
Should I Spread My Risk or Concentrate My Efforts: Is 
Triage of a Subpopulation Ever the Best Decision?  

McDonald-Madden E.1,4, Chades I.2, McCarthy M. A.3, Wintle B.3, and H. P. Possingham1 

 1. The Ecology Centre, The University of Queensland, St Lucia QLD , Australia  
2. Unité de Biométrie et Intelligence Artificielle, INRA, BP 27 F-31326 Castanet-Tolosan, France  

3. The School of Botany, The University of Melbourne, Parkville VIC 3010, Australia  
4. Invasive Animal Cooperative Research Centre, University of Canberra, Australia email: 

e.mcdonaldmadden@uq.edu.au  
 

Keywords: Threatened species management, monitoring, partially observable Markov decision process, 
decision theory  

EXTENDED ABSTRACT  

Threatened species often exist in a small number 
of isolated subpopulations. Given limitations on 
conservation spending, we must ask the question: 
should we put all our eggs in one basket and 
manage the best quality subpopulation or the 
subpopulation most likely to benefit from 
management, or should we hedge our bets and 
manage both subpopulations?  A further 
complexity arises when we consider that most 
threatened species are cryptic and their presence in 
an area can be uncertain as a result of the 
imperfect nature of most detection methods.  
Managers of cryptic species thus face several 
dilemmas: if they are unsure whether a species is 
present in an area or has been extirpated, should 
they continue to manage the species in that area or 
instead invest some of their limited resources in 
surveying to determine if the species is still 
present (and viable)? How much negative evidence 
do they need in order to give up and make the 
decision to cease management? The ecology and 
conservation literature present little guidance on 
how to approach such problems, though some 
analogous problems have been tackled within a 
decision theory framework (Gerber et al. 2005; 
Regan et al. 2006; Wilson et al. 2006).  Here we 
build on lessons from these studies and others 
investigating optimal conservation decision 
making (Possingham et al. 2001; Dorazio & 
Johnson 2003) to develop a coherent decision 
framework for allocating resources between two 
subpopulations of a threatened species where we 
are uncertain about the persistence of the species 
in our management areas. In this problem we must 
make a decision about how to allocate finite 
resources to three separate actions in each 
subpopulation; management, surveying and doing 
nothing. Management reduces a subpopulation’s 
risk of extinction. Surveying, while not reducing 

extinction risk, improves our knowledge about 
whether the species is present, therefore avoiding 
costly unnecessary expenditure. Both management 
and surveying cost money and thus the decision to 
perform either of these actions in a subpopulation 
will alter the resources available and therefore the 
success of the action implemented in the other 
subpopulation. At any point in time managers will 
have a belief about whether a subpopulation is still 
extant.  In this paper we assess how our optimal 
decisions change as a function of those beliefs and 
the time remaining in the management period. The 
goal of efficient conservation planning and 
management is to find a resource allocation 
strategy, or set of actions, that maximises the net 
expected long-term benefit. Here the optimal 
strategy involves a trade-off between the 
persistence of our subpopulations at the end of the 
management period, and the impact of our 
decisions on the probability of subpopulation 
extinction.  We pose this problem as a Partially 
Observable Markov Decision Process (POMDP) 
and solve a multi time-step scenario using the 
incremental pruning algorithm (Cassandra et al. 
1997). The POMDP algorithm finds an optimal 
resource allocation each year given the current 
belief about the state of the species (extant or 
extinct) in each subpopulation. This paper has two 
major aims; (i) to extend the framework proposed 
by Chades et al. (in review) to incorporate two 
subpopulations of a threatened species, addressing 
the issue of triage in conservation management, 
and (ii) to introduce more ecological complexity 
and realism to the problem by considering 
subpopulationws of differing habitat quality. We 
illustrate our findings with a case study using 
parameters for a Sumatran Tiger (Panthera tigris 
sumatrae). 
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1 INTRODUCTION 

Worldwide, threatened species have been adversely 
affected by habitat loss and fragmentation. These 
changes can be caused by short-term human impact, 
such as land clearing, or through long-term impacts 
such as climate change. The resulting habitat 
fragmentation means that many threatened species 
tend to exist in a small number of relatively isolated 
subpopulations (Harrison & Bruna 1999).  While a 
number of ecological theories have provided 
conservation biologists with general principles for 
considering the persistence of threatened species 
remaining in scattered subpopulations, for example 
island biogeography theory, metapopulation theory 
and the source-sink paradigm (Andrewartha & Birch 
1954; MacArthur & Wilson 1967; Pulliam 1988; 
Hanski 1999), their use in providing practical and 
economically astute management plans for 
conservation management is limited (Possingham et 
al. 2001). Given limitations on conservation 
spending, we must ask the question should we put all 
our eggs in one basket and manage the best quality 
subpopulation or the subpopulation most likely to 
benefit from management, or should we hedge our 
bets and manage all subpopulations.  

A further complexity arises when we consider that 
most threatened species are cryptic and their 
presence in an area can be uncertain as a result of the 
imperfect nature of most detection methods 
(MacKenzie & Kendall 2002; Tyre et al. 2003). 
Several enigmatic species have been presumed 
extinct for long periods before being inadvertently 
rediscovered (e.g. ivory-billed woodpecker, 
Campephilus principalis (Fitzpatrick et al. 2005)). 
Managers of cryptic threatened species are prone to 
two sorts of error. It is possible, if not likely, that 
some populations of a threatened species are being 
managed even though the species has already 
disappeared or become functionally extinct in that 
area, this is the first type of error. What managers 
need to know is how long they should continue 
investing in conservation management without 
strong evidence that the species is still present, and 
when to shift their resources from saving to 
surveying for the species? Ultimately, if their belief 
in the species’ existence continues to decline, when 
should managers surrender resources to another 
conservation problem? The second possible error is 
that managers could give up on a species too soon, 
failing to invest in sufficient surveying to be 
adequately sure further management is unwarranted.  

The problem of how to best allocate conservation 
resources can be couched in terms of a trade-off 
between managing and surveying, or doing nothing 
(surrendering and redistributing resources to other 
problems). Whether or not to invest scarce 
management resources and time in surveying may be 
a difficult decision for managers, though some might 
argue that expenditure on determining the presence 
of a potentially viable population is a prerequisite for 
managing it. Similarly difficult is the decision to 
give up on the species and stop management, 
especially if there is possibility that the species may 
be still extant. We pose this problem as a Partially 
Observable Markov Decision Process (POMDP) and 
solve a multi time-step version using the incremental 
pruning algorithm (Cassandra et al. 1997). This 
paper has two major aims: (i) to introduce POMDP 
as a coherent approach to optimal allocation of 
resources in a system with partially observable states 
(e.g., the current status of a cryptic species), and (ii) 
to extend this framework to a more complex 
ecological scenario in which decisions need to be 
made in multiple subpopulations of a threatened 
species, addressing the issue of triage in conservation 
management. We illustrate our findings with a case 
study using parameters for a Sumatran Tiger 
(Panthera tigris sumatrae).  

2 METHOD 

2.1 The system and ecological complexities 

We consider a threatened species that exists in two 
subpopulations in remnant habitat patches, referred 
to as population A and population B. In this paper 
we assume that the subpopulations are isolated from 
each other and thus that there is no chance of 
recolonisation once a subpopulation becomes locally 
extinct. Each subpopulation has associated with it a 
probability of extinction when it is not managed, p0A 
and p0B, and a probability of extinction when 
management is implemented, pmA and pmB.  These 
values are derived from three functional relationships 
between probabilities of extinction of a 
subpopulation and resources invested in management 
(see Figure 1). Each functional relationship 
represents a different ecological scenario; in this case 
the level of threat to the subpopulation given it was 
not managed. This can be interpreted in a number of 
different ways but in this paper we refer to it as the 
quality of the habitat in the patch for our threatened 
species. Two broad questions are assessed: how will 
we manage if our subpopulations are of equal quality 
(and thus risk), and how will we act if they differ? 
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Within the first question we explore the impact of 
patch quality by investing when both populations 
have high, medium and low probabilities of 
extinction when not managed. We then explore the 
more complex second question comparing patches of 
high quality to low quality, high to medium, and 
medium to low quality.  

2.2 The decisions 

In each subpopulation one of three main decisions 
can be made (1) to manage, (2) to survey, or (3) to 
do nothing. Managing a subpopulation reduces the 
probability of extinction, thus 0 mp p< , and 
surveying allows observations of the system to be 
obtained with a detection probability (ds) higher than 
that of management (dm), thus ds > dm.  As the budget 
is traded off between both subpopulations there are 
six possible overall conservation actions when we 
consider two subpopulations: 

(i) manage both A and B,  
(ii) manage A and do nothing in B, 
(iii) do nothing in A and manage B,  
(iv) manage A and survey B,  
(v) survey A and manage B, and   
(vi) do nothing in both A and B.  

The probability of extinction when we manage a 
subpopulation and the detection probability when we 
survey a subpopulation are dependent on the 
decision implemented in the other subpopulation. 
That is, if we manage A and B then the budget must 
be split and thus the probability of extinction in both 
will be greater than if we were to only manage one 
subpopulation. However if we were to manage one 
subpopulation then this would have a low probability 
of extinction while the second subpopulation would 
not be managed and have a much higher risk of 
extinction. Thus there is a clear trade-off between the 
probability of extinction of an individual 
subpopulation and our ability to save both 
subpopulations given a fixed budget, C.  

2.3 Partially Observable Markov Decision 
Process (POMDP) 

The first step in formulating the conservation 
resource allocation problem is to define a 
quantifiable objective. Our objective is to find the 
optimal allocation of resources given a fixed budget 
that maximises the expected long term benefits for 
the conservation of a cryptic threatened species. The 
final reward associated with a strategy is based on 

the final state of the system at the end of the 
management horizon. In this case the state of the 
system is based on whether subpopulations are 
extant or extinct, and thus the system can be 
characterised by one of four possible states (1) both 
populations extant, (2) both populations extinct, (3) 
population A extant and population B extinct, and 
(4) population A extinct and population B extant. 
This problem could be solved using traditional 
stochastic dynamic programming (SDP) algorithms. 
In doing this, however, we assume that we know 
exactly what state each subpopulation is in each 
year. Unfortunately our problem is far more complex 
as we are concerned with the conservation of cryptic 
threatened species and are thus likely to be uncertain 
about the real state of the system. Our optimization 
method must therefore take into account the 
incomplete observability of each subpopulation. In 
other words an optimal decision must depend on the 
entire history of previous observations and actions 
rather than on instant observations. We pose this 
problem as a Partially Observable Markov Decision 
Process (POMDP) and solve a multi time-step 
scenario using the incremental pruning algorithm 
(Cassandra et al. 1997).  

The POMDP algorithm finds an optimal resource 
allocation each year given the current belief about 
the state of the species (extant or extinct) in each 
subpopulation. Partially Observable Markov 
Decision Process enhances the SDP model adding a 
set of observations (absence or presence of the 
species in each subpopulation) and observation 
probability matrices that provide the probability of 
an observation given the current state and the 
performed action i.e. detection probabilities. Rather 
than keeping track of the past observation-action 
history one can use belief states. A belief state is a 
probability distribution over real states capturing the 
relative likelihood of being in each of our four 
overall population states. The computed optimal 
allocation of resources matches an optimal action to 
each possible belief state, that is, the policy maps 
belief states, to actions ( : Beliefs Actionsπ → ). The 
stochastic consequences of reserve-managers actions 
on the subpopulation are represented with transition 
probabilities. These transitions are populated with 
the corresponding probability of 
persistence/extinction from the appropriate 
population extinction model (see Figure 1) such that 
each transition represents the probability of moving 
from real state s , to real state s′  given action a is 
implemented ( Pr( ' | , )s s a ). Probability are also 
derived for our observations to represent the 
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likelihood of an observation, z, given the real state of 
the system, s′ ( Pr( | , ')z a s . This is based on the 
detection probability of the species given the 
resources allocated to that action, surveying (ds) or 
management (dm).  

In order to use the optimal solution, decision-makers 
first need to determine the current belief state of the 
species. This can be done by answering two simple 
questions: when is the last time we saw the species in 
each subpopulation? And what have we decided 
since? This is the basis on which the POMDP 
algorithm works, given a belief state ( ( )b s ) a 
decision is selected and the action implemented and 
an observation, z, obtained. Using this information 
the previous belief ( ( )b s ) is updated to give the 

current belief state ( ( ')a
zb s ) (see Figure 2 for a 

diagram of this process). Bayes theorem enables us 
to update the belief state throughout our management 
time horizon for all possible combinations of actions 
that could be implemented and observations that may 
be obtained:  

Pr( | , ') Pr( ' | , ) ( )
( ')

Pr( | , )
a s S
z

z a s s s a b s
b s

z b a
∈

⋅ ⋅
= ∑ . 

A reward function is specified based on the final 
state of our system at the end point of our 
management horizon, N ( ( , )R s a ).  Here we explore 
different rewards based on the number of 
subpopulations remaining extant at the conclusion 
point of decision-making horizon. The POMDP 
algorithm iterates backwards through our decision-
making horizon calculating at each time step, n, the 
action, a, that gives the maximum value, ( )*

nV b , 
based on the reward function, ( , )R s a , the real state 
transitions, ( ' | , )P s a s , the observation probabilities, 

( | , ')P z a s , and the optimal value from the previous 
time step, *

1( )a
n zV b− :  

* *
1

'
( ) max ( ) ( , ) ( ) ( ' | , ) ( | , ') ( )a

n a A n z
s S s S s S z Z

V b b s R s a b s P s a s P z a s V bγ∈ +
∈ ∈ ∈ ∈

= +∑ ∑∑∑
where n = 1, 2,…., N-1.  

The actions with the maximum value at each time 
step make up the optimal management policy, π , 
for a specific ecological scenario. 

0  10000 20000 30000
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 E

xt
in

ct
io

n 
ov

er
 5

0 
ye

ar
s

Resources ($)

 

 
Low quality 
Medium quality 
High quality 

 

Figure 1. Assumed relationships between probability 
of extinction in 50 years and management intensity. 

Each curve represents a habitat quality measure, 
high, medium, or low. The black curve is derived 
from Linkie et al. (2006) for the Sumatran tiger. 

  

Figure 2. Partially Observable Markov Decision 
Process iterative belief updating procedure. 

3 CASE STUDY  –  SUMATRAN TIGER 

3.1 Problem description 

The Sumatran tiger, like most of the tiger species, 
has suffered from dramatic population decline as a 
result of reduction in prey abundance, habitat 
clearance and illegal poaching (Linkie et al. 2006). 
The Kerinci Seblat region of Sumatra is dedicated as 
a level 1 ‘tiger conservation unit’ (Wikramanayake 
et al. 1998) and significant resources are spent 
annually to implement management strategies for 
this population including anti-poaching patrols. 
Linkie et al. (2006) investigated the effect of 
resources invested in anti-poaching protection on the 
probability of losing this population of Sumatran 
tigers. The current conservation strategy for this 
species includes reducing the level of poaching by 

Execute 
action, a 

Choose 
action, a 

Observe 
output, z, 

from a 

Starting 
belief, b(t) 

Update belief, 
b(t), given a and z 
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patrolling the population and assessing its status 
through surveying. Currently about $30,000 are 
spent annually implementing these two actions with 
approximately one third of this budget spent on 
surveying and the remainder on protection measures 
(Linkie pers. comm.). We interpolated a yearly local 
extinction probability of 0.058 when the park is 
managed and 0.100 when it is not (Linkie et al. 
2006). Similarly, detectability of tigers living in the 
reserve was estimated at 0.782 when surveyed (ds) 
and 0.001 (dm) when not surveyed. The sensitivity of 
the optimal strategy to assumed extinction 
probabilities, detection probabilities and the overall 
budget was assessed with an extensive sensitivity 
analysis. We assess the impact of these factors on 
our initial action in relation to the belief state of each 
subpopulation. 

3.2 Results and comments 

Uncertainty is inherent in conservation problems. It 
is therefore remarkable that this study is one of the 
first uses of POMDP in a conservation context 
considering its utility in aiding decision-making 
under uncertainty. The POMDP framework yields a 
policy graph describing which action we should 
implement given our starting belief in the persistence 
of each subpopulation, the observation gleaned from 
that action and the time horizon remaining (see 
Figure 3). We might expect that when our belief in 
the persistence in both subpopulations is low we 
should do nothing in both (see Figure 4). 
Furthermore we may expect that when our belief is 
high in subpopulation A and low in subpopulation B 
we should manage A and do nothing in B, and vice 
versa if our beliefs are reversed. With a large enough 
budget and high belief in the persistence of both 
subpopulations we should manage both. All these 
decisions may be intuitive but what is elusive is the 
decisions we should make when we have an 
intermediate belief in the persistence in one 
subpopulation or both subpopulations. Should we 
manage one subpopulation and survey the other? If 
so, which subpopulation should we survey? How 
will decisions change if our budget increases or 
decreases, or surveying becomes more efficient, or if 
our subpopulations have differing habitat quality? 
Another component that is unclear is how our 
decisions should change through time. In this work 
we derive the answers to these questions from the 
policies obtained using POMDP. Ultimately we 
address the question of whether to spread our risk or 
concentrate our effort when managing threatened 

species where our belief in the persistence of 
subpopulations guides our actions.   

 

 

Figure 3: Example policy graph from Partially 
Observable Markov Decision Process for two 

subpopulations of Sumatran tiger (Panthera tigris 
sumatrae) with identical extinction risk based on the 

low quality extinction curve (see Figure 1). Inset 
shows specific details of graph, nodes represent 
starting belief states, colours represent different 

actions, grey blocks represent time steps (descending 
from top), and arrows show which decision to make 
next given a particular observation is observed (aa = 
absent in A and absent in B, pp = present in A and 

present in B, etc.). 

 

Figure 4. Possible expression of results for an 
individual time horizon as a relationship between our 

belief in subpopulation A, bA, and our belief in 
subpopulation B, bB. The shaded area is where we 

are uncertain of how to act; this will be elucidated by 
using a POMDP. 
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