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EXTENDED ABSTRACT 

In fields like image processing, target tracking 
and battlefield monitoring, the established use of 
Kalman filters has led to covariance-based 
information fusion. An almost equally 
longstanding, but non-probabilistic, alternative is 
to translate observations with known error bounds 
into bounds on state variables or model 
parameters. This yields the feasible set of all 
values compatible with all the observations. State 
or parameter bounding (henceforth just called 
bounding) may be motivated by its directness and 
simplicity, by a wish to avoid dubious 
probabilistic assumptions, or by a need to identify 
worst cases as a basis for decision-making. 
Bounding has potential in environmental 
applications, where data are often sparse and their 
errors are hard to characterise probabilistically, 
yet bounds on the errors can be specified. 
 
Bounding can proceed recursively, imposing 
bounds derived from each new observation on the 
feasible set due to earlier ones. Bounded-error 
scalar observations linear in the state or 
parameters yield hyperplane bounds which define 
a polytope. The most popular recursive bounding 
algorithms update an ellipsoidal outer 
approximation to the polytope. The observation 
update fits an ellipsoid tightly round the 
intersection of the current bounding ellipsoid and 
the bounded region due to the new observation. 
The time update linearly transforms the current 
bounding ellipsoid to account for linear dynamics, 
vector-adds an ellipsoid which bounds the 
uncertain forcing, then ellipsoidally outer-bounds 

the result. The whole algorithm has a striking 
resemblance to the Kalman filter and some 
theoretical connections have been noted. For 
example, ellipsoidal parameter bounding 
(consisting of observation updates alone) can be 
viewed as recursive least squares with a dead 
band applied to the innovations. Another 
theoretical connection is that ellipsoidal bounds 
imply bounds on covariance. 
 
Covariance intersection (CI) for information 
fusion has even stronger connections with 
ellipsoidal bounding. The family of ellipsoids, 
parameterised by a scalar, from which CI selects 
its approximation to the observation-updated 
covariance ellipsoid is identical to that used in 
bounding. Finding the smallest ellipsoid by 
minimising the trace or determinant of its 
describing matrix is an idea common to both. For 
bounding, efficient algorithms have been derived 
for both criteria. However, bounding addresses a 
more general problem in that the optimal new 
ellipsoid is determined by the centres, as well as 
the describing matrices, of the ellipsoids which it 
replaces. Bounding has also considered the time 
update, which is not part of CI. This paper notes 
the minimum-volume (minimum-determinant) 
ellipsoidal state-bounding algorithm of Maksarov 
and Norton (1996), stemming from initial work 
by Schweppe (1968, 1973), which provides 
efficient computation for minimum-volume CI. 
Results which allow checking of the compatibility 
of the prior state-error-covariance ellipsoid and 
the covariance ellipsoid resulting from a new 
vector observation are also noted. 
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1. INTRODUCTION 

In estimation based on a model of a complex 
process, where the uncertainties due to modelling 
and measurement error are not fully understood 
and quantifiable, it is desirable to avoid 
distributional assumptions which are hard to test 
and likely to be idealised. For example, the 
Central Limit Theorem is often cited to justify an 
assumption that error variates are Gaussian, yet in 
practice errors may well be skewed (e.g. 
streamflow error), truncated (e.g. discretisation 
error or error in a non-negative variable) or 
dominated by other non-Gaussian effects. It is 
notable that the original derivation of the Kalman 
filter (Kalman, 1960) makes no distributional 
assumptions, but achieves orthogonality between 
estimates and errors. 
 
Two well established ways to avoid assuming 
anything about distributions are complementary 
and strongly analogous to each other. The better-
known way is to describe uncertainty solely 
through bias and covariance. Specifically, this 
paper considers minimum-covariance, linear, 
unbiased (MCLU) estimation, operating on means 
and covariances and providing one interpretation 
of Kalman filtering. The second distribution-free 
approach is state or parameter bounding 
(henceforth just called bounding), also known as 
set-membership estimation (Schweppe, 1973; 
Norton, 1987a; Walter and Piet-Lahanier, 1990; 
Norton, 1994, 1995; Milanese et al., 1996; 
Walter, 2003). The idea is to translate bounded-
error observations into bounds on state variables 
or model parameters, yielding the feasible set of 
all values compatible with all observations. 
Bounding not only avoids dubious distributional 
assumptions but also provides information about 
worst cases, a useful basis for decision or design. 
Bounding has potential for environmental 
applications (Norton, 1996), where data are often 
sparse and hard to characterise probabilistically, 
yet their error bounds can be specified, even if 
only in a "what if?" context. Moreover, bounding 
is suited to predictive modelling as an aid to 
environmental management, showing the range of 
credible outcomes of actions. 
 
Bounding can be performed recursively, by 
predictor-corrector algorithms closely resembling 
the Kalman filter. Bounded-error observations 
linearly related to the state or parameters impose  
piecewise linear exact state or parameter bounds. 
The most popular recursive bounding algorithms 
(stemming from work by Schweppe (1968, 1973), 
Fogel and Huang (1982), Chenous'ko (1981) and 
others) use ellipsoidal outer approximations to 
those bounds. The observation update fits an 

ellipsoid tightly around the intersection of the 
current bounding ellipsoid and the bounded 
region implied by the error bounds of the new 
observation, as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Ellipsoid updating on receipt of new 
bounded-error observation, linearly related to 

state or parameters. Feasible set is outer-bounded 
by hatched intersection, which is outer-bounded 

by updated ellipsoid. 
 
 

The time update, for a linear dynamical model 
with additive forcing, linearly transforms the 
current bounding ellipsoid, vector-adds the 
bounded set of all possible effects of uncertain 
forcing, then ellipsoidally outer-bounds the result. 
Much of the algebra of the updates closely 
resembles Kalman filtering. 
 
Some theoretical connections between bounding 
and covariance-based estimation have been noted. 
For example, the observation update of ellipsoidal 
parameter bounding can be viewed as a step of 
recursive least squares applying a dead band to 
the prediction error (Favier and Arruda, 1996). 
Another example, noted in Section 4, is that 
ellipsoidal bounds imply bounds on covariance.  
 
Experiments (Maksarov and Norton, 1996) have 
shown ellipsoidal recursive state-bounding to 
have comparable performance to Kalman 
filtering, typically with mean-square error a little 
higher but with performance degraded less by 
asymmetry in the distribution of observation or 
process noise. Moreover, bounding does not 
require any assumption of whiteness and so can 
handle time-structured process or observation 
noise without requiring an auxiliary noise model. 
State bounding is thus an appealing alternative to 
conventional state estimation in some situations. 
 

obs. 
bounds 
d

updated 
ellipsoid 

previous 
ellipsoid 

1730



Information fusion in fields like image 
processing, target tracking and battlefield 
monitoring tends to be covariance-based, because 
state estimation is usually by Kalman filtering. 
Covariance intersection (CI) for information 
fusion (Julier and Uhlmann, 1997) has strong 
connections with ellipsoidal bounding. The family 
of matrices, parameterised by a scalar, from 
which CI selects its conservative estimate of the 
observation-updated state covariance is identical 
to that in the observation update of ellipsoidal 
bounding. In both cases an algorithm for 
minimising the trace of the updated matrix has 
been published. Minimising the determinant has 
also been suggested in both. 
 
Even so, there are differences. Ellipsoidal bound 
updating solves a more general problem than CI, 
as discussed in Section 4, and analytical (but 
implicit) solutions have been derived for both the 
minimum-trace and minimum-determinant 
problems, allowing straightforward numerical 
solution. The paper summarises, in Section 3, the 
minimum-volume ellipsoidal state-bounding 
algorithm of Maksarov and Norton (1996). This 
provides minimum-determinant observation and 
time updates, the former giving minimum-volume 
CI as a special case.  
 
The next two sections summarise MCLU 
estimation (as in Kalman filtering and CI) and 
bounding in terms of ellipsoids. Section 4 then 
points to further similarities and points of contact 
between the two approaches, and notes some 
possible extensions to MCLU estimation offered 
by existing bounding techniques. 

2. MCLU ESTIMATION, COVARIANCE 
INTERSECTION AND ELLIPSOIDS 

The canonical problem underlying MCLU 
estimation is to find, from unbiased estimates 

2
ˆ,

1
ˆ xx  with error covariances 2 ,1 PP  and error 

cross-covariance ]2
~

1
~[ TE xxQ ≡ , an unbiased 

estimate x̂  linear in 
2
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1

ˆ xx  and with minimal 

error covariance ]~~[)ˆcov( TE xxxP ≡≡ . The 
solution is found by first imposing linearity and 
unbiasedness on the updating gains producing x̂ , 
then finding the condition for a smooth minimum 
of the resulting P : 
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The information-matrix equivalent of (2) (Chen et 
al., 2002) is 
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When Q is unknown, covariance intersection (CI) 
(Julier and Uhlmann, 1997) replaces (4) by 
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with scalar 10 ≤≤ ω . The corresponding state 
estimate, still linear and unbiased, is found from 
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Julier and Uhlmann (1997) show that CI does not 
underestimate the error covariance of x̂ , i.e. that 

PP ≥′ , but a simpler proof is possible. First note 
that the information-matrix update (5) replaces 
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in (4) by 
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and that any linear, unbiased updated state 
estimate must have the form 
 

( ) 2ˆ1ˆˆ xKIxKx −+=   (9) 
 
where I is the identity matrix and K is any 
conforming matrix. The  exact error covariance is 
then 
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Hence
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Julier and Uhlmann (1997) indicate, with a figure, 
that PP ≥′  for all Q can be visualised as 

), P0 ′(E  containing the envelope of all ellipsoids 
 

{ }11)())(,( ≤−≡ xQPx|xQP0 TE   (12) 
 
which is the intersection of )

1
,( P0E  and 

)
2

,( P0E . The parameter ω can be optimised to 

tighten ),( P0 ′E , and they suggest minimising 
either the trace of P′  (sum of squares of half-axis 
lengths of ),ˆ( Px ′E ) or det P ′  (proportional to 
square of hypervolume of ),( P0 ′E ). They do not 
produce an analytical solution for either, but Chen 
et al. (2002) give the minimum-trace solution. 
 
3. STATE BOUNDING AND ELLIPSOIDS 

Schweppe (1968) and others (Kurzhanski, 1977; 
Chernous'ko, 1981) introduced the idea of a 
recursive algorithm to update ellipsoidal bounds 
on the state of a scalar-output model conforming 
to the ordinary Kalman filter model. The specified 
means and covariances of the initial state error 
and process noise are replaced by ellipsoidal 
bounds, and the observation-noise covariance by 
bounds. In this way uncertainty is handled 
without probabilistic assumptions (not even 
whiteness). 

Each time update linearly transforms the state-
bounding ellipsoid by pre- and post-multiplying 
by the state-transition matrix, then expands it by 
vector-adding an ellipsoid which bounds the 
unknown additive forcing. Chernous'ko (1981) 
solved the time-update problem by finding the 
smallest ellipsoid which contains the vector sum, 
from a family of scalar-weighted convex 
combinations of the summed ellipsoids. Maksarov 
and Norton (1996) provide a simpler derivation. 

The original version of the observation update 
was for scalar observations. It finds an ellipsoid 
containing the intersection of the current state-
bounding ellipsoid and the strip of state values 
defined by the two linear bounds on state 
resulting from given upper and lower bounds on 
the observation. A vector observation is processed 
by a sequence of scalar-observation updates. The 
minimum-trace or minimum-determinant updated 
state-bounding ellipsoid is found. Treating the 
strip as a degenerate ellipsoid with all but one 
axis infinite, Fogel and Huang (1982) gave an 
analytical solution for the minimum-volume 
ellipsoid in a family of scalar-weighted convex 
combinations of the two intersecting sets. 
Maksarov and Norton (1996) generalised the 
observation update to handle an ellipsoidal error 
bound on a vector observation; for simplicity the 
case of equal observation and state dimensions 
will be discussed, but no fundamental difficulty 
arises in other cases. If the state-bounding 
ellipsoid prior to imposing the observation-
derived bound is 
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with  10 ≤≤ ω . Equating the linear-in-x terms 
in the two expressions in (14) yields 
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with P ′  given by (5). This is exactly as for CI, 
with x identified with x′ , but, equating the 
constant and quadratic-in-x terms in (14), the 
defining matrix P of ),ˆ( PxE  turns out to be not 
P ′  but PP ′= ρ  where 
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except in the degenerate cases .1 ,0 == ωω With 

2 ,1 PP  positive definite,  10 ≤≤ ρ ; ρ = 1 only 

if 
1

x̂  coincides with 
2

x̂ . 

Maksarov and Norton (1996) give analytical (but 
implicit) solutions for the ω's minimising the trace 
and determinant of P. Each is a polynomial 
equation with a unique root between 0 and 1. For 
the minimum-volume ),ˆ( PxE , ω satisfies 
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where n is the state dimension and { iλ } are the 

eigenvalues of 2
1

1 PP− . 

4.  SIMILARITIES AND DIFFERENCES 

The observation-update equations of CI and 
bounding differ only by the presence of the scale 
factor ρ in the P update of the latter. It arises 
because bounding requires the observation-
updated ellipsoid to contain the intersection of the 
pre-observation ellipsoid )

1
,

1
ˆ( PxE and the 

ellipsoid )
2

,
2

ˆ( PxE due to the observation-error 

bound, whereas CI only requires that ),( P0 ′E  

contains the intersection of )
1

,( P0E  and 

)
2

,( P0E . This is easily seen geometrically to 

maximise the size of )
2

,
2

ˆ()
1

,
1

ˆ( PxPx EE ∩  with 

respect to both 
2

ˆ  and 
1

ˆ xx , so CI yields a larger 

ellipsoid in general than does bounding. 

The volume of the ellipsoid produced by CI can 
be minimized simply by solving (17) for ω with 
the right-hand side simplified to n; to the author's 
knowledge this result has not been obtained 
elsewhere. Its practical utility depends on the 
relative computing loads of optimizing det(P) 
(maximizing det(P-1)) directly by use of (5) and of 
searching for the unique root of (17) between 0 
and 1. Even allowing for finding the eigenvalues 

of 2
1

1 PP− , one would expect solving (17) to be 
quicker. 

On a more fundamental level, bounding contrasts 
with CI in that the value of the observation, as 
well as the size of the ellipsoid indicating its 
uncertainty, influences how much new 

information the new observation (vector) adds to 
the previous information on state. The centre of 
the observation-derived ellipsoid depends on the 
value of the vector observation, and if the 
ellipsoid intersects the prior state-bounding 
ellipsoid only slightly, the updated ellipsoid 

),ˆ( PxE bounding the intersection is small, i.e. the 
new observation sharpens the bounds on state 
greatly, even if the observation-noise-derived 
ellipsoid is large. The essential difference is that 
covariances are ensemble properties, whereas 
bounds are specific to each and every sample. The 
latter fact renders bounding vulnerable to mis-
specified bounds (that is, to outliers (Norton and 
Veres, 1993)). On the other hand, it offers 
unequivocal indication of a clash between 
previous and new information when the prior and 
observation-derived ellipsoids do not intersect. 

The question arises whether compatibility of prior 
and new information could be checked similarly 
in MCLU observation updates. In cases where the 
observation and state dimensions are equal and 
the excitation matrix is invertible, compatibility 
could be checked heuristically and 
straightforwardly by use of confidence ellipsoids, 
at the cost of assuming normality. One might 
decide to modify the noise covariances or reject 
the prior state estimate or the latest observation, 
depending on what is known of the reliability of 
the model, if the z% confidence ellipsoids (for 
some suitable z) around the prior state estimate 
and the value implied by the new observation do 
not intersect. Norton (2005) gives algorithms to 
check for the intersection of two ellipsoids, for 
determining by how much one must be expanded 
to intersect the other, and for checking whether 
one contains the other. 

An interesting further link between ellipsoidal 
bounding and CI (and covariance-updating 
methods generally) is that the bound implies a 
bound on covariance.  If an ellipsoidal bound 
 

1)ˆ(1)ˆ( ≤−−− xxSxx T   (18) 
 
on x exists, i.e. ),ˆ( Sxx E∈  with Sx,ˆ  known, and 
with the covariance of x defined as  
 

]))([()cov( TE xxxxxP −−≡=   (19)  
 
where xx E≡ , then for any real n-vector a, 
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Now it is easy to show that ( )2)( xxa −T  reaches 
its maximum, subject to ),ˆ( Sxx E∈ , on the 
boundary of ),ˆ( Sxx E∈ . Defining the Lagrange 
cost function 
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where it is 
 

( ) Saaxxa TT =−
2
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Hence aSaaPaa   real    ∀≤ TT . In other words, 
SP ≤ : S is an upper bound on cov( x). 

 
It might be argued that this bound is usually 
loose, as over the ensemble of errors in x, x is not 
concentrated near the boundary of ),ˆ( SxE . This 
will apply whenever several sources contribute 
significantly to the errors, implying that an error 
is near one of its bounds only when all the 
contributions are near their bounds (as when the 
Central Limit Theorem is relevant). However, as 
the state dimension n rises, a higher and higher 
proportion of the hypervolume of ),ˆ( SxE  is near 
its boundary. For example, for n = 5, 40.95% of 
the hypervolume is more than 90% of the way 
from x̂  to the boundary, and for n = 20 the figure 
is 87.84%. The conclusion is that at higher state 
dimensions an ellipsoidal bound becomes an 
increasingly good bound on the covariance. 

5.  CONCLUSIONS 

Similarities and differences between two 
complementary, distribution-free approaches to 
state estimation and information fusion, namely 
minimum-covariance, linear, unbiased estimation 
(encompassing Kalman filtering and CI) and 
ellipsoidal bounding, have been reviewed. 
Bounding has proceeded further than CI in some 
respects and offers some additional algorithmic 
possibilities for CI. The potential for checking 
compatibility between prior and new information, 

using ellipsoid-checking algorithms from 
bounding, has also been noted. 

Two practical factors in bounding should be 
noted. First, in cases where the model is correct, 
so one can speak of the correct state or parameter 
values, avoidance of distributional assumptions 
does forfeit any improvement to be gained by 
knowing more than just the bounds. For instance, 
if the bounded observation errors are markedly 
skewed, the resulting state or parameter bounds 
are likely to be asymmetrical about the correct 
values. This is a deterministic counterpart of bias,  
although the bounds remain valid. Analogous 
asymmentry arises also when correlation between 
the variables being estimated and the observation 
error is unrecognised (Norton, 1987b), paralleling 
the "errors in variables" bias problem of MCLU 
estimation. Second, the bounding algorithm must 
take account of any known, physical constraints, 
such as non-negativity. They can be explicitly 
included, at every time update, if in a form 
compatible with the algorithm (linear or 
ellipsoidal bounds). If not, they have to be 
approximated, e.g. as piecewise linear. 

It is worth mentioning that there is a good deal, 
not covered here, from the control-engineering 
literature on the ensemble properties (including 
convergence) of estimators presented with 
bounded-error observations, and on the worst-
case performance of bounding algorithms. Given 
that for poor data and dubious models it is often 
easier to specify worst-case behaviour (beyond 
which gross errors could be detected and results 
rejected) than ensemble properties, the wider use 
of bounds, instead of or in addition to means and 
covariances, seems likely to be beneficial. 
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