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EXTENDED ABSTRACT 
 
This study uses extreme value theory (EVT) to 
model U.S. weekend movie box office returns. 
Most Hollywood movies open in theaters on a 
weekend, as the majority of audiences watch 
movies during the weekend. The weekend box 
office revenue therefore accounts for a major 
part of the total box office revenue. Weekend 
box office returns – i.e., the percentage change 
in revenue from one weekend to the next - 
have empirical fluctuations that lend 
themselves naturally to being modeled by EVT. 
In this paper we use the Peaks over Threshold 
method and maximum likelihood estimation to 
fit the Generalized Pareto Distribution (GPD) 
to the tails of the distributions for both extreme 
positive and negative returns in box office 
returns. We use these results to calculate value 
at risk (VaR) and expected shortfall (ES) 
measures of return risk.  
 
We find that we are able to model the tails of 
the distributions for both positive and negative 
returns satisfactorily with the GPD. Our 
estimates of VaR and ES for positive return 
indicate that, with probability 1%, the revenue 
increase from one weekend to the next could 
exceed 81.04%, and that when it does, the 
average increase is 96.32%. Also, with 
probability 1%, box office revenue could drop 
68.72% from one weekend to the next, and that 

when it does the average fall 73.21%. That is, 
if the first weekend’s box office revenue is 
$100 million, there is a one percent probability 
that the revenue will decrease to $31.28 
million next week and the corresponding 
expected revenue for all possible revenues less 
than $31.28 million is $26.79 million. These 
estimates are useful for film distributors in 
determining the number of film prints, and as a 
reference for potential investors in the movie 
industry.  
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1. INTRODUCTION 
 
After being adjusted for the effects of 
seasonality, U.S. weekend box office revenue 
is dominated by high budget movies. 
According to the Internet Movie Database 
(IMDB), among 360 blockbusters with gross 
box office income of over $100 million during 
their theatrical runs, 290 movies, or about 80%, 
had budgets above $60 million. In most cases, 
the distribution of box office revenue is 
dominated by these high budget movies. 
However, this is not always the case. Some 
high budget movies sustain losses at the box 
office. Based on absolute loss on worldwide 
gross, for example, each of the top five money 
losers had budgets of over $100 million but 
lost over $90 million. When these movies were 
released, they dragged the weekend box office 
returns down. In contrast, some low budget 
movies are box office winners. For example, 
the most profitable movie based on return on 
investment, The Blair Witch Project, had a 
budget of only $35,000 but worldwide gross 
earnings of $248 million. Blockbusters and 
losers that appear in the distribution of the 
weekend box office can be taken as extreme 
events which can be analyzed via Extreme 
Value theory (EVT). 
 
EVT has been applied in many areas where 
“disasters” occur, such as earthquakes, floods, 
and even terrorism attacks (e.g., Jenkinson, 
1955, Embrechts et al., 1999, and Reiss and 
Thomas, 1997). Many studies have analyzed 
the variations in financial markets with EVT. 
The tail behavior of financial returns series has 
been discussed by Koedijk et al. (1990), 
Longin (1996), Dannielsson and de Vries 
(2000), Neiftci (2000), McNeil and Frey 
(2000), Gençay et al. (2003) and Gençay and 
Selçuk (2006), for example. 
 

 
 
We use the Peaks over Threshold method and 
maximum likelihood estimation to fit the 
Generalized Pareto Distribution to the tails of 
the distributions for both extreme positive and 
negative box office returns. We also calculate 
value at risk and expected shortfall measures 
of return risk.  
 
2. EXTREME VALUE THEORY 
 
The principal result of extreme value theory 
relates to the asymptotic distribution of “block 
maxima” – i.e., the maximum values of blocks, 
or snapshots, of data from an unknown 
underlying distribution. The Fisher and Tippet 
(1928) Theorem tells us that if these maxima 
are suitably normalized, they converge in 
distribution to one of only three forms – 
Gumbel, Fréchet, or Weibull. This is an 
extreme value analogue to conventional central 
limit theory. These three distributions can be 
encompassed by a single one – the Generalized 
Extreme Value (GEV) family of distributions. 
(Coles, 2001, pp. 45-52). If individual data 
values {X1, X2, ……}, rather than blocks, are 
available then it is inefficient to artificially 
“block” them and estimate a GEV distribution. 
The detailed data information can be used 
more efficiently by modeling the distribution, 
Fu, of values that are “extreme” (i.e., exceed 
some high threshold value, u). The Conditional 
Excess distribution function is defined as: 

)|)()( uXyuXPyFu >≤−=         
uxy F −≤≤0  ,                      

where X is a random variable, u is a particular 
threshold value, uxy −=  are the excesses 
(or “exceedances”), and ∞<Fx  is the right 

endpoint of the unknown population 
distribution, F. So, 
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As the realizations of the random variable X lie 
mainly between 0 and u, the estimation of F in 
this interval is usually quite straightforward. 
However, the estimation of the portion, uF , 

which is of interest here, can be difficult due to 
the fact that the number of observations above 
the large enough threshold might be quite 
limited. The following asymptotic result is a 
natural generalization of the GEV result for 
block maxima: 
Theorem (Pickands, 1975; Balkema and de 
Haan, 1974): For a large class of underlying 
distribution functions F the Conditional Excess 
Distribution function )(yFu , for u large, is 

well approximated by  
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for )](,0[ uxy F −∈ if 0≥ξ , and ],0[
σ
ξ

−∈y if 

0<ξ . σξ ,G is the so-called Generalized Pareto 

Distribution (GPD). 
 
Defining yux += , the GPD can be written as 

a function of x: 
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where u is the threshold, ξ is the shape 
parameter and σ is the scale parameter. 
Maximum Likelihood Estimation (MLE) can 
be used to estimate the parameters of the GPD 
after selecting an appropriate threshold u. Then 
we can fit the GPD to the exceedances. The 
details follow. 
 
 

3. THE PEAK OVER THRESHOLD 
METHOD 
 
The Peak over Threshold (POT) method is 
used to obtain the distribution of exceedances 
above a certain threshold. The POT method 
involves the following steps: select the 
threshold u; fit the GPD function to the 
exceedances over u; compute estimates for 
various risk measures. The selection of the 
threshold u is the key factor that decides the 
fraction of data belonging to the tail, and 
therefore affects the results of the MLE of the 
parameters of the GPD function. The value of 
u should be high enough to satisfy the 
Theorem in section 2, but the higher the 
threshold the fewer observations are left for the 
estimation of the parameters. There is a 
trade-off, and the determination of the 
threshold is complicated. Previous research 
(e.g., Danielsson et al., 2001; Dupuis, 1998) 
has attempted to deal with this issue, but there 
is no unambiguous method for selecting the 
threshold. Graphical tools are usually adopted 
(e.g., Gilli and Këllezi, 2006). We use two 
tools - the Sample Mean Excess (SME) plot 
and the Shape Parameter (SP) plot - to 
determine the threshold, u.  
 
The (population) mean excess function of the 
GPD with parameter ξ < 1 is  

)1/()()|()( ξξσ −+=>−= zzXzXEze  ,             

σ + ξ z > 0      .    
This gives the average value of the 
excesses of X conditional on a value for 
the threshold, z. The SME-plot is defined 
by the points:  

))(,( ueu n   ;  n
n

n xnx <<1      

where )(uen is the sample mean excess 

function defined as: 

∑ −+−= =
− n

ki
n
in uxknue )()1()( 1  ;  
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and (n-k+1) is the number of observations 
exceeding the threshold. As an estimate of the 
mean excess function, the sample mean excess 
function should be linear. This property can be 
used as a criterion for the selection of the 
threshold, u. The selected u should be that 
located at the beginning of a portion of the 
sample mean excess plot that is roughly linear 
and sloping up (Angelini, 2002). This involves 
a subjective choice in practice. 
 
The shape parameter (SP) plot graphs the 
estimates of the shape parameter ξ on the 
vertical axis as a function of increasing 
thresholds u on the horizontal axis. For a 
sample y = {y1, …, yn} of exceedances, the 
log-likelihood function for the GPD is: 
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We can compute the MLE’s of the parameters 
for one sample of exceedances, y, defined by 
the observations exceeding a single threshold u. 
After generating a series of thresholds and 
repeating the process of computing estimates 
on the basis of equation (16), a series of 
estimates for ξ  and σ  can be computed. 
Estimates of ξ  are plotted against the 

associated thresholds to find a range over 
which the estimates are relatively stable. 
 
After selecting a threshold u, using the above 
tools the corresponding MLE’s of the 
parameters are used with the sample of 
exceedances, y, to construct a series of values 

for )(ˆ,ˆ yG σξ . Plotting both the theoretical and 

the empirical distribution function, we can 
observe if the GPD provides a reasonable fit to 

the exceedances above the threshold.  
 
4. RISK MEASURES 
 
Two typical risk measures are the Value at Risk 
(VaR) and the Expected Shortfall (ES). Value 
at Risk is the return sufficient to cover, in most 
instances, gains or losses over a fixed number 
of weekends. Suppose a random variable X, 
with continuous distribution function F, 
models positive or negative returns over a 
certain time horizon. The VaRp is the p-th. 
quantile of the distribution F such 

that )1(1 pFVaRp −= − , where F-1 is the pth 

quantile function. The expected shortfall is 
defined as the expected size of a return that 
exceeds VaRp: 

)|( pp VaRXXEES >= .               

Assuming a GPD function for the tail 
distribution, the VaRp and ESp can be 
expressed in terms of the GPD parameters: 
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5.  DATA 
 
Weekend box office total revenues of the top 
12 movies per week, from 8 January 1982 to 
15 September 2006, have been obtained from 
the online movie database Box Office Mojo 
(www.boxofficemojo.com). Weekly returns in 
revenue are calculated as logarithmic 
differences. As the distributions of the positive 
and negative are asymmetric, we model them 
separately (as is usually the case with financial 
returns). Our sample comprises 620 positive 
returns and 668 negative returns. 
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Figure 1. U.S. weekend box office returns. 
 
6. RESULTS 
 
Our results were obtained by writing program 
code for EViews 5.1. The R package, PoT, was 
used to verify the MLE results. Figure 2 shows 
the SME plots for the positive and negative 
returns. Values of u= 0.35 (0.28) for the 
positive (negative) returns locate the beginning 
of a portion of the SME plot that is 
approximately linear and sloping up.  
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Figure 2. Top (Bottom): ME plot for positive 
(negative) returns. 
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Figure 3. Top (Bottom): Shape parameter 
estimates for positive (negative) returns as a 
function of the threshold.  
 
Figure 3 provides the SP plots with 95% 
confidence intervals. For the positive returns 
we choose u = 0.3529 (118 exceedances). For 
the negative returns we choose u = 0.2801 
(153 exceedances). These thresholds closely 
match those suggested by the SME plots. Table 
1 gives the MLE results. 
 
 Table 1. Parameter estimation of GPD. 

Positive
returns

Negative
returns

    =0.3529     =0.2801
 

(Std. Error)
-0.0066
(0.1136)

-0.4138
(0.0690)

 
(Std. Error)

1.5679
(0.2075)

2.3193
(0.2285)

u u
ξ̂

σ̂
 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
Exceedance

F(
X-

u)

 

0.00

0.02

0.04

0.06

0.08

0.10

0.35 0.45 0.55 0.65 0.75
Exceedance

1-
F(

X-
u)

 
Figure 4. Top: Positive returns. GPD fitted to 
118 exceedances above u = 0.3529. Bottom: 
GPD fitted to the tail exceedances. 
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Figure 5. Top: Negative returns. GPD fitted to 
153 exceedances above u = 0.2801. Bottom: 
GPD fitted to the tail exceedances. 

A series of values for )(ˆ,ˆ yG σξ
can then be 

computed by substituting these estimates into 
the GPD function. Figures 4 and 5 show the 
GPD fits, which are relatively satisfactory. 
Table 2 gives the estimates of VaR and ES for 
p = 0.01, 0.10, with 95% asymptotic 
confidence intervals (from the Delta method). 
 
Table 2. Estimated values of VaR and ES. 

Positive Returns 

Probability VaR ES 

= 1% 0.811 0.963 

Confidence 
Interval 

0.320~1.300 0.222~1.705 

= 10% 0.454 0.609 

Confidence 
Interval 

0.320~0.587 0.028~1.189 

Negative Returns 

Probabilty  VaR ES 

= 1% 0.687 0.732 

Confidence 
Interval 

0.584~0.791 0.245~1.220 

= 10% 0.443 0.559 

Confidence 
Interval 

0.373~0.513 0.1534~0.965 

The estimates of VaR and ES for positive 
return indicate that, with 1% probability, the 
returns from one weekend to the next could 
exceed 81.04%, and that the average returns 
above this level will be 96.32%. So, if a 
weekend’s box office revenue is $100 million, 
there is one percent probability that revenue 
will increase to $181.04 million next weekend, 
and the expected value for all revenues over 
$181.04 million is $196.32 million, etc. Such 
estimates can be used in different ways. For 
example, the VaR results imply that, given the 
same amount of investment the possibility of 
loss for an investment in the movie industry is 
relatively lower than the possibility of gain. In 
addition, the difference between the VaR and 
ES for the positive returns is bigger than that 
for the negative returns. This means that the 
expected gain over the VaR under the situation 
of gain is more than the expected loss over the 
VaR under the situation of loss.  
  
The risk measures could also help movie 
producers forecast the required number of 
prints of new movies. By calculating VaR and 
ES with a given probability and estimating the 
total box office revenue at the releasing 
weekend, the producer could then divide the 
estimated revenue by the average ticket price 
to get the total audience, which could be used 
to estimate the number of prints of the new 
movie. This would be most useful for high 
budget movie producers as these movies 
usually dominate the box office upon release.  
 
7. CONCLUSIONS 
 
We illustrate how extreme value theory can be 
used to model the tails of the distribution for 
weekend box office returns in the U.S.. One 
implication of our estimates of Value at Risk 
and Expected Shortfall is that the possibility of 
loss for an investment in the movie industry is 
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lower than the possibility of gain. These 
measures can also be used to estimate the 
number of prints of movies that are likely to be 
needed, thus avoiding surpluses or shortages of 
film copies for high budget losers and low 
budget winners at the box office. Ongoing 
research considers returns for individual 
companies in the industry, and returns based 
on net, rather than gross, revenue.  
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