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EXTENDED ABSTRACT 

As models are increasingly used in land 
management decision-making, the reliability of 
model outputs is increasingly scrutinised. 
Understandably, decision-makers believe that 
having access to information about model 
reliability will allow them to make better 
decisions. This paper argues that this is not 
necessarily true. Moreover, model developers may 
be ill-equipped to provide information about 
model uncertainty because they do not necessarily 
understand all of the potential sources of 
uncertainty. 

In this paper, concepts related to risk analysis and 
the use of uncertainty in decision making are 
presented.  In particular, seminal risk analysis 
work focussed on decision-making in the face of 
uncertainty is discussed.  The literature cited 
demonstrates clearly that most decision are made 
using an assumption of information certainty, and 
there are no widely accepted paradigms or tools for 
making decisions using uncertain information. 

These issues are discussed relative to a fictitious 
hydrological model applied to a fictitious 
catchment to identify areas that will be affected by 
dryland salinity. Shortcomings in conventional 
goodness-of-fit statistics to describe model 
uncertainty are discussed. In particular, if one is 
using spatial data, one must also contend with 
uncertainty in map construction, and natural 
variability around variables measured for each 
cartographic taxon.  The large impact of data 
uncertainty on the precision of model outputs 
imply that, in using a well-conceived and 
calibrated model, one can improve the certainty of 
model outputs considerably by improving the 
quality of data inputs rather than revising or 
refining the model. 

Aside from the difficulty of producing estimates of 
model uncertainty that address all types of 
uncertainty, it is doubtful that decision-makers 
would be able to use such information to make 
decisions. Because the information produced is 
excessively complex, ways must be found to 
analyse and summarise it if it is ever to be used by 
decision-makers.  For example, suppose that one 
knows that alternative scenarios A, B, and C 
produce benefits of 20+3, 30+15, or 15+20 – 
which is the best?  The answer to this question 
changes with the evaluation criteria – i.e., to 
maximise the likelihood of benefits or to minimise 
the likelihood of negative outcomes.  This is made 
even more difficult if one is working with spatial 
data and one must implement scenarios based on a 
spatially optimal arrangement of scenarios. 

Four major conclusions are presented: 
• If a policy decision is obvious without 

considering uncertainty, consideration of 
uncertainty will probably not change the 
decision made. 

• Model developers are not necessarily aware of 
many individual uncertainties and how their 
interactions impact model calibration and use. 

• The magnitude of the impact of many sources 
of uncertainty is largely unknown. 

• Even if uncertainty information were 
available, the magnitude and complexity of 
such information would limit its utility for 
decision-making unless new ways to analyze 
it and summarize it are developed. 

This article makes it clear that one priority in 
modeling is for the development of improved 
models and minimal techniques for estimating 
uncertainty associated with those models.  Less 
obvious is the central point of this paper – even 
with the development of techniques that provide 
useful estimates of model uncertainty, there is a 
considerable amount of work that must be done 
before those estimates become useful for decision-
makers. 
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1. INTRODUCTION 

Models are increasingly used to formulate public 
policy and plan on-ground activities. As 
familiarisation with models increases, policy 
makers are becoming savvier about the benefits 
and limitations of models. As a consequence, they 
are increasingly asking for information about the 
reliability of model outputs. This knowledge is 
desired in part to further improve their 
understanding of model abilities and limitations, 
but also to enable them to make better decisions. 

But will knowledge of the uncertainty surrounding 
model outputs really improve their ability to make 
decisions? It is argued herein that this question 
does not, in fact, have a simple answer. Among the 
numerous reasons for this are: 
• Sources of modelling uncertainty are poorly 

understood even by model developers. 
• Knowledge of interactions among the myriad 

sources of model uncertainty is limited. 
• Model uncertainty may be relatively large. 
• The way model developers characterise model 

uncertainty is not useful for decision-makers. 
• Model uncertainty may be the same for all 

options considered and therefore irrelevant in 
choosing among alternatives. 

Despite these factors, it remains seductively simple 
to think that knowledge of model uncertainty will 
improve decisions. The purpose of this paper is to 
explore this idea in the context of models that rely 
on spatial data to describe landscape dynamics. 
Through this exploration, readers will become 
more aware of various sources of uncertainty, and 
gain insight into why the use of uncertainty may 
not in reality improve decisions made. 

2. RISK AND DECISION-MAKING 

Essentially, there is a desire to have information on 
uncertainty in order to better control decision risk. 
Modern risk analysis has its roots in the 1950s and 
the early 1960s when D. Ellsberg completed his 
Harvard doctoral dissertation (“Risk, Ambiguity 
and Decision” 1962, published as Ellsberg (2001)) 
and the seminal paper “Risk, ambiguity, and the 
Savage axioms” (Ellsberg 1961). These works 
demonstrated that personal circumstances, 
language, knowledge of uncertainty and other 
factors affect decision-making. Perhaps 
surprisingly, people generally choose the option 
for which the certainty is the highest rather than 
the one that has the greatest likelihood of a 
positive outcome. 

This has been illustrated by the now-classic 
example of rewarding a subject for blindly 
drawing a yellow ball out of an urn containing 
yellow and red balls. In the example, participants 
are offered a choice of drawing a single ball from 
one of two urns. One is known to contain 50 
yellow balls and 50 red balls. The only information 
about the second urn is that it contains at least 10 
yellow balls. The probability of drawing a yellow 
ball from the first urn is 0.50 and 0.55 for the 
second. Most participants, however, choose to 
draw a ball from the first urn. 

Since the late 1980s, the risk analysis community 
has been grappling with making decisions using 
what has been termed by some “imprecise 
probabilities” (e.g., Caselton and Luo 1992). Since 
that time, risk analysts have explored emerging 
tools such as belief theory (Caselton and Luo 
1992), Bayesian networks (Borsuk et al. 2002) and 
fuzzy set theory (Cameron and Peloso 2005). 
Other tools for making decisions using imprecise 
probabilities have also been explored – e.g., 
decision trees (including classification and 
regression trees – CART) (Burgman 2005), 
bounding (Greenland 2004), and ranking (Paté-
Cornell 1998). 

This has led to further work in a number of 
disciplines. In the realm of cognitive decision-
making, a difference between ambiguity and 
uncertainty has been noted (Frisch and Baron 
1988) as has their effects on decision-making. 
Others have classified imperfect knowledge as 
uncertainty and imprecision (Borsuk 2005), or 
variability and uncertainty (Kelly and Campbell 
2000). Application domains include Economics, 
Human Health, Environmental Contamination, and 
Climate Change (Van Dijk and Zeelenberg 2003, 
Mayer 2005, Simon et al. 2004, Borsuk and 
Tomassini 2005, respectively). Regardless of how 
it is characterised, the need to consider imperfect 
knowledge in decision-making has been 
recognised (Reckhow 1994). 

3. MODELLING, UNCERTAINTY, AND 
DECISION-MAKING 

The future amount of dryland salinity (DS) in a 
single catchment – “Catchment A” – is the context 
for discussing the use of uncertainty in decision-
making. DS occurs in Australia as the result of the 
post-European conversion of woody vegetation to 
agricultural land. This causes the water table to 
rise, and soluble salts stored in the soil are brought 
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to the surface thereby rendering the affected land 
unproductive.   

Hydrological models with links to ground-water, 
topography, soil structure, landcover, and other 
factors are used to identify areas that will be 
affected by DS. Policy makers use such 
information to assess the severity of the problem, 
determine an appropriate level of response, and 
plan on-ground activities to mitigate the affects of 
DS. 

For Catchment A, therefore, the first question for a 
policy maker is “How much land will be affected 
by dryland salinity?” To answer this, an 
appropriate hydrological model would be 
calibrated and run to determine the amount of land 
that is expected to have the water table rise to 
within 1.8 m of the surface. (Depth to water table 
is a common surrogate variable for DS.) 

Suppose that an appropriate model returns the 
answer “100 ha.” If 100 ha is an amount 
considered “inconsequential” or “irreversibly 
catastrophic,” then there is little need to consider 
model uncertainty in formulating a policy 
response. At most, the policy maker might ask 
how confident the modeler is that the true value is 
below or above some critical threshold. In such a 
case, a verbal (ordinal) response of “very 
confident” would suffice. The key point is that in 
either case, the policy response might be the same 
– do nothing since there is little point in expending 
a large amount of resources. 

The greatest need for uncertainty information 
occurs if 100 ha of DS is an amount considered to 
be between “inconsequential” and “irreversibly 
catastrophic.” If so, the decision-maker will want 
better information. One source of uncertainty 
information would be goodness-of-fit statistics for 
a model – e.g., R2, the root-mean-square-error 
(RMSE).  But consider what their use implies. A 
modeler might in good faith use borehole 
information to validate the model to produce a 
graph such as Figure 1. Statistical analysis 
indicates that the root-mean-square error of the 
model is 0.2 m for Depth to Watertable. Because 
this value is considered low in a modeling context, 
the modeler could conscientiously tell the policy 
maker that the 100 ha is “highly reliable” or “very 
good.” In fact, this may not be true if all sources of 
uncertainty are considered. Moreover, the 
modeler’s way of assessing “highly reliable” may 
have little meaning for the policy maker. 

Figure 1. Comparison of model estimates with 
measured values to estimate model uncertainty. 

One reason for this is the fact that a surrogate 
variable and associated threshold are used to 
estimate dryland salinity. Though the threshold of 
“1.8 m” may represent the best scientific 
information available about areas that will be 
affected by DS, this threshold may be overly 
conservative/liberal/generic. Hence the modeller is 
basing the “100 ha affected by DS” estimate not 
just on a model, but a threshold value that also has 
some uncertainty associated with it. 

Related to this is the possibility that stating 
uncertainty as “highly reliable”, or even as an 
interval – e.g. “within 20%” – may not be useful 
for a decision-maker. Policy makers have little 
interest in quantitative assessments and are more 
likely to want to know the risk or likelihood of 
something being a “serious problem.” Making 
such an assessment requires the modeler and the 
policy maker to work together. The policy maker 
must provide a definition of what constitutes a 
“serious problem” – e.g. “more than 125 ha of 
DS.” The model developer must then convert this 
to risk by, for example, assuming a normal 
distribution of uncertainty values and referring to 
statistical tables that describe the normal 
distribution. The result would be a statement from 
the modeller such as “there is a 0.25 chance that 
there is more than 125 ha of DS in Catchment A.” 
Policy makers must then consider their tolerance to 
risk in order to arrive at an appropriate policy 
decision. 

Yet another issue is the general nature of the 
model-associated uncertainty. Suppose that the 
uncertainty of the model used is highly sensitive to 
topography with the amount of error known to 
increase greatly on hilltops (Fig. 2). Further 
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suppose that none of the boreholes represented on 
Figure 1 are located on hilltops. In such a case, it is 
possible that the 100 ha estimate of DS is an 
underestimate (Fig. 2). 

Figure 2. Underestimate of dryland salinity (DS) 
due to sensitivity of model uncertainty to slope 

position. 
 
 
 
 
 

 

 

 

 

 

Yet another set of difficulties arises if the model 
being employed is spatially explicit, and the policy 
maker is not asking “How much DS will occur?” 
but instead is asking “Where will the DS occur?” 
Suppose that Catchment A is completely covered 
by agricultural land with the sole exception being a 
source of potable water in the centre (Fig. 3a). 
Public funds are available for DS Protection, and it 
is necessary to determine where those funds will 
be spent. A hydrological model identifies three 
distinct hydrologic zones that coincide with 
different soil types (Fig. 3b) and is able to estimate 
the risk that each will be affected by DS given the 
uncertainties already discussed. Based on this 
information, it seems apparent that the western 
rectangle with a DS risk of 0.60 should be 
targeted. However, using a spatially explicit model 
introduces uncertainties that have not yet been 
considered. 

Suppose that the model bases its outputs on soil 
permeability as represented on a soils map and 
associated database. In real-world procedures, soil 
attributes such as permeability are obtained for 
mapped soil types by developing a sampling 
scheme for each soil type, and then taking 
measurements from on-ground soil pits. Each soil 
type is sampled by more than one soil pit meaning 
that estimates of soil permeability for each type 
have natural variability. Yet for modeling 
purposes, the permeability of each soil type is 
represented using a single value – the mean of all 

samples – that is generally the only one used in a 
hydrological model. Given the natural variability 
in soils and other components of natural systems, 
the likelihood of DS should not be represented as a 
single value as in Fig. 3b, but should be 
represented to reflect the uncertainty (natural 
variability) around soil permeability (Fig. 4). 

Figure 3a) Community assets of Catchment A. 
Figure 3b) Model estimate risk of dryland salinity 

(DS). 

Construction of the soils map itself is subject to 
considerable uncertainty.  In some taxonomies, 
soil taxa overlap – e.g., “Soil C is at least 70% Soil 
A with inclusions of Soil B of no more than 20%.”  
Even if taxa definitions do not overlap, there is 
nonetheless considerable uncertainty in a soils map 
because in reality soil types do not change abruptly 
as one moves across a landscape, but instead 
gradually grade into each other.  This means that 
not only are the attributes of each soil type best 
represented by a numerical range, but the locations 
of the boundary of each soil type polygon are 
uncertain (Fig. 4). 

Modelling aside, the boundaries of the assets to 
protect are not always definite.  Assets such as 
“source of potable water” do not necessarily have 
definitive boundaries and should be represented 
accordingly (Fig. 5). 
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Figure 4. Representations of uncertainty in model 
estimates of likelihood of DS that reflect soil 

attribute uncertainty and soil type location 
uncertainty. 

 

 

 

 

Figure 5. Uncertainty on boundary of community 
asset to be protected. 

 

 

 

 

 

So given all of this uncertainty information in our 
fictitious example, where should DS Protection 
money be invested?  Without consideration of 
uncertainty (Fig. 3b), it seems apparent that the 
western rectangle should be protected because it 
has the highest likelihood of being affected.  
However, consideration of uncertainty requires 
that information in Figures 3a, 4, and 5 be 
combined and the “optimal” plan for spending the 
DS Protection money determined from that 
combination of information.  However, in seeking 
to consider uncertainty, even in this highly 
simplistic example, there is considerable 
complexity.  This makes it apparent that even if 
uncertainty information were available, without 
assistance, analysis, or summarization the 
uncertainty information will not help a policy 
maker or anyone else make a better decision.   

At the same time, this example was contrived to 
demonstrate how uncertainty information may be 
required to ensure that the right decision is made.  
A key to doing this is assessing the value of the 
assets to be protected – i.e., the source of potable 
water would be considered much more valuable 
than several hectares of agricultural land.  
Fortunately, this source of potable water is in the 

general area that has the lowest estimated risk of 
being affected by DS – 0.05 to 0.35 as opposed to 
0.30 to 0.90 for the western rectangle and 0.40 to 
0.50 for the northeastern rectangle.  However, it is 
known that the boundary of the potable water 
source may extend beyond its mapped boundary.  
To the west this is not likely to be an issue because 
the potable water source is a long distance from a 
high-risk DS area, and that high-risk area has fairly 
definite boundaries.  To the northeast, however, 
there exists an area having moderate DS risk but 
whose boundaries might extend southwest much 
further than mapped (or might be much further to 
the east).  After assessing this information, it 
becomes apparent that DS Protection money 
should be spent to treat the area between the 
potable water source and the moderate risk 
northeastern rectangle (Fig. 6). 

 

 

 

 

 

 
Figure 6. Proposed area to be treated to protect 

against DS. 

4. DISCUSSION AND CONCLUSIONS 

The example used herein, despite being highly 
contrived is nonetheless representative of issues 
associated with providing model users information 
about uncertainty.  Some general conclusions can 
be drawn. 

• If a policy decision is obvious without 
considering uncertainty, consideration of 
uncertainty will probably not change the 
decision made. 

• Model developers are not necessarily aware of 
many individual uncertainties and how their 
interactions impact model calibration and use. 

• The magnitude of the impact of many sources 
of uncertainty is largely unknown. 
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• Even if such information were available, the 
magnitude and complexity of uncertainty 
information would limit its utility for 
decision-making. 

Given these difficulties, must policy makers resign 
themselves to never being able to base their 
decisions on the uncertainty associated with model 
outputs?  It is argued that the answer to this 
question is “No.”  At the very least, modelers 
should be able to tell users whether or not model 
outputs are of high or low uncertainty.  Even such 
simplistic information would assist decision-
makers by indicating if a policy decision should 
tend towards optimism or pessimism.  This 
knowledge about model outputs would have to be 
balanced by the decision-maker’s assessment of 
the stakes or the consequences of a decision being 
wrong. 

If more sophisticated uncertainty information such 
as that described herein eventually becomes 
available, analytical, optimization, or 
summarization algorithms and techniques will 
have to be developed.  In a complex real-world 
situation, without such numerical assistance, it is 
doubtful that decision-makers will be able to use 
uncertainty information of any greater complexity 
than the likelihood of DS information that was 
presented in Figure 3. 

In conclusion, decision-makers may believe they 
want information about the uncertainty of model 
outputs to improve their decision-making.  Such 
information is in all likelihood more complex than 
imagined and therefore currently would be of little 
use to them.  And modelers for their part are not 
always aware of the uncertainties inherent in their 
models and the data used to calibrate and run them.  
Hence, model developers may be limited in their 
ability to provide uncertainty information.  There 
is considerable work to do before complex 
uncertainty information is available and before it 
can be provided to policy makers in a useful 
format. 
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