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EXTENDED ABSTRACT 

As the historical record only provides a single 

realisation of the underlying climate variability, 

stochastically generated data are used to assess the 

impact of climate variability on water resources and 

agricultural systems. The generation of climate data 

at a single site is a well researched area in the 

hydrological and climatological literature. The 

assessment of hydrological and land management 

changes over larger catchments or regions however 

requires that the spatial dependence between the 

climate data generated at multiple sites to be 

preserved. This is particularly important to the 

simulation of rainfall, which displays the largest 

variability in time and space. Wilks (1998) proposed 

a multi-site daily rainfall model using a number of 

single site two-part models driven by a cross 

correlated set of random numbers. Even though the 

model preserved the statistical characteristics at the 

daily level, it failed to preserve them at the monthly 

and annual time scales. In order to improve these 

statistics at higher time scales, the multi-site daily 

model was nested in multi-site monthly and annual 

models. The nested model was evaluated using daily 

rainfall data from two regions.  

The first region is the Woady Yaloak Catchment 

located in southwest Victoria, Australia and has 

three rainfall stations. The area of the catchment is 

1157 km
2
. Eighty three years of rainfall data were 

used covering the period 1919 to 2001. The second 

region is around Sydney which extends from 

Newcastle in the north to Canberra in the south. 

Thirty rainfall stations are in the region with 43 

years of rainfall data covering the period 1960 to 

2002. One hundred replicates each of length equal to 

the historical record length were generated for the 

two regions. A number of statistics at daily, monthly 

and annual time scales were calculated from each of 

the replicates and averaged for comparison with the 

corresponding historical values. The results showed 

that the nested multi-site model preserved the 

statistics well including the spatial correlations as 

shown in Figure 1 for the Sydney region.  This 

shows that the nested multi-site model is effective in 

preserving the spatial correlations in all three time 

scales. 
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Figure 1. Comparison of modelled and observed 

spatial correlations - Sydney region. 
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1. INTRODUCTION 

Climate data, particularly rainfall data, are a major 

input to water resources and agricultural modelling 

systems. As the historical record only provides a 

single realisation of the underlying climate 

variability, stochastically generated data are used to 

assess the impact of climate variability on water 

resources and agricultural systems. The generation 

of climate data at a single site is a well researched 

area in the hydrological and climatological literature 

(Srikanthan and McMahon 2001) and a two-part 

model has been widely used to generate daily 

rainfall data. The assessment of hydrological and 

land management changes over larger catchments or 

regions however requires that the spatial dependence 

between the climate data generated at multiple sites 

to be preserved. This is particularly important to the 

simulation of rainfall, which displays the largest 

variability in time and space. There are a number of 

approaches (conditional models, extension of 

Markov chain models, random cascade models and 

nonparametric models) proposed recently to 

generate rainfall data at multiple sites. 

Conditional models generate the occurrence and the 

amount of rainfall using surface and upper air data 

(Zucchini and Guttorp, 1991; Bardossy and Plate, 

1991, 1992; Wilson and Lettenmaier, 1993; Hughes 

et al., 1999; Charles et al. 1999). Wilks (1998) 

extended the familiar two part model, consisting of a 

two–state, first-order Markov chain for rainfall 

occurrences and a mixed exponential distribution for 

rainfall amounts, to generate rainfall simultaneously 

at multiple locations by driving  a collection of 

individual models with serially independent but 

spatially correlated random numbers. He applied the 

model to 25 sites in the New York area. 

Jothityangkoon et al. (2000) constructed a space-

time model to generate synthetic fields of space-time 

daily rainfall. The model has two components: a 

temporal model based on a first-order, four-state 

Markov chain which generates a daily time series of 

the regionally averaged rainfall and a spatial model 

based on a nonhomogeneous random cascade 

process which disaggregates the regionally averaged 

rainfall to produce spatial patterns of daily rainfall. 

The cascade used to disaggregate the rainfall 

spatially is a product of stochastic and deterministic 

factors; the latter enables the model to capture 

systematic spatial gradients exhibited by measured 

data. Buishand and Brandsma (2001) used nearest 

neighbour resampling for multi-site generation of 

daily precipitation and temperature at 25 stations in 

the German part of the Rhine basin. Mehrotra and 

Sharma (2005) applied the k-nearest neighbour 

technique to simulate rainfall conditional upon 

atmospheric variables simultaneously at 30 stations 

around Sydney. 

Conditional models are both data and 

computationally intensive. All models reviewed 

(Srikanthan and McMahon 2001) were only applied 

in one area and were not tested adequately. The 

random cascade models also require a large amount 

of data to characterise the spatial dependence at 

different levels in the cascade as it generates rainfall 

data over a grid. The nonparametric model is being 

developed at the University of New South Wales by 

Mehrotra and Sharma (2005). The extended two part 

model of Wilks (1998) which is an extension of the 

Markov chain model appears to be a relatively 

simple model and at the same time, it has the 

potential to perform well. A comparison with two 

other approaches (hidden state Markov model and 

the k-nearest neighbour model) to model rainfall 

occurrence has shown that this approach performed 

the best (Mehrotra et al. 2005).  Hence this method 

was chosen for further development.  

The multisite two-part model of Wilks (1998) was 

nested in single site monthly and annual models and 

its performance was evaluated in an earlier study 

(Srikanthan 2005, 2006). The nested model 

preserved all the at-site statistics and the cross 

correlations at the daily level but under-estimated 

the cross correlations between the sites at monthly 

and annual levels (Srikanthan 2005, 2006). The 

reason for this is that the nesting was carried out 

individually at each site. The model is herein further 

enhanced by nesting the daily generated amounts in 

a cascade of multi-site monthly and annual models. 

The performance of the enhanced model was 

evaluated using data from two regions with 3 and 30 

rainfall stations. 

2. NESTED MULTISITE DAILY RAINFALL 

MODEL 

The nested multi-site daily rainfall model consists of 

three parts, namely, occurrence, amounts and 

nesting. These three parts are briefly described 

below. For a more detailed description and 

derivation, readers are referred to Srikanthan (2005). 

2.1. Multi-site rainfall occurrence model 

A first-order two-state Markov chain is used to 

determine the occurrence of rainfall at each site. For 

each site k, the Markov chain has the two transition 

probabilities: 
k

DWp |  and 
k

WWp | , respectively the 

conditional probabilities of a wet day given that the 

previous day was dry or wet. The individual models 

are driven by serially independent but cross 

correlated random numbers to preserve the spatial 

correlation in the rainfall occurrence process. 
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Given a network of N locations, there are N(N - 1)/2 

pair-wise correlations that should be maintained in 

the generated rainfall occurrences. This is achieved 

by using correlated uniform random numbers (ut) in 

simulating the occurrence process. The cross-

correlated uniform variates ut(k) can be derived from 

standard Gaussian variates wt(k) through the quantile 

transformation 

 ut(k) = Φ[wt(k)]   (1) 

where Φ[.] indicates the standard normal cumulative 

distribution function. Let the correlation between the 

Gaussian variates, wt, for the station pair k and l be 

 ω(k,l) = Corr[wt(k), wt(l)]   (2) 

Together with the transition probabilities for stations 

k and l, a particular ω(k,l) will yield a corresponding 

Bernoulli correlation between the synthetic binary 

series (Yt) for the two sites. 

 ξ(k,l) = Corr[Yt(k), Yt(l)]  (3) 

Let 
),( lkoξ

 denote the observed value of ξ(k,l), 

which will have been estimated from the observed 

binary series ( )o

t
Y k  and ( )o

t
Y l at stations k and l. 

Hence the problem reduces to finding the N(N –1)/2 

correlations of ω(k,l) which together with the 

corresponding pairs of transition probabilities 

reproduces ( , )oξ k l  = ( , )ξ k l  for each pair of 

stations. Direct computation of ω(k,l) from ( , )oξ k l  

is not possible. In practice, one can invert the 

relationship between ω(k,l) and ξ(k,l) using a 

nonlinear root finding algorithm or obtain ω(k,l) by 

simulation as suggested by Wilks (1998).  In the 

earlier study, the correlation between the 

corresponding normal variates is obtained by an 

iterative method using simulation and the method of 

bisection (Srikanthan, 2005). In this paper, an 

efficient root finding algorithm (Srikanthan and 

Pegram, 2006) is used to determine the correlation 

between the normal variates.  

Realisations of the vector wt may be generated from 

the multivariate normal distribution having mean 

vector 0 and variance-covariance matrix Ω, whose 

elements are the correlations ω(k,l). 

The multivariate normal variates are generated from 

 wt = Bεt     (4) 

where B is a coefficient matrix and εt independent 

normal vector. 

The coefficient matrix is obtained from 

 BB
T
 =  Ω    (5) 

The elements of B can be obtained by Cholesky’s 

decomposition for a small number of rainfall stations 

(up to 5). For a larger number of rainfall stations, the 

Cholesky’s decomposition frequently fails as the 

matrix Ω tends to become non-positive definite for 

sequences of different lengths or due to infilling.  In 

such cases the elements of B can be obtained by 

singular value decomposition, a method that is 

robust even if the matrix Ω  is ill-conditioned. The 

seasonality in daily rainfall occurrence is taken into 

account by considering each month separately. 

2.2. Rainfall amounts model 

The rainfall amounts on wet days are generated by 

using a Gamma distribution, which has been found 

to fit better than the routinely used distributions, 

exponential and Weibull. As was detailed above for 

the occurrences model, the spatial correlation in the 

daily rainfall amounts is preserved by using a vector 

of suitably cross-correlated uniform variates vt 

obtained from a corresponding realisation of 

correlated standard normal variates zt(k): vt(k) = 

Φ[zt(k)]. This vector zt is drawn from a multivariate 

normal distribution with mean 0 and variance-

covariance matrix Z, whose elements are 

 ζ(k,l) = Corr[zt(k), zt(l)]   (6) 

As was the case in finding the binary Ω, direct 

computation of Z is not feasible since the zt are not 

observed. The correlations in Eq (6) can be 

estimated by an iterative procedure using simulation 

and the method of bisection. The correlated 

multivariate normal variates are obtained from 

independent normal variates through a similar 

transformation to that using equations (4) and (5). 

The generated daily rainfall amounts when 

aggregated into monthly and annual totals will not in 

general preserve the monthly and annual 

characteristics. Hence, the daily amount model is 

nested in a single site monthly and annual model 

Srikanthan 2005, 2006). This procedure will only 

improve the monthly and daily at-site characteristics 

of the generated rainfall and will have no effect on 

the spatial correlation for the monthly and annual 

rainfall. An outline of the new spatial adjustment 

procedure follows. 

Once the daily rainfalls at all sites are generated for 

a given month, the monthly rainfall totals,
k
ixɶ , at 

each site are obtained by summing the daily rainfall 

values.  Their cross-correlations are calculated and 

the monthly totals modified by using a multi-site 

monthly model (Srikanthan and Pegram 2007) to 

preserve the monthly spatial and serial correlations. 
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Xi = Ai Xi-1 + Bi ai   (7) 

where Ai and Bi are coefficient matrices and Xi is the  

adjusted standardised adjusted monthly rainfall (zero 

mean and unit variance) vector for month i. The 

matrices Ai and Bi can be calculated from the lag 

zero (M0) and lag one (M1) spatial correlation of the 

observed monthly rainfall and the lag zero (C0) cross 

correlation of the standardised, aggregated, already 

generated monthly rainfall (ai).  

1
1 0

−=A M M     (8) 

1
0 1 0 1

T TFF M M M M−= −    (9) 

0
T

DD C=     (10) 

1B FD−=     (11) 

where D and F are intermediate matrices used in the 

computation The details of the above estimation 

procedure appears in Srikanthan and Pegram (2007). 

After the adjustment, the monthly rainfall, k
ix , at 

each site is obtained by putting back the mean and 

standard deviation. Once the values for the twelve 

months of a year (j) have been adjusted, the 

generated monthly values are aggregated to obtain 

the annual values ( ɶ
k
jz ). The aggregated annual 

values are standardised to have zero mean and unit 

variance and then modified as above, by using a 

multi-site model to preserve the annual 

characteristics. 

Zj = P Zj-1 + Q bj    (12) 

where P and Q are coefficient matrices to preserve 

the lag zero and lag one cross correlations, bj is the 

already generated standardised annual value before 

adjustment and Zj is the adjusted standardised annual 

rainfall (zero mean and unit variance) vector. After 

the adjustment, the annual rainfall at each site is 

again obtained by appropriate scaling and shifting. 

Each generated monthly rainfall value is multiplied 

by the ratio /k k
j jz zɶ . This will preserve the annual 

characteristics. The modified monthly rainfall values 

are used to adjust the daily rainfall values. Rather 

than adjusting the daily rainfall values twice, the 

adjustment to the daily rainfall values can be carried 

out in one step by multiplying the generated rainfall 

values for each month (i) by the ratio /k k k k
i j i jx z x zɶ ɶ . 

If the lag one cross correlations (monthly or annual) 

are all small, a contemporaneous multi-site model 

can be used for nesting. In this case, the matrix A or 

P becomes a diagonal matrix with diagonal elements 

being the lag one autocorrelations. In this case, one 

only needs to estimate the other matrix B or Q. 

3. MODEL EVALUATION 

The model was evaluated using a number of 

statistics and cross correlations at the daily, monthly 

and annual levels. The daily, monthly and annual 

statistics used are listed in the following sections. 

One hundred replicates each of length equal to the 

historical data were generated and statistics were 

estimated from each of the replicates and averaged 

for comparison Due to lack of space, only a few 

results are presented here for the Sydney region.  

3.1. Daily statistics 

The cross correlations of daily rainfall occurrences 

and amounts between the sites were preserved for 

both the regions. The cross correlations for the 

Sydney region are presented in Figure 1. 

In addition to the cross correlations, 17 other daily at 

site statistics were used to evaluate the model. The 

daily statistics include: 

� Mean, standard deviation and coefficient of 

skewness of daily rainfall  

� mean daily rainfall for different types of wet 

days; solitary wet day (class 1) , bounded only 

on one side by a wet day (class 2), bounded on 

both sides by wet days (class 3) 

� correlation between rainfall depth and duration 

of wet spells 

� mean number of wet days per month 

� maximum daily rainfall in each month 

� mean, standard deviation and coefficient of 

skewness of dry spell length 

� mean, standard deviation and coefficient of 

skewness of wet spell length 

The mean number of wet days per month, maximum 

daily rainfall in each month, mean and standard 

deviation of daily rainfall per month are presented in 

Figure 2 for the Sydney region. There is a slight 

under-estimation of the maximum daily rainfall 

when the historical values are greater than 100 mm. 

The other statistics were satisfactorily preserved 

except the coefficient of skewness of wet and dry 

spells (Figure 2). The results for the other region are 

similar. The problem with the preservation of 

skewness will be addressed in further research. 

3.2. Monthly statistics 

The cross correlations of monthly rainfall amounts 

between the sites were well preserved for the 

Sydney region (Figure 1) and the Woady Yaloak 
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Figure 2. Selected daily statistics for the Sydney region. 
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Figure 3. Comparison of monthly cross-correlation for the Woady Yaloak Catchment - the current model on the 

left and the SCL model on the right.  Note the improvement gained by ‘nesting’ in a multi-site model. 
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Figure 4. Mean, standard deviation and temporal correlation of monthly rainfall for the Sydney region.  
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Figure 5. Mean and standard deviation of annual rainfall for the Sydney region. 

 

catchment (Figure 3).  For comparison, the 

monthly cross correlations from the spatial daily 

model in the Stochastic Climate Library (SCL) in 

the Cooperative Research Centre for Catchment 

Hydrology toolkit (http://www.toolkit.net.au) and 

the model described in this paper are presented in 

Figure 3 for the Woady Yaloak catchment. These 

figures clearly show a better performance of the 

model described in this paper compared to the one 

in SCL. 

In addition to the cross correlations, seven other 

monthly statistics were used. The monthly 

statistics include: 

 

� mean, standard deviation, coefficient of 

skewness and serial correlation of monthly 

rainfall 

� maximum and minimum monthly rainfall 

� mean number of months of no rainfall 

 

Of the seven statistics used in the monthly 

comparison, only the monthly mean, standard 

deviation and correlation are shown in Figure 4 for 

the Sydney region. The figure shows that these 

statistics were satisfactorily preserved, as were the 

rest of the statistics for both the regions. 

3.3. Annual statistics 

The cross correlations of annual rainfall amounts 

between the sites were well preserved for the 

Sydney region (Figure 1) and the Woady Yaloak 

Catchment (Table 1). Table 1 also presents a 

comparison of the annual cross correlation 

between the sites for the Woady Yaloak catchment 

using the nested multi-site model and the one in 

SCL. 

Table 1. Comparison of annual cross 

correlations.for the Woady Yaloak catchment. 

Site pair Hist Nested SCL 

1 - 2 0.841 0.844 0.547 

1 - 3 0.794 0.798 0.548 

2 - 3 0.865 0.867 0.581 

In addition to the cross correlations, 13 other 

annual statistics were used to evaluate the model. 

The annual statistics include: 

� mean annual rainfall  

� standard deviation of annual rainfall   

� coefficient of skewness of annual rainfall 

� lag one auto correlation 

� maximum annual rainfall  

� 2-, 5- and 10-year low rainfall sums 

� mean annual number of wet days 

The results showed that all the statistics were 

satisfactorily preserved for both regions. Only the 

mean and standard deviation of the annual rainfall 

are shown in Figure 5 for the Sydney region. The 

standard deviation of the annual number of wet 

days was not compared in this study. 
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4. CONCLUSION 

A nested multi-site two-part model was developed  

to improve the cross correlation of monthly and  

annual rainfall aggregated from daily amounts, 

while preserving the serial correlations at the 

different time scales. The developed model was 

evaluated by applying it to 2 catchments/regions 

with the number of rainfall sites being 3 and 30. A 

comparison of the historical and generated 

statistics showed that the model preserves all the 

important characteristics of rainfall at the daily, 

monthly and annual time scales. The only 

exception was the skewness of wet and dry spells. 

The nesting of the multi-site daily rainfall in a 

cascade of multi-site monthly and annual models 

was effective in preserving the spatial cross 

correlations at the monthly and annual time scales 

and it is a major improvement over the model 

developed earlier (Srikanthan 2005, 2006). Further 

work is in progress to improve on the skewness of 

dry and wet spells and to compare the standard 

deviation of monthly and annual number of wet 

days. 
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