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EXTENDED ABSTRACT 

Distributed watershed models are increasingly 
being used to support decisions about alternative 
management strategies in the areas of landuse 
change, climate change, water allocation, and 
pollution control. For this reason it is important 
that these models pass through a careful 
calibration and uncertainty analysis. Furthermore, 
as calibration model parameters are always 
conditional in nature the meaning of a calibrated 
model, its domain of use, and its uncertainty 
should be clear to both the analyst and the 
decision maker. Large-scale distributed models 
are particularly difficult to calibrate and to 
interpret the calibration because of large model 
uncertainty, input uncertainty, and parameter non-
uniqueness. To perform calibration and 
uncertainty analysis, in recent years many 
procedures have become available. As only one 
technique cannot be applied to all situations and 
different projects can benefit from different 
procedures, we have linked, for the time being, 
three programs to the hydrologic simulator Soil 
and Water Assessment Tools (SWAT) (Arnold et 
al., 1998) under the same platform, SWAT-CUP 
(SWAT Calibration Uncertainty Procedures). 
These procedures include: Generalized Likelihood 
Uncertainty Estimation (GLUE) (Beven and 
Binley, 1992), Parameter Solution (ParaSol) (van 
Griensven and Meixner, 2006), and Sequential 
Uncertainty FItting (SUFI-2) (Abbaspour, et al., 
2007). In this paper we describe SWAT-CUP and 
the three procedures and provide an application 
example using SUFI-2. 
 
Inverse modelling (IM) has often been used to 
denote a calibration procedure which uses 
measured data to optimize an objective function 
for the purpose of finding the best parameters. In 
recent years IM has become a very popular 
method for calibration. IM is concerned with the 

problem of making inferences about physical systems 
from measured output variables of the model (e.g., 
river discharge, sediment concentration). This is 
attractive because direct measurement of parameters 
describing the physical system is time consuming, 
costly, tedious, and often has limited applicability. In 
large-scale distributed applications most parameters 
are almost impossible to measure as they are lumped 
and; hence, do not carry the same physical meaning 
as they did in their small-scale applications. For 
example, soil parameters such as hydraulic 
conductivity, bulk density, water storage capacity are 
but fitting parameters in the large scale. Because 
nearly all measurements are subject to some 
uncertainty and the models are only approximations, 
the inferences are usually statistical in nature. 
Furthermore, because one can only measure a limited 
number of (noisy) data and physical systems are 
usually modelled by continuum equations, no 
hydrological inverse problem is really uniquely 
solvable. In other words, if there is a single model 
that fits the measurements there will be many of them 
and a large number of parameter combinations can 
lead to acceptable modelling results. Our goal in 
inverse modelling is then to characterize the set of 
models, mainly through assigning distributions 
(uncertainties) to the parameters, which fit the data 
and satisfy our presumptions as well as other prior 
information.  
 
To make the parameter inferences quantitative, one 
must consider 1) the error in the measured data 
(driving variables such as rainfall and temperature), 2) 
the error in the measured variables used in model 
calibration (e.g., river discharges and sediment 
concentrations, nutrient loads, etc.), and 3) the error 
in the conceptual model (i.e., inclusion of all the 
physics in the model that contributes significantly to 
the data). The latter uncertainty could especially be 
large in large-scale watershed models. 
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1.  INTRODUCTION 

Definition and quantification of calibration 
uncertainty in distributed hydrological modeling 
has become the subject of much research in recent 
years. Two points must be considered in model 
calibration, 1) parameter non-uniqueness, which 
means there are (infinitely) many good solutions 
because of different parameter combinations and, 
2) parameter conditionality, which means any 
calibrated model is only conditionally calibrated 
and cannot be applied in an “absolute sense” to all 
cases. 
 
Parameter non-uniqueness arises from the fact that 
IM is inherently non-unique. This is because of 
the large number of local minima associated with 
any given objective function.  

To draw an analogy, the space of 
the goal function, g, could be 
likened to a block of “Swiss cheese” 
with many holes (i.e., a multimodal 
objective function). Each hole 
represents a local minimum, with 
the size of the hole in any direction 
representing the range of 
uncertainty at that location.  

Figure 1 shows the “Swiss cheese” effect in the 
response surface of an objective function. In this 
Figure, for a better visualization, the objective 
function is inverted so that the minima are 
represented as peaks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This Figure shows that for any given objective 
function, there exists many parameter sets for 
which the objective values are not significantly 
different from each other, i.e., there are many 
potential solutions based on quite different 
parameter sets. As there are many potential 
solutions, each parameter optimization routine 

finds one such minimum for a given objective 
function. Hence, the search for that one absolute 
global minimum in hydrologic problems, where the 
parameters are generally lumped, is not very 
meaningful. Therefore, as the problem of parameter 
optimization is not unique, it is important that we 
define how a model is calibrated and what the 
magnitude of the prediction uncertainty is.  
 
It has been shown in previous works that “calibrated 
model parameters” are always “conditional” in nature 
(Abbaspour et al., 1999). In other words, there is no 
uniquely defined parameter set, and calibrated 
parameters are always conditioned on the measured 
data, simulation model, calibration routine, objective 
function, etc. Hence, while one calibrated model can 
produce good discharge results and poor sediment 
results, another calibrated model based on the same 
data can produce better sediment and poorer 
discharge results. Furthermore, it was shown in 
Abbaspour et al. (2007) that while a watershed model 
calibrated based on discharge, sediment, nitrate, and 
phosphorus concentration at the watershed outlet 
produced good simulations of these variables, it failed 
to give correct loads from various landuses. After 
including the landuse loads in the calibration process, 
the model produced good simulations of the variables 
at the watershed outlet as well as acceptable loads 
from landuses. In a further application, the later 
model, however, still failed to produce correct 
discharges at other stations inside the watershed. 
Hence, there are different degrees of calibration as 
well as different calibrated models for the same 
project. The applicability of a calibrated watershed 
model, therefore, is also conditional and a certain 
“calibrated model” cannot be used for all purposes. 
When modelling the effect of landuse change, it is 
therefore essential to verify first if the model gives 
correct loads for various landuses or not. 
 
As only one calibration/uncertainty analysis 
procedure may not apply to all situations, we linked 
several of them in the same platform to SWAT. The 
objective of this paper is to briefly introduce SWAT-
CUP.  
 

2.  MATERIALS AND METHODS 

2.1.  SWAT-CUP 

The objectives of SWAT-CUP (SWAT Calibration 
and Uncertainty Procedures) is to: 1) integrate various 
calibration/uncertainty analysis procedures for SWAT 
in one user interface, 2) make the calibrating 

Figure 1. Response surface for an inverted goal 
function. Local minima are represented as peaks
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procedure easy to use for students and 
professional users, 3) make the learning of the 
programs easier for the beginners, 4) provide a 
faster way to do the time consuming calibration 
operations and standardize calibration steps, and 5) 
add extra functionalities to calibration operations 
such as creating graphs of calibrated results, data 
comparison, etc. The program is written in C# 
programming platform. SWAT-CUP has the 
interface shown in Figure 2 and currently supports 
programs SUFI2, GLUE, and ParaSol and runs for 
SWAT versions 2000, 2005. Upon choosing a 
procedure, the program guides the user step by 
step through the input files necessary for running 
each program.  

 

 

 

2.2.  Model Parameterization 

Parameterization of a watershed model is a 
difficult task as there are a large number of 
possibilities. For example consider a soil map. 
Should similar soils in different parts of the region 
be given the same parameters? There is no reason 
why this should be so, as the same soil may have 
different parameters in different places because it 
is in a different climatic region or under a 
different landuse or soil management. This may, 
therefore, result into thousands of parameters; 
hence, some kind of integration is necessary. The 
interface linking SWAT to various calibration 
programs allows parameter aggregation on the 
basis of hydrologic group, soil, landuse, and 
subbasin specifications formulated as: 
x__<parname>.<ext>__<hydrogrp>__<soltext>__

<landuse>__<subbsn> 

where x__ is a code to indicate the type of change to 
be applied to the parameter. For example, v__ means 
the default parameter is replaced by a given value, 
a__ means a given quantity is added to the default 
value, and r__ means the existing parameter value is 
multiplied by (1 + a given value); <parname> is the 
SWAT parameter name; <ext> is the SWAT file 
extension code for the file containing the parameter; 
<hydrogrp> is the soil hydrological group 
(‘A’,’B’,’C’ or ‘D’); <soltext> is the soil texture; 
<landuse> is the landuse category; and <subbsn> is 
the subbasin number, crop index, or fertilizer index. 
Any combination of the above factors can be used to 
describe a parameter identifier; hence, providing the 
opportunity for a detailed parameterization of the 
system. Omitting the identifiers <hydrogrp>, 
<soltext>, <landuse>, and <subbsn> allows global 
assignment of parameters. 
 
The program SWAT-CUP coupling various programs 
to SWAT has the general concept shown in Figure 3. 
The steps are: 1) calibration program writes model 
parameters in model.in, 2) swat_edit.exe edits the 
SWAT’s input files inserting the new parameter 
values, 3) the SWAT simulator is run, and 4) 
swat_extract.exe program extracts the desired 
variables from SWAT’s output files and write them to 
model.out. The procedure continues as required by 
the calibration program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3  Calibration/Uncertainty Analysis 
Procedures 
 
GLUE. The Generalized Likelihood Uncertainty 
Estimation (GLUE) (Beven and Binley, 1992) was 
introduced partly to allow for the possible non-
uniqueness (equifinality, ambiguity or non-

Figure 2. The interface of SWAT-CUP containing 
program SUFI2, GLUE, and ParaSol for calibration 

and uncertainty analysis of SWAT Calibration Program 

model.in backup 

SWAT input

SWAT output

swat_edit.exe 

swat2000.exe 

swat_extract.exe 

model.out 

Figure 3. Interaction between a calibration 
program and SWAT in SWAT-CUP 
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identifiability) of parameter sets during the 
estimation of model parameters in over-
parameterized models. The procedure is simple 
and requires few assumptions when used in 
practical applications. GLUE assumes that, in the 
case of large over-parameterized models, there is 
no inverse solution and, hence, that the estimation 
of a unique set of parameters, which optimize 
goodness-of fit-criteria given the observations, is 
not possible. The technique is based on the 
estimation of the weights or probabilities 
associated with different parameter sets, based on 
the use of a subjective likelihood measure to 
derive a posterior probability function, which is 
subsequently used to derive the predictive 
probability of the output variables. In 
Romanowicz et al., (1994) a statistically 
motivated, more formal equivalent of GLUE is 
developed, where the likelihood function is 
explicitly derived based on the error between the 
observed outputs and those simulated by the 
model. This formal approach is equivalent to a 
Bayesian statistical estimation: it requires 
assumptions about the statistical structure of the 
errors. GLUE is usually applied by directly 
weighting the outputs of multiple model 
realizations to form a predictive distribution of a 
variable of interest. Prediction uncertainties are 
then related to variation in model outputs, without 
necessarily adding an additional explicit error 
component. There is thus an interesting question 
as to whether an appropriate choice of likelihood 
measure can result in similar results from the two 
approaches.  
 
There are a number of possible measures of model 
performance that can be used in this kind of 
analysis. The only formal requirements for use in 
a GLUE analysis are that the likelihood measure 
should increase monotonously with increasing 
performance and be zero for models considered as 
unacceptable or non-behavioral. Application-
oriented measures are easily used in this 
framework. Measures based on formal statistical 
assumptions, when applied to all model 
realizations (rather than simply in the region of an 
“optimal” model) should give results similar to a 
Bayesian approach when used within a GLUE 
framework (Romanowicz et al., 1994), but the 
assumptions made (additive Gaussian errors in the 
simplest cases) are not always easily justified in 
the case of nonlinear environmental models with 
poorly known boundary conditions. GLUE can 
currently support a likelihood measure expressed 
as the Nash-Sutcliffe coefficient. 

 
ParaSol. The Parameter Solution (ParaSol) (van 
Griensven and Meixner, 2006) method aggregates 
objective functions (OF) into a global optimization 
criterion (GOC) and then minimizes these OF’s or a 
GOC using the SCE-UA algorithm. The uncertainty 
analysis could then be performed with a choice 
between 2 statistical concepts.  
 
The SCE algorithm is a global search algorithm for 
the minimization of a single function for up to 16 
parameters (Duan et al., 1992). It combines the direct 
search method of the simplex procedure with the 
concept of a controlled random search, a systematic 
evolution of points in the direction of global 
improvement, competitive evolution and the concept 
of complex shuffling. In a first step (zero-loop), SCE-
UA selects an initial ‘population’ by random 
sampling throughout the feasible parameters space for 
p parameters to be optimized (delineated by given 
parameter ranges). The population is divided into 
several “complexes” that consist of 2p+1 points. Each 
complex evolves independently using the simplex 
algorithm. The complexes are periodically shuffled to 
form new complexes in order to share information 
between the complexes. SCE-UA has been widely 
used in watershed model calibration and other areas 
of hydrology such as soil erosion, subsurface 
hydrology, remote sensing and land surface 
modeling. It was generally found to be robust, 
effective and efficient. The SCE-UA has also been 
applied with success on SWAT for the hydrologic 
and water quality parameters (van Griensven and 
Bauwens, 2003).  
 
The type of objective functions used in ParaSol is 
limited to the sum of the squares of the residuals and 
the sum of the squares of the difference of the 
measured and simulated values after ranking (see van 
Griensven and Bauwens, 2003 for more information). 
 
SUFI-2. The Sequential Uncertainty FItting ver. 2 
(SUFI-2) program is similar in concept to GLUE, 
although it follows a different methodology to obtain 
posterior parameters from priors. In SUFI-2, 
parameter uncertainty accounts for all sources of 
uncertainties such as uncertainty in driving variables 
(e.g., rainfall), conceptual model, parameters, and 
measured data. The degree to which all uncertainties 
are accounted for is quantified by a measure referred 
to as the p-factor, which is the percentage of 
measured data bracketed by the 95% prediction 
uncertainty (95PPU). The 95PPU is calculated at the 
2.5% and 97.5% levels of the cumulative distribution 
of an output variable obtained through Latin 
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hypercube sampling. As all forms of uncertainties 
are reflected in the measurements (e.g., discharge), 
the parameter uncertainties generating the 95PPU 
account for all uncertainties. Breaking down the 
total uncertainty into its various components is of 
some interest, but quite difficult to do, and as far 
as the authors are aware, no reliable procedure yet 
exists. Another measure quantifying the strength 
of a calibration/uncertainty analysis is the so 
called d-factor, which is the average thickness of 
the 95PPU band divided by the standard deviation 
of the measured data. SUFI-2, hence seeks to 
bracket most of the measured data with the 
smallest possible d-factor. 
 
The concept behind the uncertainty analysis of 
the SUFI-2 algorithm is depicted graphically in 
Figure 4. This Figure illustrates that a single 
parameter value (shown by a point) leads to a 
single model response (Fig. 4a), while 
propagation of the uncertainty in a parameter 
(shown by a line) leads to the 95PPU illustrated 
by the shaded region in Figure 4b. As parameter 
uncertainty increases, the output uncertainty also 
increases (not necessarily linearly) (Fig. 4c). 
Hence, SUFI-2 starts by assuming a large 
parameter uncertainty (within a physically 
meaningful range), so that the measured data 
initially falls within the 95PPU, then decreases 
this uncertainty in steps while monitoring the p-
factor and the d-factor. In each step, previous 
parameter ranges are updated by calculating the 
sensitivity matrix (equivalent to Jacobian), and 
equivalent of a Hessian matrix, followed by the  
calculation of covariance matrix, 95% confidence 
intervals of the parameters, and correlation matrix. 
Parameters are then updated in such a way that 
the new ranges are always smaller than the 
previous ranges, and are centered around the best 
simulation (for more detail see Abbaspour et al., 
2007). The goodness of fit and the degree to 
which the calibrated model accounts for the 
uncertainties are assessed by the above two 
measures. An ideal situation would lead to a p-
factor of about 100% and an d-factor near zero. 
When acceptable values of d-factor and p-factor 
are reached, then the parameter uncertainties are 
the desired parameter ranges. Further goodness of 
fit can be quantified by the R2 and/or Nash-
Sutcliff (NS) coefficient between the 
observations and the final best simulation.  
If initially a set of parameter ranges cannot be 
found where the 95PPU brackets most of the data, 
for example, if the situation in Figure 4d occurs 
with the parameter uncertainties at physically 

meaningful limits, then the problem is not one of 
parameter calibration and the conceptual model must 
be re-examined. SUFI-2 can currently handle 6 
different objective functions (two types of root mean 
square error, Chi square, Nasch-Sutcliffe, R2, and bR2, 
where b is the slope of the regression line between 
measured and simulated variable). For a comparison 
of the above methods in an application to Chaohe 
River Basin in China see Yang et al., (2007). 
 
In future developments, SWAT-CUP will have more 
programs for calibration /uncertainty analysis as well 
as program to perform sensitivity analysis. 

 
 
 
 

3. MODEL APPLICATION 

SWAT-CUP was applied to Thur watershed in North-
West Switzerland. The watershed was calibrated 
based on the biweekly measured discharge, sediment, 
nitrate, and total phosphorous loads at the watershed 
outlet at Andelfingen station (Figure 5). Water 
discharge was measured continuously. Concentrations 
of sediments (suspended solids), nitrate, and total 
phosphorous in the river water were determined in 
biweekly composite flow proportional samples. 
Corresponding biweekly loads were calculated as the 
product of biweekly average water discharge times 
concentration. 
 
A constrained objective function was used to ensure 
correct loads were being simulated for different 
landuses. The objective function, g, and the 
constraints were formulated as follows: 
Minimize:  

Figure 4. A conceptual illustration of the 
relationship between parameter 

uncertainty and prediction uncertainty 
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where Q is the average biweekly discharge (m3 s-

1), S is the total biweekly sediment load in the 
river (t), N is the total biweekly nitrate (NO3-N) 
load in the river (kg), P is the total biweekly total 
phosphorus load (kg), 2σ  is the variance, and m 
and s subscripts stand for measured and simulated, 
respectively. In the constraints, SLanduse is the 
average annual sediment load of the landuse in the 
watershed (t ha-1), NLanduse is the average annual 
nitrate load of the landuse (kg N ha-1), and PLanduse 
is the average annual total phosphorus load of the 
landuse (kg P ha-1) all in the period of 1991-1995.  
 
 

 
 
 
 
 
 
3.1.  Model Results 

The Thur model was initially calibrated based on 
the discharge, sediment load, and nitrate and 
phosphorus concentrations at the watershed outlet 
at Andelfingen using the objective function above 
without constraints. This calibrated model 
produced excellent results of all variables for 
calibration and validation periods. However, when 
loads from various landuses were presented to 

local experts, they did not quite share our enthusiasm 
as they were off the range of their long-term 
measurements and experiences. In a second attempt at 
calibration we included the range of loads as 
constraints as shown above in the objective function 
and re-calibrated the model.  
 
The results are shown in Figures 6-9 for, respectively, 
daily discharge, sediment, phosphorus, and nitrate 
loads. For daily discharge, 91% of the observed data 
is bracketed by the 95PPU (p-factor), which is an 
excellent result. The other measure of the goodness of 
calibration shown on the Figure is the d-factor, which 
quantifies the thickness of the 95PPU. The smaller 
this number, the smaller the uncertainties and the 
better is our calibration work. A value close to 1 is 
highly desirable for d-factor with a p-factor also close 
to 1. The result for biweekly sediment is shown in 
Figure 7. About 80% of the data were bracketed by 
the 95PPU and the d-factor had a value of 1.5. Most 
of the data not bracketed, were from the very small 
sediment loads, while all of the peaks were accounted 
for. The calibration and validation statistics show 
larger uncertainties than discharge. Results of the 
total phosphorus simulation in the river discharge are 
shown in Figure 8. Similar to sediment, the 
phosphorus simulation also has larger uncertainties. 
This is not surprising as much of the phosphorus 
moved with the sediment. Results of the nitrate 
simulation are given in Figure 9. Similar to the 
discharge, the nitrate simulation is also very good 
with small uncertainties, d-factor = 1, while 
bracketing 82% of the data for calibration and 84% 
for validation. 

4. CONCLUSIONS 

SWAT-CUP has a great practical appeal and it can be 
used for calibration and uncertainty analysis of 
watershed models. 
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Figure 7. Simulated and observed biweekly sediment 

loads carried by the river at the watershed outlet 
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Figure 8. Simulated and observed biweekly total 

phosphorus loads carried by the river at the watershed 
outlet 
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Figure 9. Simulated and observed biweekly nitrate 

loads carried by the river at the watershed outlet 
 
 
 
 
 Figure 6. Simulated and observed daily 

discharges at the watershed outlet. 
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