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1. EXTENDED ABSTRACT

Introduced  predators  have  a  major  impact  on 
native species, and have been identified as one of 
the great threats to biodiversity. As a result control 
of  introduced  predators  is  an  important 
management  action  if  we  are  to  protect  such 
species.  Given  the  complexity  of  ecological 
systems  and  limitation  to  conservation  budget 
there  are  many  factors  that  managers  must 
consider when designing control operations. Such 
factors include the allocation of resources between 
sites,  changes  in  management  efficiency  with 
predator densities and connectivity between sites. 

This  study  investigated  how  dispersal  between 
multiple  predator  populations  affects  the  success 
of predator control as measured by a prey species' 
long-term  survival.  The  model  is  based  on  the 
Lotka-Volterra  set  of  equations  but  modified  to 
include two patches,  predatory efficiency, spatial 
separation,  management  on  a  limited  budget, 
management efficiency and predator dispersal. We 
also included three different dispersal functions to 
determine whether this was an important factor to 
take  into  account  when  designing  control 
programmes. The three dispersal functions were no 
dispersal,  proportional  dispersal  based  on  the 
density  of  predators,  and  proportional  dispersal 
based on the availability of prey.

We investigated analytical solutions to the model 
and then performed stochastic simulations. There 
was limited success in finding analytical solutions 
to the model. The only solution that we obtained 
was for the case when there was no dispersal, and 
resources  should  be  spent  equally  between  the 
patches.  The  two  cases  where  dispersal  was 
included  were  too  complex  to  find  analytical 
solutions. 

In  the  stochastic  simulations  we also  considered 
two different  methods of  allocating management 
resources  between  the  patches.  In  the  first, 
resources were divided between patches at a fixed 
level.  The  second  method  divided  the  resources 
between  the  two  patches  at  each  time  step  in 
proportion to the density of predators. We tested 
the performance of these options over a range of 

dispersal probabilities, and to the budget allocation 
in the first simulation..

We  found  that  [1]  in  the  case  of  no  dispersal 
optimal allocation is ½; [2i] simple dispersal and 
fixed  allocation has  best  prey survival  when the 
probability  of  dispersal  is  low  and  allocation  is 
split  equally;  [2ii]  with  simple  dispersal  and 
proportional  allocation  the  probability  of  prey 
extinction is the same as proportional allacation of 
50-50, and probability of predator dispersal should 
be  low;  [3i]  resource-dependent  dispersal  and 
fixed  allocation  should  be  managed  so  that  the 
probability  of  predator  dipsersal  is  low  but  not 
zero, and the allocation should not be split 50-50; 
[3ii]  with  resource-dependent  dispersal  and 
proportional  allocation,  the  probability  of  prey 
extinction is the same as a fixed allocation of 50-
50, and the probability of predator dispersal should 
be kept as low as possible.
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2. INTRODUCTION

Introduced  predators  have  a  major  impact  on 
native  species  around the  world,  and  have  been 
identified  as  one  of  the  greatest  threats  to 
biodiversity (Diamond 1989). They have invaded 
many environments and are continuing to spread. 
Native  species  in  these  environments  are  often 
naïve  to  such  predators  and  can  be  more 
vulnerable to population decline and extinction as 
a result. To conserve these species, it is therefore 
important to control introduced predators.

Controlling  introduced  predators  is  a  complex 
process.  Many  factors  need  to  be  taken  into 
consideration in the design and implementation of 
control  programmes.  For  example  the  type  of 
predator, the number, location and connectivity of 
populations,  the  efficiency  of  control  and  the 
available  budget  all  need  to  be  taken  into 
consideration  to  determine  optimal  control 
strategies and assess if the control is likely to be 
effective.

Models are an exploratory tool that are very useful 
in  conservation  ecology  for  understanding 
complex system dynamics. The relative success of 
predictions under various model scenarios can aid 
managers when planning a control programme by 
enabling  us  to  explore  the  benefits  of  different 
control options. 

Our aim in this study was to determine how the 
allocation  of  budgeted  resources  should  be  split 
between two habitat patches when the introduced 
predator  populations  are  linked  by  dispersal  and 
both patches have a prey population that is under 
threat from these predators. One of the most well-
known  theories  of  predator-prey  interactions  is 
summarised  by  the  Lotka-Volterra  equations, 
which  form the  basis  of  the  model  used  in  this 
paper.

3. METHOD

3.1 The Model

The model (5) was based on the Lotka-Volterra set 
of  equations.  The  base  equations  (Lotka  1925, 
Volterra  1926)  were  adjusted  to  account  for  the 
existence  of  two  habitat  patches,  density 
dependence in the prey population, a prey-predator 
functional  response  (Holling  1959),  predator 
dispersal and our predator control strategy.

The variables in the set of equations are defined as 
follows: Ni and Pi are the population sizes in patch 
i of  the  prey  and  predator,  respectively;  r,  the 
intrinsic rate of increase of the prey population; Ki, 
carrying  capacity  for  prey  in  patch  i;  a,  the 
maximum predatory attack rate;  l, predation half-
saturation  constant;  γ,  the  energy  conversion 
efficiency of the predator;  k,  the predator's death 
rate  in the absence of  prey;  α,  the proportion of 
budgeted resources allocated to predator control in 
patch 1;  B, the budgeted number of predators that 
can  be  removed  at  each  time  step;  m,  the  half-
saturation constant for predator control success; δ, 
predator dispersal function.

Therefore  the  prey  population  increases  at  a 
maximum rate,  r, until the population approaches 
the carrying capacity  of  the  patch,  Ki.  The  prey 
population  is  also  decreased  via  predation: 
predators in each patch eat prey found within their 
current patch. The rate of consumption of prey per 
predator in relation to prey density is represented 
by the l + N1 term (see equation (1),(3)). Thus we 
use  a  type-II  functional  response  to  represent 
predatory  inefficiencies  at  low  prey  densities 
(Holling 1959). 

The predator populations grow by converting the 
consumed  prey  to  new  predator  biomass  with 
efficiency  γ.  In  all  biological  systems,  available 
energy  is  lost  to  the  system as  heat  as  it  flows 
through the trophic levels so that on average only 
about 10% of the energy contained in one level is 

   

Figure 1. The model. 
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passed  through  to  the  next  level  (Begon  et  al. 
1990;  p.670).  Predators  starve in  the  absence of 
prey,  and  this  model  assumes  that  the  predator 
population will decline with an exponential decay 
rate of k.

Predator control is built into the model as follows. 
B gives the total number of predators that can be 
killed in any one year, and so αB is the number of 
predators that can be removed from patch 1, and (1 
- α)B is the number of predators from patch 2 that 
can  be  culled.  To  represent  inefficiencies  in 
predator  removal  at  low densities,  we  employ  a 
type-II  functional  response  (Holling  1959) 
between  managers  and  predators,  with  half-
saturation constant m. 

Predators can also move between the two patches. 
The net number of predators that leave patch 1 for 
patch 2 is given by δ (if δ < 0, –δ is the number 
leaving  patch  2  for  patch  1)  and  φ  is  the 
probability  of  successful  dispersal  to  the  new 
patch.

To find a rule of thumb for the optimal allocation 
of budgeted resources between the two patches, we 
attempted  to  solve  (5)  for  the  sum  of  the 
equilibrium  prey  populations  and  maximise  this 
with respect to α.

3.2 Case 1 – No Dispersal 

In the first instance we took the case where there is 
no dispersal between the two predator populations, 
hence δ = 0. 

To  get  an  expression  for  the  optimal  resource 
allocation  between  patches,  first  simplify 
equations (2) and (4) for N1 and N2 respectively. 
This  yields  the  equilibrium prey  populations  for 
these patches, the sum of which is an expression 
for the total equilibrium in terms of α. From this 
we  can  find  the  resource  division  α*  that 
maximises  the  total  equilibrium  prey  population 
size N.

3.3 Case 2 – Simple Dispersal

As  a  first  step  to  investigating  the  effect  of 
dispersal  between  the  predator  populations,  we 
considered  predators  moving  according  to  the 
relative density between the patches. In this case 
we assumed that the excess in one patch at each 
time step moved to the other patch, giving δ = (P1 
– P2).

3.4 Case 3 – Resource-dependent Dispersal

A third case was investigated where dispersal was 
assumed  to  be  dependent  on  the  relative 
availability  of  prey  items  in  either  patch.  Thus 
predators  move  when  the  other  patch  has  more 
available food. This can be given by the function δ 
= (P1N2 – P2N1)/(N1 + N2). It is assumed that if 
N1 + N2 = 0, then δ = 0.

3.5 Simulation

The  other  aspect  of  our  investigation  was  to 
simulate  the  effects  of  various  budget  allocation 
options  for  all  three  dispersal  cases.  These 
simulations were included to help identify which 
allocation  option  is  best.  The  first  simulation 
allocated a fixed proportion of the budget to each 
patch for the entire management period, which was 
repeated across the full range of allocation options 
(0 ≤  α ≤ 1). The second simulation assumed that 
budget  resources  are  allocated  dynamically  in 
proportion  to  predator  density  in  each  patch  at 
each time-step. In practice, this would mean that 
the predator densities would have to be monitored 
continually which would therefore add further cost 
to this control option. However, for simplicity we 
assumed  that  a  monitoring  program  is  ongoing 
independent  of  the  management  strategy  so  that 
the extra cost of monitoring was not included in 
the simulation. 

Stochastic variability is inherent in real ecological 
systems,  and  has  a  fundamental  effect  on 
population dynamics and survival. Therefore it is 
important  to  include  stochastic  effects  in  the 
model. We included stochasticity in the model by 
defining  ri and  ki to  be  uniformly  distributed 
random variables,  and randomly choosing values 
between their upper and lower bounds at each time 
step. We simulated each scenario 1000 times. The 
parameter  values  chosen  for  the  simulations  are 
given in Table 1.

Table 1. Variables used in the stochastic 
simulations

r1, r2 ~ U (2.45, 3.05)

k1, k2 ~ U (0.55, 0.95)

K 350

a 10

B 11

l 50

m 25
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γ 0.1

N1(t=0) 150

N2(t=0) 150

P1(t=0) 15

P2(t=0) 15

We  optimised  the  sum  of  the  equilibrium  prey 
populations  with  respect  to  α,  but  consider  the 
probability  of  extinction  obtained  through  the 
simulation as a meaningful measure of risk to the 
prey  population.  Hence  the  results  of  the 
simulation are discussed in terms of probabilities 
of extinction.

4. RESULTS

4.1 No Dispersal 

Finding the optimal value of α (to maximise the 
prey  equilibrium  populations)  was  analytically 
straightforward  under  the  no-dispersal  scenario, 
giving optimal α* = ½.
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Figure 2. The probability of both prey populations 
(a) and at least one prey population (b, note 

different scale) going extinct for various allocation 
options and no dispersal.

Fixed Budget Allocation: The probability of both 
patches going extinct (Fig. 2a) is around 5% when 
the budget is allocated entirely to one patch (α = 0 
or  α  =  1),  decreasing  towards  zero  when  both 
patches are managed together (e.g. α = 0.25; the 
slight increase in extinction probability around α = 
0.5  may  be  due  to  stochastic  effects).  In  the 
absence  of  dispersal,  the  extinction  probabilities 
are approximately symmetric about α = 0.5 so that 
at α » 0.75, the probability of extinction increases 
again, approaching 5% at α = 1. Similar trade-offs 
in patch-specific prey extinction probabilities can 
be seen by examining the probability that at least 
one prey population goes extinct (Fig. 2b). When 
almost all the budget is allocated to one patch we 
are almost guaranteed to loss at least one patch (p 
= 1, α = 0 and α = 0). When at least 25% of the 
budget is allocated to each patch then probability 
of losing at least one of these populations plateaus 
to approximately 0.05 (0.25 ≤ α ≤ 0.75).

Proportional  Budget  Allocation: When  no 
dispersal  occurs,  the  strategy  of  allocating  the 
budget  in  proportion  to  the  current  predator 
population in each patch gives zero probability of 
both  prey  populations  going  extinct,  and  a 
probability of at least one population going extinct 
of only 5%. These results are also consistent with 
allocating half of the resources to each patch. 

4.2 Simple Dispersal

When we included the  simple  dispersal  function 
where  predators  move  according  to  the  relative 
density  between the  patches,  δ  =  (P1 –  P2),  the 
additional  model  complexity  was  prohibitive  to 
finding  an  analytic  expression  for  the  optimal 
allocation, α* which would maximise the sum of 
the  equilibrium  prey  populations.  We  therefore 
focus on simulation results below.

Fixed  budget  allocation:  When  we  consider  the 
allocation of a  fixed proportion of the budget to 
each patch, and that the predator populations in the 
two patches  are linked with the simple dispersal 
function,  higher  prey  extinction  probabilities  are 
observed  (Fig.  3).  These  probabilities  also 
 increase with the probability of predator dispersal. 
Again  the  overall  patterns  are  similar,  but  at 
different scales, for extinction probabilities either 
in  both patches  or  in  at  least  one patch.  Budget 
allocation  between  patches  seems  to  have  little 
consequence on the probability of extinction of the 
prey populations when predator dispersal is above 
approximately  20%.  The  increase  of  prey 
extinction  probability  in  both  patches  resulting 
from  increased  dispersal  can  be  offset  by  more 
equal budget allocation between patches (Fig. 3a), 
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indicated by a bell-shaped region of allocation and 
probability  of  dispersal  where  the  probability  of 
both patches  going  extinct  is  close to  zero.  The 
majority of the surface,  however,  has extinctions 
risks between 12 and 18% across the plane. For the 
most  part,  the  probability  of  at  least  one  patch 
going extinct is 100% (Fig. 3b). Nonetheless, there 
remains  a  region  where  extinction  risk  is 
significantly  reduced  by  more  equal  allocation 
between patches, given approximately by the area 
under the curve running from (φ, α) = (0, 0.1) to 
(0.175, 0.5) then (0, 0.9).
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Figure 3. The probability of extinction of (a) both 
prey populations and (b) at least one prey 

population for fixed budget allocation options and 
various probabilities of 'simple' dispersal. (Note 

different scales.) 

Proportional Budget Allocation: When the budget 
was  proportionately  allocated  according  to 
predator  densities,  the  probability  of  extinctions 
have  their  minima  in  the  dispersal  probability 
range 0 < φ < ~0.2 (Figure 4a, b). As seen in the 
fixed-budget  allocation  strategy  there  is  a 
pronounced increase  in  extinction once  dispersal 
probability exceeds 20%; however once dispersal 
reaches  about  30%  (φ  ≈  0.3)  the  probability  of 
extinction  does  not  vary  significantly.  This 
relationship corresponds closely to  that  observed 

for the fixed budget allocation option where there 
is equal allocation (α = 0.5).
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Figure 4. The probability of (a) both prey 
populations and (b) at least one prey population 

going extinct as the probability of 'simple' 
dispersal increases, when budget allocation is 

proportional to predator density in either patch.

4.3 Resource-dependent Dispersal

We  next  considered  a  more  complex  dispersal 
function,  in  which  the  number  of  predators 
dispersing  between patches  reflected  the  relative 
prey  abundance  available  per  predator.  Once 
again,  the  extra  complexity  in  the  model  meant 
that an optimal solution for α to maximise the prey 
equilibrium populations was elusive and therefore 
we concentrate on simulation results below. 
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Figure 5. The probability of both prey populations 
(a) and at least one prey population (b, note 

different scale) going extinct as a function of fixed 
allocation and probability of resource-dependent 

dispersal.

Fixed  budget  allocation: Generally  the  threat  to 
prey is reduced when dispersal responds to relative 
prey density per predator, compared to the simple 
predator  dispersal  scenario  (Fig.  5).  Again  the 
probabilities of prey extinction in at least one (Fig. 
5b), and in both (Fig. 5a), patches follow similar 
patterns. There is a region of increased probability 
of extinction when probability of dispersal is low 
and management is focussed mainly on one patch 
(higher  and  lower  values  of  α).  There  is  also  a 
region  of  moderately  increased  probability  of 
extinction  when  dispersal  is  high  and  α  is 
intermediate.  Over  most  of  the  phase-space, 
probability  of  extinction  is  relatively  low  (dark 
blue regions), as predators redistribute themselves 
according to the relative availability of prey. This 
redistribution  lowers  the  prey  extinction  risk  by 
reducing  the  net  direct  impact  on  the  prey 
populations  and  by  dampening  the  dynamics 
rendering  the  prey  less  vulnerable  to  stochastic 
effects.
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Figure 6. The probability of both prey populations 
(a) and at least one prey population (b) going 
extinct for proportional allocation and various 

probabilities of 'more complex' dispersal.

Proportional budget allocation:  The probabilities 
of extinction in both patches, and in at least one 
patch, again show a similar pattern as a function of 
predator dispersal when the budget is allocated in 
proportion  to  predator  density  (Fig.  6).  The 
probability  of  extinction  is  lowest  when  the 
probability of dispersal is less than approximately 
20%,  increasing  steadily  as  dispersal  increases. 
These relationships are once again very similar to 
the fixed allocation option with equal allocation (α 
= 0.5). The sharp increase in prey extinction risk 
seen with simple-dispersal  probabilities  of 0.2  is 
much less pronounced when predator dispersal is 
resource-dependent  (compare  Figs.  4  and  6), 
reflecting  the  more  damped  dynamics  of  the 
system overall.

DISCUSSION

Managers of systems where there is no dispersal of 
predators  between  populations  could  aim  for  an 
equal  division of  resources  between the  patches, 
but if this was varied slightly there is no indication 
that adverse effects would follow. When there was 
no  dispersal  an  allocation  split  of  50-50  was 
analytically optimal. This was further supported by 
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the  simulation,  although  there  is  a  range  of 
allocation  options  that  also  produced  the  same 
results.  Managers  of  systems  with  density-
dependent dispersal  should also aim for  splitting 
resources equally. However, this is only effective 
under low amounts of dispersal because once the 
probability  of  dispersal  becomes  too  large, 
predator  control  becomes  ineffective.  Resource-
dependent  dispersal  produces  some  results  that 
may seem counter-intuitive at first. With a 50-50 
budget  split  between  patches,  there  is  often  a 
regional  maxima  for  many values  of  φ,  and  the 
minima are around α = 0.3 and 0.7. The reason for 
this is in the dispersal dynamics, and its occurrence 
is  similar  to  the  paradox  of  enrichment 
(Rosenzweig 1971).

Dynamic allocation of the budget produces results 
that are no better than a 50-50 split in all cases. So 
if  management  alternatives  focused  on  either 
splitting  the  budget  50-50,  or  using  dynamic 
allocation, then the 50-50 fixed alternative should 
be used to save money.

The probability of dispersal affected the outcome 
of  results  in  both  cases  where  the  dispersal 
function allowed movement between the predator 
populations. Under density-dependent dispersal, an 
effective  management  option  could  be  to  keep 
predator  dispersal  as  low  as  possible.  This  is 
because  the  probability  of  extinction  increased 
significantly  when  φ  became  too  large.  Under 
resource-dependent  dispersal,  managers  should 
allow  some  restricted  movement  between  the 
populations.  This is  because under very low and 
high probabilities of dispersal, there are regions of 
increased  extinction  risk,  whereas  low to  mid  φ 
have regions of decreased risk.

A model that explicitly investigates the control of 
probability of dispersal (φ)  can extend upon this 
paper. It would aid in determining whether altering 
connectivity  between  patches  would  be  an 
effective  management  option  to  reduce  the 
probability of extinction of endangered prey.

CONCLUSION

To  efficiently  manage  two  endangered  prey 
populations, managers need to allocate the budget 
in  a  way  that  will  maximise  prey  survival.  The 
most  effective  budget  allocation  method  differs 
under  the  various  predator  dispersal  modes. 
Dynamic  allocation  of  the  budget  is  one  option 
that managers can employ, but does not seem to be 
any  more  effective  than  a  straightforward  50-50 
split.  Controlling  the  probability  of  dispersal 
between  the  predator  populations  could  be  an 
effective  management  option.  More  research 

focused  on  the  explicit  control  of  probability  of 
dispersal could lead to further insights.
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