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EXTENDED ABSTRACT 

It is well documented that large-scale climate 
mechanisms such as the Interdecadal Pacific 
Oscillation (IPO) and El Niño Southern Oscillation 
(ENSO) play a dominant role in the hydrological 
variability of Australia. The recent drought in 
many parts of Australia has highlighted the 
importance of reliably estimating drought risk. 
Stochastic models play a key role in the estimation 
of drought risk to water supply systems. 

Much work has been done to improve the ability of 
stochastic models to capture the observed statistics 
of hydrological records, albeit sometimes with the 
somewhat contestable underlying assumption of a 
static long-term climate. A Bayesian Hierarchical 
framework is presented that can incorporate 
climate indices into a stochastic rainfall model. 
Figure 1 compares the IPO index (11-year moving 
average) with the annual rainfall anomaly (11-year 
moving average) at Stroud in the Hunter Valley, 
NSW. 

 

Figure 1 Stroud annual rainfall anomaly and IPO 
index: the influence of a multi-decadal climate 

mechanism on rainfall  

The seasonal impact of the IPO on rainfall is 
investigated using distribution-free statistical tests. 
This is used to inform the structure of a seasonal 

stochastic rainfall model, termed the H4 model. 
The maximum IPO-impact seasons for several 
sites near to the case-study were summer-centred 
with lengths of two to four months. However, 
many other season definitions were statistically 
significant.  

The distribution of run-lengths of the cumulative 
sum of annual rainfall anomaly was presented as 
an alternative measure of long-term dependence in 
stochastic models of hydrological series. For the 
case study presented in this paper this approach 
showed that the H4 model has a higher probability 
than the widely used lag-one autoregressive 
(AR(1)) model of run-lengths longer than 30 years. 
However a key difficulty with the comparison of 
long-dependence statistics is the short observed 
record.   

A drought risk analysis was included to determine 
indicative effects of different models on long-term 
reservoir behaviour. The approximate size and 
characteristics of the proposed Tillegra Dam were 
used. Drought risks were found to be slightly 
higher for the H4 model than the AR(1) model for 
some annual demand scenarios, though the 
differences are relatively small.  

This framework has the capability of utilising data 
other than hydrological sources to characterise 
climate variability on multiple time-scales. Further 
research will utilise full parameter uncertainty 
techniques. Sub-decadal variability will be 
incorporated into the framework by stochastic 
processes for the ENSO and Indian Ocean Dipole 
(IOD) phenomena. It is suggested that drought risk 
is possibly more sensitive to these mechanisms 
than the IPO. The connection between the IOD and 
winter rainfall in Eastern Australia means that the 
inclusion of the IOD in the framework might 
provide a better characterisation of the winter 
climate processes. The addition of palaeo-data in 
formal observation processes would expand the 
observed record, providing more certainty in the 
characterisation of long-term dependence.  
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1. INTRODUCTION 

The recent drought in many parts of Australia has 
brought water security and climate science into the 
forefront of public thinking. Water authorities are 
presented with the significant challenge of 
managing water supply systems, due to the  highly 
variable and persistent hydrology of Australia. 
Stochastic models play a key role in the estimation 
of drought risk to water supply systems. They 
provide stochastic simulations of hydrological 
inputs which are used in Monte-Carlo simulations 
of reservoir systems in order to estimate the water 
supply performance and optimise operating 
procedures under scenarios of interest.  

It has been extensively documented that Australian 
hydrological data are modulated by large-scale 
climatic mechanisms such as the El Niño-Southern 
Oscillation (ENSO) phenomenon and the 
Interdecadal Pacific Oscillation (IPO) (Kiem & 
Franks, 2001, Verdon et al., 2004). When sea 
surface temperatures (SST) in the tropical pacific 
warm, (IPO positive phase), the link between 
ENSO and Australian climate weakens, and the La 
Nina’s frequency decreases. When SST’s in the 
tropical pacific cool (IPO negative phase), the 
frequency of ‘replenishing’ La Nina’s is increased 
(Verdon et al., 2004). This is shown in Figure 1 
which compares the Interdecadal Pacific 
Oscillation (IPO) index (11-year moving average) 
with the annual rainfall anomaly (11-year moving 
average) at Stroud in the Hunter Valley, NSW.  

Much work has been done to improve the ability of 
stochastic models to capture the observed statistics 
of hydrological records, including parametric 
(Salas, 1993) and non-parametric approaches 
(Sharma et al., 1997). Often, these models have the 
somewhat contestable underlying assumption of a 
static long-term climate. The lag-one 
autoregressive (AR1) model is used widely by the 
water resources industry for stochastic rainfall 
simulations (Thyer & Kuczera, 2000). Thyer and 
Kuczera (2000) applied a hidden Markov model 
(HMM) to mimic the wet-dry climate state 
behaviour. Whiting et al., (2003) criticised the 
HMM for possibly resulting in simply a mixture of 
two normal models, and suggested an alternative 
that informed a stochastic model with the Pacific 
Decadal Oscillation (PDO) index and the Southern 
Oscillation Index (SOI) using a multiple-linear 
regression approach.  

Henley et al., (2006) presented an approach that 
incorporated climate indices into a stochastic 
rainfall model via a formal Bayesian hierarchical 
framework. This approach aimed to explicitly 
incorporate climate mechanisms into the model 

design and actively incorporate the natural quasi-
periodic variability of hydro-climatological 
records. The aim is to improve on the traditional 
approaches such as the AR(1) model which (it 
could be argued) have a rather passive means of 
inducing persistence into rainfall simulations.  

Previously, Henley et al., (2006) used a simplified 
approach to simulate the IPO index and inform 
rainfall simulations at the annual time step. It was 
suggested that the annual simulations were too 
coarse to properly characterise the seasonal 
influences of the IPO index on the observed 
rainfall record. 

This paper investigated the seasonal impact of the 
IPO on the rainfall to develop a seasonal model 
and determine if this seasonality improves the 
stochastic rainfall model (section 2). The rainfall 
data from Stroud was chosen as the case study 
because of its proximity to Hunter Water 
Corporation’s (HWC) water supply system (the 
industry sponsors of the project). The Stroud data 
is part of the Bureau of Meteorology’s high quality 
data set (Lavery et al., 1997). The model 
calibration is described in section 3 and the results 
from the model calibration and testing are given in 
section 4. A simple reservoir simulation was 
included to compare the effects of different models 
on simulated long-term drought risks. Reservoir 
characteristics similar to HWC’s proposed Tillegra 
Dam were used. It should be noted that the results 
were not indicative of real-world drought risk as 
operating rules and the integration with the overall 
water supply system was not included.  

2. SEASONAL ANALYSIS AND MODEL 
DEVELOPMENT  

2.1. Identification of the Impact Season 

In order to develop a seasonal hierarchical model, 
hereafter referred to as H4, an analysis of the 
monthly and seasonal influence of the IPO was 
undertaken for several sites located within the 
vicinity of the HWC water supply catchments. 
Henley et al., (2006) only found statistical 
justification for two IPO phases, a positive and 
negative phase, hence this approach was adopted.    

The monthly statistics in IPO-positive and 
negative epochs for Stroud are shown in Figure 2. 
These results are typical for other sites within the 
region. The influence of the IPO can be seen most 
clearly in January, February, March and June, 
especially in the differences in upper quartile 
values. This result is concurrent with the higher 
frequency of high-rainfall, ‘replenishing’ La Niñas 
in IPO-negative epochs.  
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Figure 2 Monthly Rainfall Statistics for Stroud 
Stratified by IPO Epoch 

The Wilcoxon rank-sum test is a non-parametric 
test to determine whether two samples are from the 
same distribution. This test was applied to monthly 
and seasonal rainfall totals at the 5% significance 
level. The results are summarised in Figure 3. All 
possible contiguous impact-season definitions at a 
monthly resolution were tested. This included 
durations from 1 to 12 months (inclusive of the 
starting month) for starting months January to 
December.  

 
Figure 3 Significance test results for all 

contiguous season definitions at Stroud using the 
Wilcoxon rank-sum test on IPO-stratified seasonal 

rainfall at the 5% significance level 

This demonstrates that many season definitions 
show a significant IPO-impact at Stroud. The 
resulting ‘p-values’ from the rank-sum tests are the 
probabilities that the IPO positive and negative 
epoch rainfall sample sets are from the same 
distribution. The IPO-impact season for the H4 

model was chosen by taking the season with the 
lowest probability, indicating the maximum impact 
season. This step can be seen as part of the 
calibration process. For Stroud the resulting impact 
season was the three month season from January to 
March. Several sites near to the Stroud case study 
(Figure 5 and Figure 4) also reveal a summer-
centred maximum impact period with season 
lengths of two to four months. For most sites many 
other season definitions were also statistically 
significant. The comparison between season 
definitions with small differences in their p-values 
might be somewhat arbitrary, however the 
minimum p-value technique used here was a 
convenient and statistically sound method for 
obtaining the maximum impact period.  

 
Figure 4 Location of several indicative rainfall 
sites near to the Stroud case study (image: Google Earth) 

 
Figure 5 Maximum IPO-impact seasons based on 

Wilcoxon rank-sum tests on IPO-stratified 
seasonal rainfall 

2.2. Statistical Analysis of Seasonal Data 

Posterior distributions of the mean seasonal 
rainfall at Stroud stratified by IPO-epoch in Figure 
6 show a very clear distinction between the 
distributions during the maximum impact season 
of January to March. The threshold of zero was 
used for the IPO phase identification. The 
probability that the IPO-negative (wet) mean is 
less than the IPO-positive (dry) mean is less than 
0.1% during the impact season. The Kolmogorov-
Smirnov test indicated there was no evidence to 
reject the assumption of Gaussian seasonal rainfall 
totals at the 5% significance level.  
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Figure 6 Posterior distributions of the mean 

seasonal rainfall 

Cross correlations between impact and non-impact 
seasons and autocorrelations within the seasons 
were calculated for the Stroud seasonal rainfall. 
The lag-1 autocorrelation in the impact season was 
statistically significant. The cross correlations 
between impact and non-impact seasons included 
the case where impact season precedes non-impact 
season and vice versa. Neither option gave 
statistically significant cross correlation. Lag-1 
autocorrelations of both the non-impact season and 
the annual data were not statistically significant. 

2.3. Model Structure 

As mentioned, the hierarchical framework used in 
this paper was developed previously in Henley et 
al., (2006). Hence, a brief description of the 
overall framework is given here, and an outline of 
the changes to the previous model implemented in 
the H4 model. The two-level general framework is 
presented in the directed acyclic graph (DAG) in 
Figure 7. It is a conceptual representation of two 
processes: the random unobservable natural 
process on the left and the observation process 
through which the framework is informed with real 
world data on the right of the graph.  

This framework was used to model the impact 
season rainfall. At level 0, the H4 model uses the 

IPO data 0y  to explicitly inform the long-term 

process, 0s . Assuming 0 0y s=  means there is no 

observation model and no 0β parameters; likewise 

for 1y and 1β . Uppercase 0
1t

S
−

 represents all 
simulations prior to time step t . Henley et al., 
(2006) chose a lag-two auto-regressive (AR(2)) 
stochastic process to simulate the long-term 
process 0

ts  shown in equation 1. This was based 
on the simplest ARMA model that displayed 

quasi-periodic run-length behaviour. The process 
has parameters 1 2

0 , , ,IPO IPO IPO IPOα μ σ φ φ⎡ ⎤
⎢ ⎥⎣ ⎦= . 

0 0 0 2

1 1 2 2
( ) ( ) (0, )

t IPO IPO t IPO IPO t IPO IPO
s s s Nμ φ μ φ μ σ

− −
= + − + − +  

(1) 

 
Figure 7 A two-level hierarchical framework that 
relates stochastic processes and observation 
processes at different time scales 

At level 1, the short-term process 1
t

s  includes the 

rainfall in the impact period 1 (1)
t

s  and the non-

impact period 1 (2)
t

s  as shown in equation 2. The 

impact period rainfall 1 (1)
t

s  was simulated using a 
dynamic AR(1) process as shown in equation 3. A 
deterministic relationship between the IPO and the 
impact season rainfall was assumed, as shown in 
equations 4 and 5.  The non-impact season was 
simulated with the AR(1) process shown in 
equation 6.  

1 1 1[ (1) (2)]t t ts s s=      (2) 
1 0 0 0 1 0

1 1

2 0

(1) ( ) ( , ) ( (2) ( ))

(0, ( ))

t I t I t t t I t

I t

s s s s s s

N s

μ φ μ

σ

− −
= + ⋅ −

+
 (3) 

0 0

1 1

0 0 0 0

1 1 1( , )

0

t IPO t IPO

I t t t IPO t IPO

I

I

if s and s

s s if s and s

otherwise

φ μ μ

φ φ μ μ

−

− −

> >

< <

⎧
⎪⎪
⎨
⎪
⎪⎩

    (4) 

0

0 0

0

,
( ), ( )

,

w w t IPO

I t I t

d d t IPO

I I

I I

if s
s s

if s

μ σ μ
μ σ

μ σ μ

≤

>

⎧⎪
⎨
⎪⎩

    (5) 

1 1 2

1(2) ( (2) ) (0, )t NI NI t NI NIs s Nμ φ μ σ
−

= + ⋅ − +     (6)  
  
The parameters 1 (2)α  and 1 (3)α  are as follows: 

1
1(1) , , , ,w w d dI I I I I

α μ σ μ σ φ= ⎡ ⎤
⎣ ⎦

     (7) 

1
1(2) , ,NI NI NI

α μ σ φ= ⎡ ⎤
⎣ ⎦

     (8) 
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3. MODEL CALIBRATION 

A maximum likelihood approach was used to fit 
the H4 model to the IPO and Stroud data. It can be 
shown that the joint likelihood of the parameters 
can be simplified to equation 9. The sum of 
squares method was used to calculate the 
unconditional likelihood of the auto-regressive 
moving average (ARMA) process 0 0( | )Np Y α  after 
Box & Jenkins, (1976). The dynamic and standard 
AR(1) likelihood functions were used to evaluate 
the rainfall likelihood 1 0 1( | , )N Np Y Y α . The Shuffled 
Complex Evolution (SCE) algorithm (Duan et al., 
1992) was used to maximise the joint likelihood. 

 
0 ,1 0 1

1 0 1 0 0

( | , )

( | , ) ( | )
N

N N N

p Y

p Y Y p Y

α α

α α∝
      (9) 

4. RESULTS 

4.1. Maximum Likelihood Estimates 

The maximum likelihood estimates (MLE) for the 
H4 model parameters calibrated to the IPO index 
and Stroud rainfall data are shown in Table 1.  

Table 1 MLE Parameters for the H4 Model 
Calibrated to the IPO and Stroud rainfall 

 

Comparisons of the seasonal H4 model are made 
to the standard AR(1) model calibrated to annual 
data. Parameter estimates for the annual AR(1) 
model were 1152 mm, 297 mm and 0.17 for the 
mean, standard deviation of the random 
perturbations and the lag-1 autocorrelation 
respectively. 

4.2. Evaluation using distributional and 
temporal statistics  

The annual rainfall distribution probability plot for 
the simulated H4 rainfall and observed record is 

shown in Figure 8. The observed data is within the 
90% probability limits; similar results were 
obtained for the seasonal rainfall distributions and  
the annual AR(1) model. Spearman lag-1 
autocorrelation values for the observed annual data 
and the annual AR(1) and H4 models are 0.16, 
0.21 and 0.16 respectively.   

 

Figure 8 Probability plot of simulated and 
observed rainfall distributions 

The Hurst coefficient has been used extensively in 
the hydrological and economic literature to detect 
long-term persistence with h>½ being an indicator 
of a process with long-term dependence. Salas 
(1993) warns against using the Hurst coefficient to 
select between stochastic models due to the fact 
that some models, such as ARMA processes, can 
have long-term dependence structure but will 
result in asymptotic Hurst coefficients of h = 0.5.  

An alternative method was used to detect long-
range dependence which was to examine the 
cumulative distribution of run-lengths of the 
cumulative sum of the rainfall anomalies from a 
large number of replicates each with the same 
sample size as the observed data. This and related 
statistics have received considerable attention in 
the statistical literature (Luceno & Puig-pey, 
2000). The distributions are compared in Figure 9. 
The distributions for cumulative probabilities less 
than 0.6 were alike for the simulated and observed 
so the plot concentrates on the differences in the 
distributions at the upper end of the runlength 
values. From the distributions of run-lengths of 
cumulative sums, there appears to be some 
difference between the AR(1) and H4 models 
beyond run-lengths of approximately 30 years. For 
example for a run-length of 60 years, there is a 
probability of around 3.1% that the H4 model has 
run-lengths of the cumulative sum of greater than 
60 years. The AR(1) model has less than 0.01% 
chance of a run-length of greater than 60 years.  
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Figure 9 Cumulative distributions of run-lengths 

of cumulative sum of rainfall anomaly for 
simulated data  

4.3. Drought Risk Analysis 

The drought risk analysis was undertaken using an 
annual reservoir simulation, with characteristics 
similar to Tillegra Dam. Simulations of annual 
stochastic data for Stroud rainfall were 
transformed using a regression between annual 
Stroud rainfall and annual Tillegra runoff (adjusted 
R2 = 0.73). Figure 10 compares the probabilities of 
encountering storage levels less than 5% and 45% 
for a range of annual demands for the annual 
AR(1), H4 and an annual independent model. The 
results show that both annual AR(1) and H4 
provide a similar drought risk which is higher then 
the independent model. For some of the annual 
demands the H4 model results in slightly higher 
drought risks than the annual AR(1) model. 

 
Figure 10 Simulated long-term drought risk for a 

reservoir with a capacity of 477.63 GL 

5. DISCUSSION 

The H4 model introduced in this paper utilises 
stochastic processes to explicitly incorporate 
climatic indices which characterise long-term 
climate processes by informing a seasonal 
stochastic rainfall model. The aim of this work is 
to improve the representation of long-term 
variability in Australian hydrological data.  

Analysis of the H4 model showed that it was able 
to reproduce key observed statistics that were not 
used in calibration, such as the annual rainfall 
distribution, however at this stage there is no clear 
improvement on the characterisation of the 
temporal statistics. 

The selection of a definitive impact season still 
remains elusive. The technique used in this paper 
to choose the impact season with the maximum p-
value ignores other statistically significant impact 
seasons. Further research is required to identify the 
most appropriate choice of the impact season.  

The distributions of run-length of the cumulative 
sum of the rainfall anomaly were compared for the 
annual AR(1) and H4 models. The H4 model 
demonstrated a higher probability of longer runs 
for run-lengths greater than 30 years however a 
key difficulty with the comparison of long-
dependence statistics is the short observed record.   

In terms of long-term drought risk, the H4 model 
gave similar results to the annual AR(1) model, 
although at some demands the H4 model showed 
slightly higher drought risks.  

The long-term statistics and drought risk were 
evaluated at the annual time scale. For the H4 
model, the impact season was only 35% of annual 
total. Climatologically, the current implementation 
of the hierarchical model could be improved by the 
addition of key climate mechanisms such as ENSO 
and the IOD which typically have sub-decadal 
cycles. It is possible that drought risk is more 
sensitive to these mechanisms than the multi-
decadal effect of the IPO. The ignorance of climate 
mechanisms during the non-impact period is a 
shortcoming of the H4 model.  

6. CONCLUSION 

The ability of the Bayesian hierarchical framework 
to incorporate climate data to inform a seasonal 
stochastic rainfall model was demonstrated. The 
model was calibrated to the Stroud rainfall, located 
in close proximity to Hunter Water Corporation’s 
water supply catchments. Impact-seasons of the 
climate mechanism (the IPO) were detected by 
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statistical analysis, allowing the data to dictate the 
model structure. Model calibration was undertaken 
using maximum likelihood techniques. Evaluation 
of the calibrated model showed it was able to 
reproduce observed statistics not used in 
calibration, such as the annual distribution. This 
evaluation included a comparison with the 
commonly used annual AR(1) model.  

The cumulative distribution of run-lengths of the 
cumulative sum of the rainfall anomaly is 
presented as an alternative measure of long-term 
dependence in stochastic models. For the case 
study presented in this paper this approach showed 
that the H4 model has a higher probability of run-
lengths longer than 30 years than the AR(1) model. 
Drought risks were found to be slightly higher for 
the H4 model than the AR(1) model for some 
annual demand scenarios, though the differences 
are relatively small. When comparing the H4 
model to the AR(1) model no distinct 
improvement in capturing the observed statistics 
could be found for the case study used here. 

This framework has the capability of utilising data 
other than hydrological sources to characterise 
climate variability on multiple time-scales. The 
augmentation of observed data is the major 
advance on techniques that focus on simulating 
low frequency components of rainfall time series. 
Further research will utilise full parameter 
uncertainty techniques. Sub-decadal variability 
will be incorporated into the framework by 
stochastic processes for the El Niño Southern 
Oscillation and Indian Ocean Dipole phenomena. 
The inclusion of palaeo-data in formal observation 
processes will further augment the observed 
record. The availability of palaeo reconstructions 
of the IPO and PDO makes a hierarchical 
framework of climate mechanisms an attractive 
simulation alternative. 
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