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EXTENDED ABSTRACT 

The pathogen catchment budget (PCB) model 
(Ferguson et al. 2007) was developed for 
estimating the pathogen (Cryptosporidium and 
Giardia) and faecal indicator (E. coli) loads 
generated within and exported from drinking water 
catchments. The model uses a mass-balance 
approach and predicts the total loads generated and 
the total loads exported from each sub-catchment 
for the pathogens Cryptosporidium and Giardia 
and the faecal indicator E. coli. Briefly, the PCB 
model consists of 5 components: a hydrologic 
module, a land budget module, an on-site systems 
module, a sewage treatment plant (STP) module 
and an in-stream transport module. 

PCB is an event-based model, representing the 
likely fluxes from sub-catchments in dry, wet and 
flood conditions. The model was developed in the 
Interactive Component Modelling System (ICMS), 
(Cuddy et al. 2002), and is freely available from 
the Commonwealth Scientific Information and 
Resource Organisation (CSIRO). Inputs to the 
model include GIS land use and hydrologic data as 
well as catchment specific information such as 
animal density and the location of on-site systems 
and sewage treatment plants (STPs) as well 
information on pathogen concentrations in 
different species, pathogen inactivation rates and 
mobilisation of faecal material. The hydrologic 
module uses the non-linear loss module of the 
IHACRES rainfall-runoff model described by 
Croke and Jakeman (2004). 

The PCB model was initially applied to the 
Wingecarribee catchment and subsequently to the 
Sydney Catchment Authority (SCA) area of 
operations (Ferguson 2005; Ferguson and Croke 
2005). As part of a project funded primarily by the 
American Water Works Association Research 
Foundation, the model has been applied to 
drinking water supply catchments in Australia 
(Googong), the UK (Thirlmere) and the USA 
(Kensico). This paper describes the application of 

the existing event-based PCB model to these 
catchments, and the adaptations to the model 
needed in each case. The influence of snow in the 
study catchments in the UK and USA has not been 
taken into account, so the model results are 
suitable for summer storm events only. 

The higher inactivation rate for E. coli leads to 
only nearby sub-catchments contributing 
significantly to loads entering the dam in the 
Googong catchment. In comparison, 
Cryptosporidium and Giardia do show evidence of 
transport from the headwater areas in the Googong 
catchment even under low flow conditions. The 
study sites in the UK and the USA are significantly 
smaller, and each sub-catchment is directly 
connected to the reservoir so that the inactivation 
rates during transport are not significant. Table 3 
shows the sub-catchments which the model 
predicts will have the largest input into the stream 
network (i.e. ignoring in-stream processes). 

The output from the PCB model facilitates 
identification of those sub-catchments that 
represent the highest pathogen (and indicator) risk 
to the quality of raw drinking water supplies. This 
enables managers to prioritise the implementation 
of control measures, to inform water supply 
strategies and target best management practices. 
The outputs from the model can also be used as 
input data to hydrodynamic models of pathogen 
transport in reservoirs. 
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1. INTRODUCTION 

Numerous papers have outlined the difficulties in 
quantifying diffuse sources of pollutants in 
drinking water catchments (Ferguson et al. 2003; 
Ferguson and Croke 2005; Oliver et al. 2005, Tian 
et al. 2002). Various models have been developed 
to predict nutrient and sediment loads transported 
from catchments e.g. CatchMODS (Newham et al. 
2004). However, few models are able to predict 
pathogen loads transported from drinking water 
catchments (e.g. Ferguson et al. 2007; Hayden 
2006 and 2007; Dorner et al. 2004 and 2006). 
Estimation of pathogen loads is further 
complicated by the lack of source data for the 
prevalence and concentration of animal and human 
sources of contamination and the lack of water 
quality data available to calibrate models. 

This study describes the application of the PCB 
model to quantify pathogen and faecal indicator 
loads within Australian (Googong), UK 
(Thirlmere) and USA (Kensico) raw water 
catchments.  

2. DESCRIPTION OF THE CATCHMENTS 

2.1. Googong 

The Googong catchment (Figure 1) is a semi-
protected catchment located to the east of Canberra 
in South Eastern Australia. There are some 
livestock present in the catchment although large 
areas are dominated by pine forest and native 
vegetation. The domestic livestock include sheep, 
cattle, alpacas and goats. The wildlife species 
include kangaroos, foxes, rabbits, deer and feral 
cats. There are no STPs in the catchment; however 
there are numerous on-site systems particularly in 
the Burra Creek sub-catchments. The total 
catchment area is 890 km2.  

2.2. Thirlmere 

The total catchment area comprises 41.3 km2 and 
the surface area of the lake is 3.3 km2. The 
catchment is divided into 6 sub-catchments, each 
draining directly into Thirlmere; these are (1) 
Raise Beck 3.7, (2) Whelpside 6.0, (3) MillGill 
9.7, (4) Arnboth 6.6, (5) Old Scarf 5.6 and (6) 
Wythburn 6.3 km2 (Figure 2). There is a canal in 
Mill Gill sub-catchment diverting water into 
Thirlmere, thereby increasing the size of the 
catchment. There are 5 tenancies (farms) in the 
catchment (some extend outside the catchment – 
the total area of farms inside the catchment is 19.5 
|km2), mostly raising sheep. The total across all 
farms (over-estimate of animals inside the 
catchment) are shown in Table 1.  

 

Figure 1. Googong catchment (28 sub-catchments, 
reservoir is in sub-catchment 28) 

 

 

Figure 2. Thirlmere catchment (7 sub-catchments, 
Lake is sub-catchment 7 (yellow)) 
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The farms are predominantly located on the west 
side of the lake. The east side of the lake is more 
mountainous, reaching an elevation of 
approximately 940 m about 2 km east of the lake 
(the lake is about 180m). Other land uses in the 
catchment include approximately 5 km2 of 
coniferous trees (located mostly on the shores of 
Thirlmere). The non-farmed area on the east of the 
catchment is predominantly a mixture of rough 
grasslands and scree. The mean annual rainfall is 
approximately 2500 mm/yr (measured rainfall 
from gauge at The Nook Logger station, 
Thirlmere). 

Table 1. Estimates of Animal densities in the 
Thirlmere catchment 

Animal Type Number in the catchment 
Suckler cows 10 
Dairy cattle 50 
Other cattle (calves) 30 
Ewes  4510 
Gimmer hog 1200 
Rams 90 
Lambs 3080 
Poultry 12 
Horses 1 
Dogs 19 

2.3. Kensico 

The land uses available from the New York GIS 
layers were re-categorised as outlined in Table 2. 
There were a few minor adjustments that were 
required, such as removing a small urban area 
from sub-catchment 7, which is the dam itself 
(Figure 3). The residential land use was put in the 
grass category as small amounts were found in 
areas without houses.  The improved pasture cattle 

 

Figure 3. Kensico catchment (99 sub-catchments, 
reservoir is sub-catchment 7 (blue)) 

category in the model was renamed as pasture. The 
total catchment area is 34.3 km2.  

Table 2. Land use categories for the Kensico 
catchment  

PCB model category  NY GIS Category 

Grass Grass hay, herbaceous, 
managed turf, parks and 
residential 

Grass & Brush Bushland, golf courses, 
mixed brushland, shrub and 
bush 

Commercial & Industrial Airports, commercial and 
services, industrial, office 
parks and institutional, 
impervious surfaces, roads, 
paths and shopping centres 

Urban residential Medium density housing, 
multi-family units, urban 
and built-up land, single-
family units 

Rural residential Low-density housing, rural 
housing 

Forestry with native fauna Coniferous forest land, 
deciduous forest land, 
mixed forest land 

Pasture Cropland and pasture, 
pasture,  

Intensive plants Rotated crop lands 
Wetland Wetland 
Water Water 

3. APPLICATION OF THE MODEL TO 
THE CATCHMENTS 

Each catchment was divided into a series of unique 
sub-catchments based on the digital elevation data 
from the GIS layers. The available GIS land use 
data for each catchment were amalgamated into a 
subset of 10-13 land use classes. The specific sub-
catchment characteristics of the catchments 
required to run the model were derived from the 
GIS land use layer e.g. sub-catchment area. 
However, other variables such as the location of 
the STP that an upstream sub-catchment is 
connected to were identified and input manually.  

3.1. Googong 

As there is no STP within the Googong catchment, 
the sources of pathogens are animals and on-site 
systems (mostly located in the Burra Creek sub-
catchment – no. 21 and 25 in Figure 1). The 
animal and microorganism data files used for the 
Sydney catchment (Ferguson 2005) were modified 
to account for different animal densities in the 
Googong catchment reported by Starr (2006). 

3.2. Thirlmere 

The model uses the sub-catchments defined by 
United Utilities. No native or feral animals have 
been included at this stage, nor has the influence of 
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humans been properly handled. Animal densities 
were based on reported numbers of animals on 
each farm, and multiple entries for the same 
animals have been included to permit densities to 
vary between farms. Local data on animal density 
and pathogen concentrations was substituted for 
those animals for which UK data was available e.g. 
lambs, cattle etc. to account for geographical 
differences in pathogen prevalence and 
concentration. As the catchment is small, and sub-
catchments all drain directly into the lake, the 
drainage part of the model is not playing a 
significant role. The effect of snow has not been 
taken into account, and the model estimates should 
be considered as applicable for summer rainfall 
events only. 

3.3. Kensico 

For the USA catchment additional data on animal 
density and pathogen concentrations was required 
for new animal species eg. beaver, racoons etc. and 
to account for geographical differences in 
pathogen occurrence in domestic species such as 
cattle. As with the model for Thirlmere, the model 
estimates apply only for summer rainfall events. 

4. OUTPUT FROM THE MODEL 

Table 3 shows the sub-catchments which input to 
the stream network the largest amount of each 
pathogen in each catchment (both in terms of 
actual export and export per km2). Microbial loads 
are reported as x log10 which is equivalent to 10^x. 
In dry weather daily E. coli loads exported from 
sub-catchments in the Googong were predicted to 
range from as high as 9.6 log10 in sub-catchments 
1, 2, 4, 6, 9 and 24 to as low as 8.72 log10 in sub-
catchment 21, and 8.2 log10 in sub-catchment 28, 
which includes Googong dam (top panel of Figure 
4). The rapid inactivation of E. coli bacteria 
compared with the travel time between catchments 
results in no spatial correlation of the E. coli loads 
in dry weather. In wet weather, the E. coli loads 
increase to a maximum of 14.2 log10 for 
intermediate events (middle panel of Figure 4), and 
15 log10 for large events (bottom panel of Figure 
4), with the influence of the shorter travel time in 
wet conditions resulting in accumulation of E. coli 
load through the catchment. In comparison, the 
Cryptosporidium loads (Figure 5) show evidence 
of accumulation through the catchment regardless 
of weather conditions due to the longer 
inactivation time for Cryptosporidium oocysts.  

The lack of connectivity between the sub-
catchments in the Thirlmere and Kensico models 
(in each model, each sub-catchment drains directly 
to the reservoir) means that the influence of the 

travel time is not apparent. The exports from both 
Kensico and Thirlmere sub-catchments is 
considerably less than that for Googong, reflecting 
the different scales involved (average sub-
catchment size for Googong is 32 km2, Thirlmere 
6.3 km2 and Kensico 0.3 km2. 

Table 3. Sub-catchments with the highest inputs in 
each study catchment (second half of the table 

gives the top sub-catchments in terms of 
exports/km2). 

  Googong Thirlmere Kensico 

Crypto Dry 16 3 2 
 Wet_I 16 6 50 
 Wet_L 16 6 50 
Giardia Dry 21 6 2 
 Wet_I 28 6 50 
 Wet_L 21 6 50 
E. Coli Dry 16 3 2 
 Wet_I 16 3 2 
 Wet_L 16 3 2 

Crypto Dry 1 6 59 
 Wet_I 23 6 59 
 Wet_L 20 6 59 
Giardia Dry 5 6 10 
 Wet_I 23 6 59 
 Wet_L 28 6 59 
E. Coli Dry 1 3 10 
 Wet_I 23 3 10 
 Wet_L 20 3 10 

Under dry conditions, the largest potential source 
of pathogens in Thirlmere is Mill Gill, while in 
wet conditions; the largest potential export is from 
the Wythburn sub-catchment. For Kensico, the 
largest potential sources of pathogens under wet 
and dry conditions are the larger sub-catchments in 
the north and north east of the catchment, driven at 
least partially by the size of these sub-catchments. 

The exported load from the reservoirs has been 
modelled for Googong and Kensico but not 
Thirlmere. Googong reservoir is included in sub-
catchment 28, but is not limited to the dam. The 
lowest sub-catchment of both Kensico and 
Thirlmere are limited to just the reservoirs. 

5. CONCLUSIONS 

The output from the PCB model facilitates 
identification of those sub-catchments that 
represent the highest pathogen (and indicator) risk 
to the quality of raw drinking water supplies. This 
enables managers to prioritise the implementation 
of control measures, to inform water supply 
strategies and target best management practices.  
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Figure 4. Estimated E. coli loads cfu (log10 day) 
exported from the Googong sub-catchments  

 in dry weather (top), intermediate wet weather 
(<30 mm rainfall in 24 h) (middle), large wet 

weather event (100 mm rainfall in 24 h) (bottom). 

 

 
 

Figure 5. Estimated Cryptosporidium oocyst loads 
(log10 day) exported from the Googong sub-

catchments in dry weather (top), intermediate wet 
weather (<30 mm rainfall in 24 h) (middle), large 

wet weather event (100 mm rainfall in 24 h) 
(bottom). 
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Figure 6. Estimated Cryptosporidium oocyst loads 
(log10 day) exported from the Thirlmere sub-

catchments in dry weather (top), intermediate wet 
weather (<30 mm rainfall in 24 h) (middle), large 

wet weather event (100 mm rainfall in 24 h) 
(bottom). 

 
 

Figure 7. Estimated Cryptosporidium oocyst loads 
(log10 day) exported from the Kensico sub-

catchments in dry weather (top), intermediate wet 
weather (<30 mm rainfall in 24 h) (middle), large 

wet weather event (100 mm rainfall in 24 h) 
(bottom). 
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