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EXTENDED ABSTRACT 

Site suitability analysis is performed to identify 
suitable land units (i.e. grid cells) for a specific 
purpose so that management decisions can be 
made in a site-specific manner. However, these 
grid cells are rarely equally suitable in the real 
world. They may vary substantially in their degree 
(or level) of suitability. Yet, the discrimination 
between suitable cells is often beyond the scope of 
conventional site suitability analysis. Widening the 
scope of conventional site suitability analysis to 
include a degree of site suitability (DoSS) 
measurement is therefore crucial for managing 
sites in a truly site-specific manner. 
Conventionally, site suitability analysis involves 
weighted linear combination (WLC) of 
standardised input factors (e.g. land use, slope, 
distance from stream, etc.) within a Geographic 
Information Systems (GIS) framework. In a 
conventional site suitability analysis, factor 
attributes are standardised using discrete 
classification method. Yet, the effect of this 
standardisation method on the DoSS measurement 
is unknown. Therefore, the objective of this study 
was to quantify the effect of the discrete 
classification methods of input factor attribute 
standardisation on the DoSS measurement. 

In this study, seven input factors affecting the 
suitability of an agricultural land for site-specific 
application of animal waste as fertiliser were 
selected, pre-processed and standardised. Discrete 
classification method of standardisation, which 
replaced continuous or discrete factor attributes 
with a fixed number of differentially weighted 
classes, was employed. Three different 
classification and weighting schemes were 
adopted.  Firstly, the attributes of each input factor 
were classified in up to five equal-sized classes to 
examine the effect of class number on the DoSS 
measurement. These classes were weighted with 
equally incremented weights that added up to 100. 
Secondly, they were classified into three sets of 
three classes each using equal area, equal interval 
and defined interval methods of classification to 

examine the effect of the class size on the DoSS 
measurement. These classes were also weighted 
with equally incremented weights that added up to 
100. Thirdly, the attributes of each input factor 
were classified into two sets of three classes each, 
using equal area method of classification to 
examine the effect of differential weighting on the 
DoSS measurement. These sets were respectively 
weighted with equally and unequally incremented 
weights that added up to 100. Finally, the 
standardised input factors were correspondingly 
combined within GIS framework to produce 10 
different composite maps (i.e. five for varying 
class number, three for varying class size and two 
for varying class weight). The DoSS 
measurements of each of the composite maps was 
quantified using the descriptive statistical 
parameters such as weighted average (WA), 
coefficient of variation (CV), value range (VR), 
and coefficient of skewness (CS) to make them 
comparable. 

The conventional discrete classification method of 
standardisation resulted in a series of suitability 
maps that varied widely depending on the class 
number, the class size, and the method of 
weighting the classes. The WA varied between 700 
(CV=0 & VR=0) and 221.9 (CV=6.31 & VR=100) 
for class number ranging between one and five. 
The WA for various class sizes and weight 
distribution between classes were less dramatic. 
However, they have resulted in DoSS 
measurements that were clustered and skewed. 

The comparisons of results from these tests have 
highlighted the inconsistencies in the DoSS 
measurement when using various discrete 
classification methods of input factor attribute 
standardisation. It was found that the variations in 
terms of the class number, the class size, and the 
weight distribution between classes were the major 
contributing elements towards measurement 
inconsistencies. Therefore, it was concluded that 
the usefulness of this method of standardisation is 
limited for obtaining a comparable and repeatable 
DoSS measurement unless a more robust 

74



technique could be developed through further 
research.   

1. INTRODUCTION 

Site suitability analysis can use input datasets (or 
factors), formatted in a raster (grid cell) data 
structure, to delineate suitable sites. The number of 
input factors required in a particular study may 
vary depending on purpose, location, and 
circumstances surrounding the analysis. Each input 
factor used in a suitability analysis imposes 
constraints through its attributes. These constraints 
have effect on the magnitude and the degree (or 
level) of site suitability. For instance, a soil input 
factor may have soil types as constraints which 
could range from unsuitable through less suitable 
to highly suitable for a specific purpose. Logically, 
an input factor with many cells with totally 
“unsuitable” attribute values will reduce the extent 
of suitable area, whereas an input factor with 
greater proportion of “less suitable” attributes may 
only lower the degree of site suitability. Since 
most input factors have attributes varying widely 
in their level of suitability (i.e. “low”, “medium”, 
or “high”, or on a numeric scale like 0-100), an 
outcome with different degrees (or levels) of site 
suitability is a possibility.  

The degree of site suitability (DoSS) is a parameter 
of interest because the suitability of a site is not 
usually discrete or Boolean (i.e. suitable or 
unsuitable) in nature. Instead, it expresses varying 
degrees of fuzziness or set membership (Jiang and 
Eastman, 2000). The DoSS measurement is 
therefore an approach of practical significance to 
make management decisions in a truly site-specific 
manner. However, this measurement has received 
very little attention in the past. This is largely 
because the degree of site suitability measurement 
is an outcome of a complex relationship between 
the number of input factors included in the 
analysis, the differential weighting of input factors, 
and the method of factor attributes standardisation 
adopted in the process (Basnet, 2002).  

The spatial variation of attributes within each 
factor is not uncommon because most datasets 
come with inherent natural variability. 
Standardisation is therefore necessary to make it 
commensurable for a site suitability analysis. 
Standardisation is a data reduction process that 
simplifies the data structure (Burrough et al., 
1992).  In a suitability analysis, the input factors 
may be standardised using a Boolean logic, a 
continuous rescaling, or a discrete classification 
method. Many datasets used in a site suitability 
analyses are inherently categorical (e.g., land use) 
or recorded in a categorical format (e.g., soil type). 

These datasets are typically standardised using a 
discrete classification method. The discrete 
classification method of standardisation involves 
replacing the continuous or discrete attributes with 
discrete classes and weighting the classes 
appropriately (Burrough et al., 1992). This method 
of standardisation is conventional in a site 
suitability analysis.  

In a discrete classification method, the input 
factors are brought to a common numeric range by 
classifying their attributes into discrete classes 
(e.g., Banai-Kashani 1989; and Jain et al., 1995) of 
similar or different class sizes (Chrisman, 1997). 
These classes are conventionally weighted or 
scored (Banai-Kashani, 1989; Hendrix and 
Buckley 1992; Siddiqui et al., 1996) for a site 
suitability analysis (Eastman, 2000). Both the 
classification and the weighting schemes 
determine the cell values of the input factors. The 
cell values of an input factor have an affect on the 
DoSS measurements since the conventional site 
suitability analysis is a process of deriving a 
composite map through the linear combination of 
input factors (Chrisman, 1997). Thus, the 
uniformity in the classification and the weighting 
schemes is crucial for the DoSS measurement. 
However, classification and weighting uniformity 
is beyond the scope of conventional site suitability 
analysis.  

It is generally agreed that too many classes are not 
desirable in a suitability analysis. However, there 
is no optimum number recommended for an 
analysis. Consequently, the attributes of an input 
factor could be categorised into any number of 
classes. It is also common to have a different 
number of classes for each of the input factor used 
in an analysis. The varying number of classes, 
within and between the input factors, may have a 
substantial effect on the magnitude of DoSS 
measurement; but this has not been the subject of 
investigation in the past.    

In a discrete classification system, the attributes of 
an input factor may be classified using various 
classification schemes.  Most modern GIS have 
built-in classification schemes such as equal area, 
equal interval, natural break, quantile and standard 
deviation functions (Mitchell, 1999). Each of these 
schemes may produce classes of different sizes 
(i.e. number of pixels) by splitting factor attributes 
differently (Basnet, 2002). Variations in the class 
size (e.g. equal-sized or unequal-sized classes) 
could have effect on the DoSS measurement. 
However, the effect of class size on the DoSS 
measurement is not yet reported in scientific 
literature. 

75



The differential weighting (or scoring) of classes is 
also an important aspect of a site suitability 
analysis.  Differential weighting can be assigned in 
many different ways. Some of the common choices 
may include the following: distributing weights 
arbitrarily to a sum of one, 100 or 255 (Burrough, 
1996 & Eastman, 2000); increasing weights with a 
constant interval while maintaining a sum of one 
or 100 (Basnet, 2002); or distributing weights 
using analytic hierarchy process to ensure 
consistency in weight distribution (e.g., Siddiqui et 
al., 1996 & Eastman, 1999). The selection of any 
one of these methods of weight distribution could 
have effect on the DoSS measurement. However, 
effect is yet to be determined. 

The classification and the weighting methods 
available within a discrete classification system of 
standardisation are unlimited.  Yet, the choice of a 
particular classification and weighting scheme may 
determine the class number, class size and weight 
distribution between classes.  Variations in the 
class numbers, class sizes, and weight distribution 
between classes may have consequential effect on 
the DoSS measurement. In effect, it is possible that 
the DoSS measurement of a selected site depends 
on the classification and weighting scheme 
adopted. However, there has been no attempt in the 
past to compare and contrast these effects. 
Therefore, the objective of this study was to 
assess, understand and quantify the effect of class 
number, class size, and weight distribution 
between classes on the DoSS measurement. 

2. METHOD 

In this study, analyses were performed to identify 
suitable sites and to determine their degree of 
suitability for site-specific application of animal 
waste as fertiliser in the agricultural fields. The 
Westbrook sub-catchment in the south-east 
Queensland, Australia was selected as the study 
area. The 24 903 ha area of this sub-catchment is 
drained by the Westbrook Creek system. It 
encompassed 22 dairies, 4 feedlots, 9 piggeries, 
and 4 poultry farms at the time of this study. This 
is a relatively flat (i.e., mostly less than 10% slope) 
sub-catchment with some undulating hills. Most 
flat areas with fertile self-mulching Vertosols are 
used for extensive farming. 

Seven input datasets that are influential on the 
social, economical, environmental, and/or 
agricultural suitability of a site for animal waste 
application were selected based on the literature. 
These datasets were pre-processed within Arc/Info 
GIS software to create raster grids of 10m × 10m 
cell resolution prior to the analysis. Unsuitable 
attributes for animal waste application were 

excluded by assigning no-data value from each of 
the seven input factors. The exclusionary criteria 
adopted by Basnet (2002) were employed to 
identify the unsuitable attributes. Potentially 
suitable area for animal waste application was 
calculated for each input factor from the remaining 
attributes (Table 1). 

Table 1.  Potentially suitable area within each 
input factor for animal waste application 

 
Unsuitable Suitable Selected input 

factors attributes* ha ha % 
Sub-catchment  None 0 24903 100

Land cover  Non-crop or 
pasture  14183 10720 43.0

Proximity to 
town 

Within 250 m 
radius 7516 17387 69.8

Proximity to 
stream 

Within 100 m 
distance 7071 17832 71.6

Soils Shallow or stony 
soils 5895 19008 76.3

Slopes  With >10 % slope 2453 22450 90.1
Proximity to road Within 25 m 

distance 1787 23116 92.8

Proximity to IAI Within 100 m 
radius 120 24783 99.5

IAI = Intensive Animal Industry, * from Basnet (2002) 

The suitable attributes of all but the land cover 
input factor were standardised using discrete 
classification method. The land cover input factor 
contained only one suitable attribute (i.e., 
crop/pasture) with no further detail on crop or 
pasture type. Thus, it was retained as a single-
classed input factor with a class weight of 100 
throughout the test. The remaining six input 
factors were firstly classified in up to five classes 
each of approximately equal class sizes using 
equal area method of classification (Table 2a).  

Table 2(a). Area in hectares under each class 
using equal area method of classification 

 
Proximity to Proximity to Class no.
town stream

Soil Slope 
road IAI 

Single class 
I 17387 17832 19008 22450 23116 24783

Two classes 
I 8695 8967 9502 11279 11559 12401
II 8692 8865 9506 11171 11557 12382

Three classes 
I 5800 5945 6389 7637 7741 8272 
II 5796 5947 6150 7343 7675 8254 
III 5791 5940 6469 7470 7700 8257 

Four classes 
I 4373 4564 4650 5613 5919 6209 
II 4322 4403 5331 5666 5640 6193 
III 4353 4431 4728 5627 5785 6187 
IV 4339 4434 4299 5544 5772 6194 

Five classes 
I 3500 3608 3432 4568 4644 4964 
II 3459 3532 5331 4568 4640 4955 
III 3482 3579 4728 4378 4613 4958 
IV 3475 3549 2775 4511 4596 4951 
V 3471 3564 2742 4425 4623 4955 
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These classes were weighted using an arbitrarily 
selected increment of five (Table 2b) to distribute 
weights evenly (i.e., at equal interval) between 
classes. The highest weight was assigned to the 
most suitable class and the sum of all the class 
weights was maintained to 100. 

Table 2(b). Weight distribution between classes 
 

Weight distribution  to the 
class Su

m
 

of
 

w
ei

g
ht

s 

No. of 
factor 

attribute 
classes 

I II III IV V  

In
cr

em
en

t 

1 100.0     100 - 
2 52.5 47.5    100 5 
3 38.3 33.3 28.3   100 5 
4 32.5 27.5 22.5 17.5  100 5 
5 30.0 25.0 20.0 15.0 10.0 100 5 

Example: Increment = (38.3 – 33.3)  =  (33.3 - 28.3)  = 5.0 

For the second test, the attributes of each of the six 
input factors were classified into three classes each 
using three different methods of classification (i.e., 
equal area, equal interval and defined interval).  
The equal area method classified factor attributes 
into three classes of approximately equal sizes by 
finding appropriate break points in the data (ESRI, 
1996). The equal interval method divided 
attributes into equal sized sub-ranges (ESRI, 
1996). The defined interval method employed 
information from the literature to classify the 
attributes. For example; fields with 6-10, 3-6, and 
0-3 % slopes are considered as good, better, and 
best for waste application (NSW A&F, 1989) and 
therefore classified into class III, II, and I, 
respectively. This has resulted in three sets of 
classified data with varying class sizes (Table 3). 
These classes were weighted as before. 

Table 3. Area within each class as determined by 
three classification methods 

 
Class sizes (ha) using three classification schemes  
Equal Area  Equal Interval Defined interval  

Factor 
I II III I II III I II III 

Town 5800 5796 5791 13601 3409 377 5936 10053 1398
Stream 5945 5947 5940 14380 3197 255 7528 10239 65 
Soil 6389 6150 6469 12279 4854 1875 3636 12835 2537
Slope 7637 7343 7470 11504 8453 2493 5294 11705 5451
Road 7741 7675 7700 19838 2910 368 4455 18329 332 
IAI  8272 8254 8257 18098 5260 1425 2491 18181 4111

 IAI: Intensive animal industries 

Finally, the attributes of each of the six input 
factors were classified into two sets of three 
classes each, using the equal area method of 
classification, to examine the effect of differential 
weighting on the DoSS measurement. The first set 
was weighted as above with equal incremented 
weight. The second set was assigned unequally 
incremented weight (Table 4) using the analytic 
hierarchy process (AHP). 

Table 4.  Weights derived using AHP method 
 

Proximity to  Proximity to Class Town Stream Soil Slope Road IAI 
I 07.02 06.39 62.67 66.08 59.36 62.67 
II 37.08 13.83 27.97 20.81 24.93 27.97 
III 55.90 79.78 09.36 13.11 15.71 09.36 

Sum 100.0 100.0 100.0 100.0 100.0 100.0 

Unequally incremented weights were derived 
separately for each input factor using the AHP 
developed by Saaty (1980). The class weights 
added up to 100 for both equally and unequally 
incremented weights. 

The standardised input factors were combined 
spatially using the weighted linear combination 
(WLC) model (Equation 2) within Arc/Info GRID. 

Where, 
Si =   suitability value at ith cell locations 
fji.suit = grid dot notation for factor 
attribute classes for jth factor with class 
weights at ith cell locations, and 
wj =   respective weight for factor fj (all 
factors treated equally in this case) 

Separate tests were conducted to evaluate the 
effects of the number of classes, class sizes, and 
the method of weight distribution between classes 
on the DoSS measurement. All seven input factors 
were weighted equally in this analysis. 

The WLC produced a suitability map with 
composite values through cell-wise summation of 
corresponding cell values from each input factor. 
Cells identified with no-data in any one of the 
input factor made this area unsuitable for animal 
waste application. Thus, higher and lower cell 
value in a composite map indicated higher and 
lower DoSS, respectively, while no-data indicated 
not suitable. Descriptive statistical parameters such 
as weighted average (WA), coefficient of variation 
(CV), values range (VR) and coefficient of 
skewness (CS) was calculated from the composite 
map to assess the DoSS measurement. The WA 
quantified the central tendencies of the cell values, 
while CV and VR measured their dispersions. The 
CS determined their degree of symmetry. 

3. RESULTS 

In this analysis, 10 different composite maps (i.e. 
five for varying class number, three for varying 
class size, and two for varying class weight) were 
produced. A sample suitability map for three 
classes with equal class size and weight increment 

( ) [ ]∑
=

×=
n

1j 
2Eq.jw .suitjifiS
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is given in Figure 1. The DoSS values were 
grouped into low, medium and high suitability in 
this case. 

The variation in class number is found to have 
substantial effect on the magnitude of the expected 
DoSS values. These effects were evident from a 
comparison of the five composite maps that were 
produced using factors classified in one to five 
classes (Table 5).  

 

Figure 1. A sample map showing low, medium 
and high degree of site suitability. 

The WA of the suitability value ranged between 
700 (with CV = 0 and VR = 0) and 221.9 (with CV 
= 6.3 and VR = 100) depending on the number of 
classes. Clearly, the increase in class number has 
decreased the weighted average while increasing 
the coefficient of variation and the value range 
(Table 5).  

Table 5.  Effects of the number of factor attribute 
classes on the DoSS measurement 

 
No. of 

attribute 
class 

Weighted 
average 
(WA) 

Weighted 
standard 
deviation 

Coeff. of 
variation 
(CV) % 

Value 
range 
(VR) 

1 700.0 0.00 0.00 0 
2 399.5 5.31 1.33 30 
3 298.8 8.34 2.79 60 
4 250.3 11.43 4.57 80 
5 221.9 13.96 6.29 100 

Seven input factors used in the analysis 

The effect of class size on the WA, CV and VR 
measurements were not so dramatic but there was 
an indication of clustering of the suitability values 
in case of unbalanced class sizes. Nevertheless, the 
skewness measurements were noticeably different 
between various class sizes (Table 6). In this 
instance, the unbalanced class sizes have resulted 
in upper bound of the suitability values as 
indicated by the negative skewness coefficient (or 
left skewing) of the suitability values (Table 6).  

Table 6.  Effects of the class size distribution on 
the DoSS measurement 

 

Class 
size 

Weighted 
average 
(WA) 

Weighted 
standard 
deviation 

Coeff. of 
variation 
(CV) %  

Value 
Range 
(VR) 

Coeff. of 
skewness 

(CS) 
Equal 
area 298.78 8.34 2.79 60 0.15 

Defined 
interval 298.23 5.70 1.91 45 -0.04 

Equal 
interval 306.85 4.89 1.60 35 -0.31 

The method of weight distribution between classes 
is found to have remarkable effect on the DoSS 
measurement. There has been a sizeable increase 
in the CV and VR measurements due to uneven 
weighting (Table 7).  It has also resulted in lower 
bounded suitability values as indicated by the 
positive coefficient of skewness measurement. 

Table 7.  Effects of the method of class weight 
distribution on the DoSS measurement 

 
Method of 

weight 
distribution

Weighted 
average 
(WA) 

Weighted 
standard 
deviation 

Coeff. of 
variation 
(CV) % 

Value 
Range 
(VR) 

Coeff. of 
skewness 

(CS) 
Equal 

increment * 298.8 8.34 2.79 60 0.15 

Uneven 
weighting # 292.1 54.72 18.73 337 + 0.27 

* As per Table 2b for 3 classes; # As per Table 4 

4. DISCUSSION 

Discrete classification methods of standardisation 
are being used conventionally as a process of data 
reduction to make complex data sets 
understandable (Burrough et al., 1992). However, 
the options available within this method of 
standardisation are unlimited. The input factors 
may be standardised into many classes of different 
sizes that could be weighted differently. This study 
has revealed that the choice of a particular class 
number, class size, or weight distribution between 
classes has effect of various extents on the DoSS 
measurement.  

The composite maps of the input factors classified 
in up to five classes (Table 2a) have resulted in the 
DoSS measurements that are substantially different 
to each other. The WA of the suitability value 
ranged between 700.0 and 221.9 depending on the 
number of classes (Table 5). The CV and VR also 
varied accordingly. A clear trend has emerged in 
the sense that the weighted average decreased and 
the coefficient of variation and the value range 
increased with an increase in the class number. 
The decrease in the WA and the increase in the CV 
and VR are mainly due to the split of suitable area 
into smaller classes and the fragmentation of 
weights assigned to those classes during the 
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classification. These occurrences can be seen in an 
individual input factor (Table 2a and 2b) where an 
increase in class number is associated with 
corresponding decrease in class size and weight 
distribution between classes. Increase in the class 
number and the decrease in class weight have 
resulted in a composite map with lower but wide 
ranging cell suitability values. Therefore, the 
increase in class number is associated with the 
decrease in WA and increase in CV and VR.  In 
this instance, the increase in the class number may 
appear to be beneficial in terms of differentiating 
suitable areas into various DoSS by recognising 
subtle differences. However, the inconsistency in 
the DoSS measurement becomes an issue when 
there is no limit to the number of classes to be used 
in an analysis. Therefore, the effect of class 
number on the DoSS measurement remains 
inexplicable. 

The composite maps produced from balanced and 
unbalanced class sizes have also shown differences 
in the DoSS measurements. The unbalanced class 
sizes, created by equal interval and defined interval 
methods of classification, have resulted in lower 
CV and VR measurements. Lower values of 
coefficient of variation and value range denote that 
these measurements are close to the WA or less 
dispersed or more clustered. These outcomes are 
expected because the larger classes have the 
dominating effects when the class sizes are 
unbalanced.  The unbalanced class sizes have also 
been responsible in skewing the suitability values 
towards the left (Table 6). It is left skewed when 
the higher suitability values are on the right hand 
side of the mean (i.e. upper bound). This situation 
occurs when a larger class has small suitability 
values. This is again a function of disproportion in 
class sizes. In a nutshell, the unbalanced class sizes 
have varying effect in the DoSS measurement. 
Yet, the standardisation of input factors using 
discrete classification method does not necessarily 
produce balanced class sizes.  Thus, the class size 
effect on the DoSS measurement also remains 
unresolved.  

The effect of the method of weight distribution 
between classes on the DoSS measurement has 
been quite remarkable. The CV and VR have 
increased substantially and the suitability values 
have become lower bounded as a result of uneven 
weighting (Table 7). This outcome is not unusual 
given the role of weighting in differentiating 
suitable sites. In a site suitability analysis, 
differential weightings are assigned to the classes 
to be able to distinguish them in terms of their 
suitability. Differential weightings can be assigned 
in many ways to the suitability classes. In this 
instance, they were assigned evenly by 

maintaining equal increment between classes and 
unevenly by weighting some classes heavier than 
others. The distinction between classes (or class 
effect) may remain consistent when the weights 
are assigned with an equal increment.  However, 
the class effect may become exaggerated or 
understated depending on class weighting when 
the weights are not assigned evenly. These effects 
may have resulted in the increase of CV and VR 
measurements in this case. It is also the case that 
the heavily weighted classes show greater 
influence to the overall outcome. This is probably 
the reason for right skewing of the suitability 
values. Thus, the method of weighting determines 
the DoSS measurement. Yet, in practice, the class 
weights can be assigned in many different ways.  

5. CONCLUSION 

The effect of discrete classification methods of 
input factor attribute standardisation on the degree 
of site suitability measurements was examined. It 
was revealed that the class number, class size, and 
weight distribution between classes have effects of 
various extents on the degree of site suitability 
measurements. The measurements were found to 
be dependent on the choice of a classification 
option. It was also highlighted that there is no 
single approach in achieving optimum class 
number, class size, and weight distribution 
between classes. Therefore, this study concludes 
that the usefulness of the discrete classification 
method of standardisation is limited in obtaining a 
comparable and repeatable degree of site 
suitability measurements.  
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