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EXTENDED ABSTRACT  

The Bayesian Total Error Analysis methodology 
(BATEA) offers a robust approach to deal with 
the structural error of the model conceptualisation 
and measurement uncertainty in forcing/response 
data in conceptual rainfall-runoff (CRR) models. 
The core idea is to pose the model calibration as a 
Bayesian hierarchical model with latent variables 
describing errors in the data and the CRR model. 
The results from this calibration approach 
produced a dramatic shift in the parameter values 
compared to classical least squares calibration. 
This has considerable potential to enhance the 
regionalisation of hydrological model parameters. 
However for regionalisation to occur, a key issue 
is the selection of suitable probability models for 
latent variables, including the choice of the 
hyperdistribution and the choice of the time scale 
used to define latent variables. 

This paper explores this issue using synthetic case 
studies. Synthetic data corrupted by various input 

and structural errors are generated from the 
LogSPM CRR model. These data are then used to 
calibrate parameters using BATEA models derived 
with various hypotheses regarding the probabilistic 
properties of latent variables. Comparison of the 
parameter values between different approaches 
illustrate how sensitive the parameters are to 
different probability models. 

Several conclusions can be drawn from this study. 
First, parameter estimates are more sensitive to the 
temporal structure used to model input errors than 
to the chosen hyperdistribution. Second, using 
latent variables of rainfall errors defined on a daily 
basis leads to more robust estimates than a storm 
epoch-based definition. Lastly, parameter estimates 
were found to be robust in the presence of structural 
error misspecification. This robustness is achieved 
through an artificial increase of input error 
variance, which compensates for unaccounted 
structural errors (Figure 1). 

 

Figure 1. Marginal posterior distributions of three deterministic CRR parameters, and 
hyperparameters of stochastic parameter sK and rainfall errors, as a function of the temporal structure 

used to define latent variables of sK. 

2473

mailto:benjamin.renard@newcastle.edu.au


1. INTRODUCTION 

Rigorous quantification of the uncertainties arising 
during the calibration of conceptual rainfall-runoff 
(CRR) models remains a challenging task in 
hydrological modelling. Several promising 
approaches have recently emerged in order to 
account for various sources of errors (Vrugt et al., 
2005, Ajami et al., 2006, Vrugt and Robinson, 
2007). The Bayesian total error analysis (BATEA) 
methodology has been proposed as a general 
framework to deal with the structural error of the 
model conceptualisation and measurement 
uncertainty in forcing/response data (Kavetski et 
al., 2006a, b). The core idea is to pose the model 
calibration as a Bayesian hierarchical model with 
latent variables describing errors in the data and 
the CRR model. However, a key issue is the 
selection of suitable probability models for these 
latent variables. 

This paper explores the sensitivity of BATEA 
estimates to the choice of latent variable 
probability models. It is organized as follows: first 
the general formulation of BATEA is reviewed. 
Then a range of latent variable probability models 
are described for assessment in the BATEA 
framework. The sensitivity of BATEA inference to 
misspecification of the probability models is then 
evaluated. These results are used to provide 
guidelines about the derivation of robust error 
models. 

2. BATEA INFERENCE 

2.1. Notation and hypotheses 

The following notation will be used throughout 
this paper to denote data and variables involved in 
CRR model calibration.  denotes the 
true outputs of the model (e.g. runoff). For 
simplicity, we will only consider the case of one 
output variable, but the generalization to several 
outputs is straightforward if the errors on each 
variable can be assumed independent. Observed 
outputs are denoted by . Similarly, 
true and observed inputs are denoted by 

 and 

1,...,t t T=( )q=Q

= 1,...,( )t t Tq =Q

1,...,( )t t Tx ==X X

2

. In this paper, a CRR 
model using evapotranspiration and rainfall as 
forcing data will be used. The evapotranspiration 
series will be assumed to be error-free. In order to 
simplify notation, the dependence of model output 
to evapotranspiration will be omitted thereafter, 
and X will therefore simply denote rainfall.  

True outputs are assumed to be corrupted by a 
Gaussian additive measurement error, whose 
variance yσ  is assumed to be known (1). The 
hypothesis of Gaussian errors with known variance 
is made for convenience in this paper, but the 
BATEA model can also be defined with alternative 
output error distributions with unknown 
parameters, whose inference is required. 

2,  ~ (0; )y y Nt t t t yε ε σ= +

,  ~ ( )x x pϕ ϕ ϕ= | α

( )p

  (1) 

True rainfalls are assumed to be corrupted by 
multiplicative stochastic errors:  

t t t t    (2) 

Following the framework proposed by Kavetski et 
al. (2006a, 2006b), rainfall errors are therefore 
treated as latent variables φt, sampled from the 
hyperdistribution ϕ | α

( , )q h= x ω

( )(1) N

( )(1) N

( ) ( ) ( )~ ( )i i ipθ θ |

 with unknown 
hyperparameter vector α. The multiplicative nature 
of rainfall errors has been assumed by several 
authors (Kavetski et al., 2006a, Oudin et al., 2006, 
Ajami et al., 2007) and seems to be a reasonable 
hypothesis, but it does not allow the handling of 
errors affecting zero-measured rainfalls. However, 
alternative input error models could be considered 
within the BATEA framework. 

The CRR model is represented as a function h that 
maps the true forcing xt into the true response qt 
depending on a set of N parameters ω: 

1:t t     (3) 

Conceptualizing the catchment behaviour in a 
lumped way implies using temporally and spatially 
averaged quantities, which prevents the spatial and 
temporal variability of hydrological phenomenons 
to be accounted for. Consequently, even if the true 
input/output data were known, the CRR model 
would not be able to exactly reproduce the true 
runoff, whatever the parameter values used. 
Kuczera et al. (2006) therefore proposed to 
explicitly recognize the stochastic nature of CRR 
models, by means of stochastic parameters. The 
CRR parameter set is thus partitioned into 

, the set of stochastic 

parameters, and , the set of 
deterministic parameters, with NS+ND=N. The ith 
stochastic parameter at time step t therefore takes 
the following value: 

( ,..., )Sθ = θ θ

( ,..., )Dω ωω =

β    (4) t
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As with rainfall errors, stochastic parameters are 
handled by means of latent variables ( )i

tθ , with 
given hyperdistribution ( ) ( )( )i ip θ | β  and unknown 
hyperparameters β(i). The notation without 
superscripts θ and β will be used hereafter to 
denote latent variables and hyperparameters of all 
stochastic CRR parameters.  

The notation used here suggests that one latent 
variable is defined at each time step for parameters 
treated as stochastic and rainfall errors. However, 
it will be beneficial to reduce the dimension of the 
model by adding additional constraints on the 
temporal structure of latent variables. Up to now, 
all BATEA applications have been based on latent 
variables defined on a storm epoch time scale 
(Kavetski et al., 2006a, b, Kuczera et al., 2006). A 
storm epoch is defined as beginning with a rainfall 
exceeding a given threshold and ending with a dry 
spell exceeding a given duration. All rainfalls 
belonging to the same epoch are then assumed to 
be corrupted by the same multiplier. In this way, a 
unique latent variable is defined for each epoch. 
Similarly, stochastic parameters are assumed to be 
invariant within a storm epoch. 

One of the objectives of this paper is to evaluate 
the sensitivity of BATEA estimates to the storm 
epoch hypothesis. An alternative temporal 
structure is therefore investigated for latent 
variables related to rainfall errors. Rainfall 
multipliers are assumed to affect a unique time 
step rather than a full epoch. In order to reduce the 
dimensionality of the model, a preliminary 
analysis is performed in order to evaluate which 
rainfalls are the most important to be corrected. 
Briefly, this analysis is based on the simulation of 
runoff series with corrupted inputs, whose errors 
are randomly sampled from a given distribution 
representing our prior belief about the possible 
range of errors. Only errors leading to a significant 
difference in simulated runoffs will be accounted 
for in the BATEA model, by defining a latent 
variable at this time step. Conversely, if errors 
affecting rainfall at time step t result in minor 
differences in simulated runoffs, this rainfall will 
be assumed to be error free, and no latent variable 
will be assigned for this time step.  

2.2. Posterior distribution 

The BATEA objective is to infer all parameters of 
the model, that is: 
● Deterministic CRR parameters ω 
● Latent variables of stochastic CRR parameters 

, i=1,…,NS ( )iθ
● Hyperparameters of stochastic CRR parameters 

( )iβ , i=1,…,NS 

● Latent variables of rainfall errors  φ
● Hyperparameters of rainfall errors α 

Following Bayes’ rule, the posterior pdf of these 
parameters can be derived as follows: 

( | )

( ) (p pQ |ω,θ, β,φ,α, X ω,θ, β,φ,α | X )

p ∝ω,θ,β,φ,α Q,X

; )
T

q q

 (5) 

Let us first consider the likelihood of observed 
outputs. Using the output error model (1), we can 
write: 

2

1

( ) ( |t t y
t

p N σ
=

=∏Q |ω,θ,β,φ,α, X  (6) 

The true output qt is here unobserved, but will be 
modelled using true inputs of the hydrological 
model: 

1: 1:t t( , )tq h= x ω,θ

( , )tq h=

   (7) 

True inputs are also unobserved, but using error 
model (2), the following equation can be derived: 

1: 1: 1:t t tφ x ω,θ

( ) ( )p p=Q |ω,θ, β,φ,α, X Q |ω,θ,φ, X

( ) ( )

)

p p=ω,θ, β,φ,α | X ω,θ, β,φ,α

   (8) 

This equation shows that the likelihood of 
observed outputs does not depend on any 
hyperparameters, but only on deterministic CRR 
parameters and latent variables of rainfall errors 
and stochastic parameters. Hence we have 

2
1: 1: 1:

1

( | ( , ); )
T

t t t t y
t

N q h σ
=

=∏ φ x ω,θ
 (9) 

The prior distribution of parameters can be 
decomposed as follows: 

( ) ( )
( ) ( ) (
( ) ( ) ( ) ( ) ( )

p p
p p p
p p p p p

=
=
=

θ,φ |ω, β,α ω, β,α
θ |ω, β,α φ |ω, β,α ω, β,α
θ | β φ | α ω β α

 (10) 

Several assumptions have been made deriving this 
equation. First, the prior distribution specification 
does not depend on observed inputs (first line). 
Second, conditionally to the hyperparameters and 
deterministic parameters, latent variables 
describing rainfall errors and stochastic CRR 
parameters are mutually independent (third line). 
Last, the prior distributions of hyperparameters 
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and deterministic parameters are mutually 
independent (last line) 

Merging equations (9) and (10) finally leads to the 
following expression for the posterior distribution: 

( | ) ( )p p∝ ×ω,θ,β,φ,α Q,X Q |ω,θ,φ, X

2

2

( ) ( ) ( ) ( ) ( )p p p p pθ | β φ | α ω β α
 (11) 

The posterior derived from this hierarchical model 
is therefore made up of three parts (up to a 
constant of proportionality): likelihood of observed 
outputs, hyper-likelihoods of latent variables and 
priors of deterministic parameters and 
hyperparameters. Exploration of such a high-
dimensional function is computationally 
challenging but not infeasible. Specific strategies 
for optimization and MCMC sampling are 
described in details by Kavetski et al. (2006c, 
2006d, 2007) and Kuczera et al. (2007). 

3. SYNTHETIC CASE STUDY 

3.1. Data 

Time series of 366 daily rainfall and potential 
evapotranspiration (pet) for the Abercrombie 
catchment (with area 2770 km2) were used. These 
series will be considered as the ‘true’ input data. 
The logSPM CRR model (Kuczera et al., 2006) 
was used to simulate daily streamflow discharge. 
Three sets of synthetic input/output data were 
generated, whose properties are summarized in 
Table 1: 

D1.a: ‘True’ output runoff data were simulated 
using the true inputs and LogSPM model with 
parameters values shown in Table 2. Observed 
runoff was derived by corrupting the true output 
with an additive white noise generated from a 
N(0,0.052) distribution. Observed rainfall was 
derived by multiplying each non-zero rainfall by 
1/φt, with . Observed pet 
series remained identical to the true one. 

)log( ~ ( 0.2, 0.2 )t Nϕ −

D1.b: True and observed output were identical to 
the ones derived in D1.a data set. Observed rainfall 
was derived by multiplying all rainfall within a 
same storm epoch by an identical multiplier 1/φi, 

. Storm epochs were 
defined by inter-epochs dry spells of at least two 
days, and starting rainfall of at least 0.5 mm. 37 
such epochs were identified during the 366 days 
used for calibration. 

)log( ~ ( 0.2, 0.2 )i Nϕ −

D2: ‘True’ output runoff data were simulated using 
the true inputs and LogSPM model with parameter 
values shown in Table 2, except parameter sK, 
which is treated as stochastic with its log-
transformed value randomly sampled from N(-
2.3,0.22

2

) at the beginning of each storm epoch. 
Observed runoff was derived by adding white 
noise generated from N(0,0.052). Observed rainfall 
was derived by multiplying each non-zero rainfall 
by 1/φt, with . )log( ~ ( 0.2, 0.2 )t Nϕ −

Table 2. Parameter values used to generate 
synthetic data. 

Number Name Value 
1 sK exp(-2.3) 
2 sF exp(7.8) 
3 ssfMax exp(4.6) mm/day 
4 rgeMax exp(3) mm/day 
5 kBf exp(-9) 
6 kStream exp(-0.75) 
7 initSoil 30 mm 
8 initGw 1000 mm 
9 initStream 0.1 mm 

 

3.2. Sensitivity to input error hypotheses 

In this section, the robustness of BATEA estimates 
in the presence of misspecification of rainfall error 
model is evaluated. Two different types of 
misspecifications are investigated: distribution 
misspecification (e.g. the hyperdistribution used in 
BATEA is Gaussian whereas the true input errors 
are log-normally distributed) and temporal 
structure misspecification (e.g. latent variables 

Table 1. Synthetic data sets properties 

Data set D1.a D1.b D2 
Description Daily rainfall errors Epoch rainfall errors Daily rainfall errors + model errors 
True input r and pet from Abercrombie catchment 

Observed input 
/t t tr r

pet pet
ϕ=

=
 ( )/t t epoch tr r

pet pet

ϕ=

=
 

/t t tr r
pet pet

ϕ=
=

 

True output Simulated from logSPM with fixed parameters 
Simulated from logSPM with epoch 

stochastic parameter sK 
2

( )log( ) ~ ( 2.3,0.2 )epoch tsK N −  

Observed output 2,  ~ (0,0.05 )t t t tq q Nε ε= +  
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defined on a storm epoch basis, whereas inputs are 
corrupted by daily errors). Six BATEA models are 
therefore fitted to the data D1.a and D1.b. All six 
models involve the estimation of four deterministic 
CRR parameters (Table 3) with the two remaining 
CRR parameters fixed at their true value to avoid 
numerical difficulties due to strong parameter 
dependence. The six BATEA models differ by the 
hypotheses used to define latent variables and the 
related hyperdistribution. Two temporal structures 
and three hyperdistributions are investigated as 
follows: 

Temporal structures: The latent variables are 
defined either on a storm epoch basis or on a daily 
basis. In the storm epoch case, the storm definition 
is identical to the one used for deriving the data set 
D1.b. In the daily case, only the most informative 
daily latent variables have been included in the 
model, as explained in section 2.1. 

Hyperdistributions: For each of these temporal 
structures, three hyperdistributions are used to 
model rainfall errors: a normal, a log-normal and a 
mixture distribution. Table 4 describes these 

distributions, together with assumed priors of 
hyperparameters. 

Table 3. Prior distributions of CRR parameters 

Parameter Prior distribution 
sK log(sK) ~ N(-2;22) 

ssfMax log(ssfMax) ~ N(1;22) 
kBf log(kBf) ~ N(-6;32) 

kStream log(kStream) ~ N(-1;22) 

In addition to these six models, a model assuming 
no input errors has been used to evaluate the 
influence of these errors on parameters estimates. 
Such a model is similar to a standard least squares 
(SLS) estimation. 

These seven models were applied to the D1.a data, 
and the posterior distribution was explored using 
the MCMC strategy outlined in Kuczera et al. 
(2007). The marginal posterior distributions of two 
estimated CRR parameters are shown in Figure 2 
as boxplots, whose boxes extend from the first to 
the third quartile and whiskers extend between 
0.05 and 0.95 quantiles. Only results related to 

Figure 2. Marginal posterior distributions of two inferred CRR parameters, with seven BATEA 
models. Rainfall is corrupted by daily errors. 

Figure 3. Marginal posterior distributions of two inferred CRR parameters, with seven BATEA 
models. Rainfall is corrupted by epoch errors.
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parameters sK and ssfMax are shown for 
conciseness, but results obtained for kBf and 
kStream are similar. The first observation is that 
ignoring input data errors leads to strong biases in 
parameter estimates. Biases also appear when 
assuming epoch errors when in fact daily errors 
corrupt input data. Conversely, no significant bias 
is observed when using daily latent variables for 
modelling rainfall errors, whatever the 
hyperdistribution. Moreover, within a given 
temporal structure, results obtained with different 
hyperdistributions are very close. These results 
suggest that parameter estimates are more sensitive 
to the temporal structure of latent variables than to 
the choice of hyperdistribution.  

Results shown in Figure 3 were obtained using the 
D1.b data, whose rainfalls are corrupted by epoch 
errors. Once again, ignoring these errors leads to 
strong biases in the parameter estimates. The 
estimates obtained with models assuming epoch 
errors are unbiased. When assuming daily errors 
instead of true epoch errors, moderate bias occurs 
for parameter ssfMax, but this is clearly smaller 
than the biases previously observed when 
assuming epoch errors with daily corrupted data. 
Consequently, a model assuming daily errors 
seems to be more robust to temporal structure 
misspecification than a model using epoch latent 
variables. The impact of hyperdistribution 
misspecification seems to be of secondary 
importance with regard to parameter estimates. 

3.3. Sensitivity to model error hypotheses 

The robustness of BATEA estimates when model 
structural errors are misspecified is evaluated in 
this section. Synthetic data D2, including both 
input and model errors, are used for this purpose. 
Input errors are assumed to follow a log-normal 
distribution, and related latent variables are 
defined on a daily basis. Model errors are handled 
by considering sK parameter as stochastic, with 
log-normal hyperdistribution and latent variables 
defined on a storm epoch basis. Four different 
BATEA models are therefore considered, differing 
by the rules used to define the storm epochs. The 
first model uses the same rules as those used to 
generate the synthetic data set, leading to 39 storm 

epochs. This number is not strictly equal to the 
number of epochs derived for synthetic data 
generation (37) because the epochs’ definition 
rules are here applied on corrupted input data. 
However, the model is very close to the synthetic 
truth, and will therefore be considered as 
adequately specified. Three additional BATEA 
models are obtained by increasing the rain 
threshold used to define epochs, resulting in the 
number of epochs decreasing in the sequence 27, 
19 and 11. The temporal resolution of model errors 
is therefore progressively altered in BATEA, thus 
increasing the misspecification of model errors. 

BATEA results for misspecified epoch are shown 
in Figure 1. The first observation is that BATEA is 
able to discriminate model and input errors, as 
their hyperparameters are adequately estimated 
with a temporal resolution of 39 epochs. When this 
temporal resolution decreases, biases appear for 
parameters ssfMax and kStream, but they remain 
moderate. Parameter kBf, which controls the 
production of baseflow, seems to be more robust to 
model error misspecification. Surprisingly, the 
hyperparameters of the stochastic parameter sk are 
acceptably estimated, despite the misspecifications 
affecting the latent variables related to this 
parameter. This can be explained by considering 
estimated hyperparameters of input errors: 
although the hyper-mean is free from any bias 
whatever the temporal resolution, the hyper-
standard deviation increases when the number of 
epochs decreases, leading to a significant 
overestimation of the true standard deviation of 
rainfall multipliers. This means that input errors 
compensate for model errors, because the number 
of latent variables for stochastic parameter sK is 
not sufficient to describe its variability. 

Such a compensation mechanism has both 
advantages and drawbacks. The primary benefit is 
that it allows the bias in parameter estimates to 
remain moderate, despite an inadequate 
specification of model errors. Such robustness is 
an important feature in a regionalisation 
perspective, because not all structural errors can be 
accounted for by simply treating some parameters 
as stochastic. It is therefore anticipated that input 
errors will have to compensate for non-modelled 

Table 4. Probability models used for latent variables describing rainfall errors 

Hyperdistribution Probability model Prior distribution 
2~ ( , )i Nϕ μ σ 2 5~ [0.5;1.5] ;  ~ [10 ;1]U Uμ σ −  Normal 

 2 5~ [log(0.5); log(1.5)] ; ~ [10 ;1]U Uμ σ −  Log-normal 2log( ) ~ ( , )i Nϕ μ σ
2 2
1 2log( ) ~ ( , ) (1 ) ( , )i pN p Nϕ μ σ μ σ+ −

1 2( )σ σ≤ 2 5 2 5
1 2

~ [0;1] ; ~ [log(0.5); log(1.5)]
~ [10 ;1] ; ~ [10 ;1]

p U U
U U

μ

σ σ− −  Mixture 
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structural errors in real-world case studies. The 
primary drawback is related to the interpretation of 
estimated input errors characteristics: what is 
identified as input errors by BATEA might not 
only be rainfall measurement errors, but might also 
encompass a part of model structural error. 

4. CONCLUSION 

This paper aimed at evaluating the sensitivity of 
CRR parameter estimates to the choice of error 
models. Several conclusions can be drawn from 
this study. First, parameter estimates are more 
sensitive to the temporal structure used to model 
input errors than to the chosen hyperdistribution. 
Second, using latent variables of rainfall errors 
defined on a daily basis leads to more robust 
estimates than the storm epoch-based definition of 
latent variables. Lastly, parameter estimates were 
found to be reasonably robust facing structural 
error misspecification. This robustness is achieved 
thanks to an artificial increase of input error 
variance, which compensates for unaccounted 
structural errors. 

In this paper, the focus was on CRR parameters 
estimation. However, a similar study could be 
undertaken to evaluate the robustness of predictive 
uncertainty quantification in the presence of error 
model misspecification. One would expect 
predictive uncertainty to be more sensitive to 
hyperdistribution or structural error model 
misspecification. 
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