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EXTENDED ABSTRACT 

Modeling of nature’s complexity is among the 
outstanding challenges we are faced with in the 
geophysical sciences. Although many ideas have 
been proposed throughout the years, the most 
common approaches, being based on notions 
related to chance, turn out to be insufficient to 
study, on an individual basis, the vast variety of 
patterns seen in nature. To this end, a novel 
deterministic fractal geometric procedure 
producing a host of interesting patterns over one, 
two or three dimensions, as transformations of 
multifractal distributions via fractal functions, is 
reviewed in this work. Inspired by the success in 
representing fluid turbulence via multiplicative 
cascades yielding multifractal measures, the novel 
approach represents other geophysical phenomena 
as a form of a “fractional integration” of such an 
underlying turbulence process performed using a 
suitable fractal function that transforms, say 
turbulence into rainfall. 

The ideas are illustrated via various examples over 
one and higher dimensions that include the 
modeling of a rainfall time series in Boston, USA 
and pollution concentration patterns at the Borden 
site in Canada. It is shown how the geometric 
procedure results in faithful deterministic 
representations of actual geophysical patterns that 
are wholistically defined with substantial 
compression ratios that often exceed 100:1. It is 
also explained how the ideas could lead to better 
understanding of the dynamics of evolving 
patterns by focusing on how the few parameters of 
consecutive patterns evolve. 

It is argued that finding simplicity at the root of 
complexity is an important challenge in science for 
years to come. Undoubtedly, geophysical 
complexity is very hard to quantify and as such 
there are, no doubt, other opportunities for 
improvement via extensions of the notions 
presented here and others. In regards to the work 
presented herein, it is recognized that more 

research is needed in order to solve a non-trivial 
inverse optimization problem for a given data set. 
It is also concluded that additional insight needs to 
be gathered so that the fractal gemetric procedure 
may be fully understood in terms of commonly 
defined physical knowledge, such as conservation 
principles and differential equations. 
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1. INTRODUCTION 

With recent technological advances and the 
development of sophisticated mathematical 
techniques, such as those based on fractal 
geometry, modeling of nature’s complexity has 
attained a new level. Although these ideas have 
resulted in a new language to describe the 
intricacies of data sets at hand, oftentimes such 
tools are insufficient to study, on an individual 
basis, the incredible variety of patterns available to 
us, say in geophysical applications. 

Since natural sets, such as time series, spatial 
patterns, and space-time sets, are typically erratic, 
noisy, intermittent, complex, or in short “random,” 
it has become natural to use stochastic (fractal) 
theories in order to model them. This has given 
rise to a variety of approaches that even though 
yield modeled sets, i.e. realizations that preserve 
relevant statistical and physical attributes of the 
records (e.g. autocorrelation function, power 
spectrum, moments, etc.), such are often unable to 
capture the specific details and textures found in 
individual data sets. 

Given that stochastic approaches, by definition, 
can only generate plausible realizations preserving 
some of the features, but not all of them, one is 
interested in, and as studies of nonlinear dynamics 
and deterministic chaos have revealed to us that 
details indeed matter (e.g. in climate studies; 
Lorenz 1963), the following questions arise: (1) 
Could it be possible to find suitable models of 
individual patterns that capture not only the overall 
trends and statistical features of the records but 
also their inherent details? (2) Could such a 
modeling approach help explain deterministically 
what otherwise appears to be random, as in 
deterministic chaos? and (3)  Could such ideas, by 
capturing details, be helpful in studying the 
underlying dynamics of such sets? 

Encouraged by the success in defining certain 
deterministic fractal sets via iterations of simple 
maps (e.g. Barnsley 1988), this work reviews a 
fractal geometric approach aimed at capturing the 
complexity of natural patterns. As shall be 
demonstrated herein, the geometric approach 
produces a vast class of patterns, defined over one, 
two, and higher dimensions, that resemble those 
found in a variety of geophysical applications, and 
that are defined as deterministic derived measures 
obtained transforming simple multifractal 
measures via fractal interpolating functions (e.g. 
Puente 1992). 

It is illustrated how this framework leads to 
interesting data sets, fully characterized in terms 

of few geometric parameters (i.e. the quantities 
that define the fractal function and the simple 
multifractal), that closely resemble geophysical 
patterns, such as rainfall time series and two- and 
three-dimensional pollution plumes. 

The organization of this paper is as follows. Given 
first is a review of the mathematical construction. 
This is followed by a variety of interesting 
examples that include irregular patterns over one 
and higher dimensions and applications to 
geophysical data sets. The article ends with its 
concluding remarks. 

2. A FRACTAL GEOMETRIC APPROACH 
 
The graph G of a fractal interpolating function, 
shaped as a “wire” from x to y and passing by 
N+1 points on the plane {(xn, yn): x0 < x1 < ... xN}, 
is defined as the unique attracting set of N simple 
affine maps as follows: 

( ) ( )0a ex xn nwn y yc d fn n n
⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (1) 

subject to the conditions:  

0 1
0 1

x xnwn y yn
⎛ ⎞ ⎛ ⎞−=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

,   (2) 

( ) ( )x xN nwn y ynN
= ,   (3) 

and 

|dn| < 1.    (4) 

Equations (2) to (4) ensure that the attractor G 
exists and that it contains the initial interpolating 
points. They also allow computing the wire 
parameters an, cn, en, and fn, in terms of the vertical 
scalings dn and the coordinates of the interpolating 
points, via simple linear equations (e.g. Barnsley 
1988; Puente 1992). At the end, a unique, and 
hence deterministic, set G is found that turns out to 
have a fractal dimension D between 1 and 2 (e.g. 
Puente 1994). 

In a practical setting, the graph of a fractal wire is 
obtained sampling the unique attractor dot by dot, 
starting the process at a point already in G and 
progressively reiterating the affine maps wn 
according to, for example, the outcomes of 
independent “coin” tosses (e.g. Barnsley 1988). As 
this process is carried out, it happens that a unique 
invariant measure is also induced over G that  
reflects how the attractor is being filled. The 
existence of such a measure allows computing 
unique (and fully deterministic) projections over 
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the coordinates x and y (namely dx and dy) that 
turn out to have irregular shapes as found in 
applications (e.g. Puente 1996). 

 

Figure 1. The fractal-multifractal framework. A 
multifractal measure dx is transformed via a fractal 
interpolating function f into a derived measure dy. 
(The scale in x is from 0 to 1, and the one in y is 
from -0.38 to 0.06. The vertical scales in dx and dy 
are not given here but both measures are 
normalized so that they add up to one). 

Figure 1 shows an example of these ideas for a 
fractal function that passes by the three points 
{(0,0), (1/2,-0.35), (1,-0.2)}, when the scalings of 
the two affine maps are d1 = -0.8 and d2 = -0.6. In 
addition to the attracting fractal wire f, the figure 
includes the implied projections dx and dy of the 
unique measure over the graph of f when the 
corresponding mappings w1 and w2 are iterated 
according to a 30-70% proportion, using 
“independent” pseudo-random numbers, starting 
the process from the mid-point (1/2,-0.35). 

Notice how, given the lack of dependence of y on 
x, i.e. on the first component of the affine 
mappings (Eq. 1), the implied measure over x is 
simply a deterministic binomial multifractal 
measure (Mandelbrot 1989). The measure dy, in 
turn, being related to dx via the deterministic 
fractal wire (one that has “noticeable” repetitions), 
is just the derived measure of dx via the wire f and 
is, hence, computed looking at all possible heights 
y and adding the corresponding “probabilities” 
from “events” that emanate from x (e.g. Puente 
1994). 

As is seen, the ideas lead to very interesting and 
random-looking measures dy, which as in the 
above example resemble, for instance, a rainfall 

data set as a function of time (e.g. Puente and 
Obregón 1996). As multifractal measures have 
been found relevant in studies of turbulence (e.g. 
Meneveau and Sreenivasan 1987), the projection 
sets given by these ideas, which turn out to 
perform a non-trivial fractional integration of a 
simple parent multifractal measure over x, may be 
assigned an interpretation as reflections or 
transformations of turbulence (e.g. Puente et al. 
1999). In what follows, it shall be shown how 
these ideas, and their extensions to higher 
dimensions, may be employed to represent a 
variety of complex natural sets over one and higher 
dimensions. 

3. ONE-DIMENSIONAL PATTERNS 

To illustrate the wide variety of patterns that may 
be generated via the fractal-geometric framework, 
this section includes few examples of one-
dimensional sets found from wires that pass by 
three interpolating points, and that resemble actual 
geophysical sets. 

Figure 2 shows five interesting “rainfall” like 
patterns made of 4096 points that include, in the 
middle, the one given in Figure 1. They all share 
the same parameters, except for their y1 value of 
the middle interpolating points, which ranges 
(from top to bottom) from -0.95 to 0.25 in 
increments of 0.3. 

Figure 2. Examples of one-dimensional 
deterministic measures found varying the 
interpolating coordinate y1. All patterns are 
normalized and have similar vertical scales. 
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Notice how the major peaks in these sets typically 
move from right to left and how these images, 
coming from fractal wires of equal dimensions, 
share similar intermittencies and textures. It also 
happens that such sets exhibit similar power-law 
power spectrum behaviors with spectral exponents 
in the vicinity of 1.27 and have varying degrees of 
decay in their autocorrelation functions [Figures 
not shown], as encountered in geophysical 
applications and others (Puente 2004). 

Figure 3 further illustrates the kinds of one-
dimensional sets (made of 4096 points) that may 
be obtained via the fractal geometric ideas, once 
again using fractal wires passing by three 
interpolating points. 

 

Figure 3. Interesting one-dimensional patterns 
generated via the fractal geometric approach. All 
patterns are normalized and have distinct scales. 

The two sets at the top of Figure 3 (just like the set 
in the bottom of Figure 2) contain long periods of 
close-to-no activity, and hence are useful to 
represent fully intermittent processes. This is a 
surprisingly welcomed feature springing out of a 
single deterministic wire, especially when even the 
most sophisticated stochastic approaches that 
currently exist do not seem to be able to capture 
such transitions from activity to lack of activity 
(e.g. zeros in rainfall, river flows, etc.). 

The middle set in Figure 3 shows a pattern 
exhibiting a highly irregular and seemingly 
random structure that nonetheless is fully 

deterministic. The last two sets in the figure show 
that the fractal geometric approach can also 
generate structures that exhibit downward and 
upward ramps of decay and growth, respectively, 
as found in applications. 

At the end, the fractal geometric approach, using 
also wires that pass by more than three 
interpolating points, produces indeed a very vast 
number of interesting deterministic patterns that 
not only share the overall shapes found in 
geophysical sets and others but also maintain the 
typical autocorrelations and power spectra of 
natural sets (Puente 2004). 

4. SOME GEOPHYSICAL APPLICATIONS 
 

 

 

Figure 4. A rainfall storm in Boston (far right) and 
the construction of derived measures as given by 
five and four interpolating points, respectively. 

The fractal geometric approach has been used in an 
inverse-problem mode in an attempt to model real 
data sets, including rainfall (e.g. Puente and 
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Obregón 1996), turbulence (e.g. Puente and 
Obregón 1999), width functions of natural 
channels (e.g. Puente and Sivakumar 2003), and 
contaminant transport in groundwater (e.g. Puente 
et al. 2001a, b), among others. 
 
As a way of illustration, Figure 4 shows two 
alternative representations for a rainfall data set 
gathered in Boston, USA (made of 1990 data 
points every 15 seconds) from two fractal wires 
that pass by five (top) and four interpolating points 
(bottom).  
 
As may be seen, the deterministic representations 
via the fractal geometric approach do capture the 
essential features (i.e. overall shape and detailed 
texture) of the rainfall event. Clearly, a casual 
observer would not be able to discriminate 
between the three “rainfalls” in Figure 4(a) and 
4(b). In fact, when statistical and dynamic analyses 
are performed on such sets, not even an expert 
would call them different, because they share a 
host of statistical qualifiers that include moments, 
multifractal mass exponents, autocorrelation 
functions, and rainfall intensity histograms, and 
they can also be classified as coming from low-
dimensional chaotic systems of similar dimensions 
(Puente et al. 2002). 
 
In view of the above, although the actual data set is 
not fully reproduced by the representations 
obtained from the fractal geometric approach, the 
merits of the notions are obvious. Usage of a 
fractal wire results indeed in parsimonious models 
of whole data sets, which for the Boston storm 
give substantial compression ratios of 1990:17 and 
1990:12, respectively, or 117:1 and 166:1 for the 
wire passing by five and four interpolating points, 
respectively.   
 
Analysis with other data sets (not presented herein) 
reveals faithful representations via the fractal 
geometric approach with similar, and sometimes 
even higher, compression ratios (e.g. Obregón et 
al. 2002a, b). That sensible approximations may be 
obtained is by now an established fact, but 
defining a universal inversion algorithm applicable 
to all circumstances remains an unresolved 
problem and a topic of relevant research.  
 
5. HIGHER-DIMENSIONAL PATTERNS 

The expressions presented in Equations (1) to (4) 
may be extended to higher dimensions, so that 
such generalized mappings produce attracting 
fractal wires living in three or four dimensions. 
Such objects may then be used to calculate joint 
derived measures (over planes and volumes) that 

turn out to define interesting higher-dimensional 
patterns. 

Figure 5, for example, stemming from a fractal 
wire defined from x into y, z, and w, shows a 
complex texture over three dimensions that reflects 
how the wire is sampled (typically yielding a 
multifractal dx over x as before, Figure 1) and how 
such is convolved in a four-dimensional space (x, 
y, z, w) via the specifics of the wire. As is seen, the 
resulting set, in the y-z-w space, is reminiscent of a 
still snap shot of a pollution plume, and so it 
happens with the corresponding two-dimensional 
projections over the planes y-w, y-z, and z-w.   

 

Figure 5. A suitable three-dimensional 
concentration pattern and its two-dimensional 
projections as generated via extensions of the 
fractal-multifractal approach. 

The ideas herein have been successfully applied to 
the modeling of a sequence of pollution snap shots 
reflecting the evolution of a pollutant. In such a 
case, at the Borden site aquifer in Canada, faithful 
representations of vertically averaged (over the 
plane y-z) concentrations led to the elucidation of 
simple trends in wire parameters over time that 
allowed predicting the fate of the pollutant based 
on the geometry of the plume and (surprisingly) 
without the need of stochastic partial differential 
equations (e.g. Puente et al. 2001a, b). 

6. CONCLUSIONS 

It has been illustrated that the usage of fractal 
functions and multifractal measures yields a 
multitude of suitable patterns that resemble those 
found in geophysical applications, and that such 
representations may be obtained with substantial 
compression ratios exceeding 100:1. As it has been 

1510



explained herein, the geometric procedure turns 
out to provide a viable alternative to existing 
procedures based on stochastic methods, one that, 
in a counter-intuitive fashion, also hints at the 
possibility of hidden determinism in natural 
complexity. 
 
It is envisioned, pending a resolution of the 
required inverse problem, that the fractal 
geometric approach and its extensions (using non-
affine maps or fractal surfaces rather than fractal 
wires), and other procedures aiming to capture 
mathematical morphology explicitly, would result 
in improved understandings of complex natural 
patterns and their dynamics. It is also envisioned 
that physical knowledge, as defined via 
conservation principles and differential equations, 
may be coupled with the geometric ideas herein. 
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