DEM generation 

100% 0.037 444.0 14.31 h 
75% 0.028 360.0 12.31 h 
50% 0.018 240.0 7.00 h 
25% 0.009 120.0 3.12 h 
10% 0.004 48.6 57 m 
5% 0.002 24.4 27 m 
1%          less than 0.001 4.92 8 m 

 
 

 

Table 2. Accuracy assessment of DEMs with different data density. 
 

Reduced datasets Maximum elevation 
difference (m) 

Root mean square error 
(m) 

Standard deviation 
(m) 

100% 2.856 0.184 0.194 
75% 2.858 0.188 0.196 
50% 2.933 0.194 0.202 
25% 4.489 0.212 0.220 
10% 5.742 0.262 0.268 
5% 7.923 0.326 0.331 
1% 11.839 0.641 0.643 

 
 

3. RESULTS AND DISCUSSION 

As expected, data density reduction (i.e. increased 
space interval between data points) influences DEM 
accuracy: errors increased as data density decreased 
(Table 2). The larger distance between sampling 
points  adversely  affects  the  accuracy  of  generated  

 
 
 
DEMs (Anderson et al., 2005a). Compared with the 
DEM produced from the total LiDAR training 
dataset, however, there is no significant decrease in 
accuracy for the DEM generated from the 50% 
training dataset. This can be seen from Figure 2 in 
terms of both RMSE and standard deviation. 
Processing time for generating the DEM is only the 
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half of the time needed for generating the DEM using 
the total LiDAR training dataset. It should be note 
that the processing time listed in Table 2 may vary 
with the types of computer and software to be used. 
Point file size is also nearly the half of the total point 
file size. Therefore, for this study area and LiDAR 
dataset, at the given resolution of 5 m, the “efficient 
dataset” is the one with 50% of the original data 
density.  
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Figure 2. Data reduction and DEM accuracy 
 
 
This study shows that LiDAR dataset (density) 
reduction can increase the efficiency of DEM 
generation in terms of file size and processing time. 
However, to what extent a dataset can be reduced 
depends on the original data density, terrain 
characteristics, interpolation method for DEM 
generation, and target DEM resolution (grid size). In 
this study, the effects of LiDAR data reduction on the 
accuracy of DEM were evaluated for a terrain with a 
range of relative relief attributes. The IDW 
interpolation method and 5 m resolution were selected 
for all DEM generation. Further comparison with 
different interpolation methods and DEM resolution 
needs to be implemented if comprehensive guidelines 
are to be assembled.  
 
It is inappropriate to generate a high resolution DEM 
with very sparse terrain data: any surface so generated 
is more likely to represent the shape of the specific 
interpolator used than that of the target terrain  
because interpolation artefacts will abound 
(Florinsky, 2002; Albani et al., 2004). The source 
data density constrains the resolution of DEM  
(Florinsky, 1998). On the other hand, generating a 

low resolution DEM from high density terrain data 
will devalue the accuracy of the original data.  
 
Clearly, the choice of the adequate resolution of a 
DEM is constrained by terrain input data density. 
McCullagh (1988) suggested that the number of 
grid cells should be roughly equivalent to the 
number of terrain data points in covered area. The 
grid size of a DEM can be estimated by: 
 

n

A
S =              (3) 

 
where n is the number of terrain points and A is the 
covered area (Hu, 2003). This means that the DEM 
resolution should match the sampling density of the 
original terrain points.  
 
In this study, for the DEM with 5 m resolution, each 
grid has 0.75 points in average for the DEM from 
the 50% dataset. And so the DEM resolution 
roughly matches the source data density. This is one 
reason why the accuracy of the DEM still can be 
maintained while LiDAR data density could be 
reduced to 50% of its original data density. 
 
The ideal method for the assessment of the accuracy 
of a DEM is to compare the produced DEM with a 
“true” terrain surface. These kinds of “true” terrain 
surfaces are not available in practice. Although 
artificial terrain surfaces have been used to evaluate 
the effects of terrain complexity and interpolation 
methods on the accuracy of DEMs (Zhou et al., 
2006; Yilmaz, 2007), they are obviously not 
applicable for assessing the effects of sampled 
terrain data density. Using a DEM of relatively 
higher accuracy as a reference is an option, but 
access to such a DEM cannot be assumed when a 
new DEM-generation project is being implemented. 
The most commonly-used method is to compare 
interpolated elevation values from the DEM with a 
group of check points or with a subset of original 
points withheld from the generation of the DEM 
(Desmet, 1997; Yang and Hodler, 2000). Using 
RMSE or other accuracy measures the overall 
accuracy of the DEM can be evaluated. From a 
statistical point of view, the greater the number of 
check points, the more reliable the results. 
However, costs rise with number of check-points 
used. In this study, 10% of the original LiDAR data 
points (randomly selected) provided a sufficient 
number of check points (over 460,000 points) for 
evaluating the accuracy of DEMs produced at the 
different density levels. 
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The results of this study demonstrate possibilities for 
LiDAR data-set reduction before input to DEM 
generation routines. However, as mentioned, effective 
data reduction is affected by many factors and so 
further research is needed before a comprehensive set 
of guidelines can be assembled. It should also be 
noted that because not all data elements contribute 
optimally to the accuracy of produced DEM, the 
identification of feature-specific points (representing 
terrain features with more significant information 
content than other points) should be considered as an 
element in data volume reduction. Data reduction 
should be conducted in such a way that critical 
elements are kept while less important elements are 
removed (Chou et al., 1999).    
 

4. CONCLUSION  

LiDAR technology offers high accuracy and high 
density 3D terrain data capture for detailed 
representation of terrain surfaces. However, without 
sampling selection of high density data during input 
data preparation for DEM generation, the storage 
requirements and processing times can be inflated due 
to data redundancy. Terrain data-point reduction 
mitigates the data redundancy and improves data-
processing efficiency in terms of both storage and 
processing time. With guided data reduction, an 
efficient dataset can be identified for DEM 
generation. 
 
This study showed that LiDAR data can be reduced to 
a certain level without significantly decreasing the 
accuracy of the output DEM. For a moderate complex 
terrain, LiDAR dataset with an average spacing of 2.4 
m can be reduced to 50% of its original data density 
without degradation of the quality of the DEM. The 
accuracy of DEM produced using the 50% data 
reduction input data has no significant difference 
compared with the DEM produced from total original 
dataset. Such data reduction can lead to significant 
decrease of both data file size and processing time for 
DEM generation without compromising the DEM 
quality.  
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