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EXTENDED ABSTRACT 

Sensitivity analysis is usually focussed on 
parameters and is a relatively well-developed 
field compared with function sensitivity. But how 
sensitive are model conclusions to the choice of 
functions used in the right hand side of 
differential equation models? Most work in this 
area has been scenario-based where alternative 
functions are tested. In this paper, we examine the 
sensitivity of a model to changes in the shape of 
the functions. We do this in an automated way 
without the need to specify alternative functional 
forms.  
 
The question then is how much can we change a 
function that defines the dynamics of the system 
without producing a significant change in some 
performance measure?  If the changes in 
functions need to be large in some sense, to cause 
significant changes in a performance measure, 
then there is less need to focus attention on 
getting the model functions correct. A method of 
approach to this type of analysis is presented and 
illustrated on an ecosystem model.  Testing the 
proposed method on a simple model demonstrates 
that quite large changes can be made to functions 
before reaching a critical value in the decision 
criterion. This insight is as useful as the 
corresponding knowledge of the effect of 
uncertainty in parameter values. 

1. INTRODUCTION 

It has long been recognised that, “the simple 
obtaining of solutions for the equations of the 
mathematical model of a dynamic system – or 
even a set of solutions – is no longer sufficient” 
(Tomovic 1963). Further, in 1968, Quade 
expressed the view that: “A good system study 
will include sensitivity tests on the assumptions in 
order to find out which ones really affect the 
outcome and to what extent. This enables the 
analyst to determine where further investigation 
of assumptions is needed”.  Along these lines 
Forrester (1969) demonstrated that the question of 

sensitivity is important from a policy viewpoint 
only when parameter changes would render a 
proposed policy ineffective. At that time and 
subsequently most sensitivity analyses were only 
performed on parameters and initial values.  This 
approach can be found, for example, in Barnes 
and Yeaple (1968), Thornton and Lessem (1976), 
and Vermeulen and De Jongh (1976 and 1977).  
 
A notable early exception to straight parameter 
sensitivity analysis (SA) was the practical 
approach adopted by Ford and Gardiner (1979). 
They convened a workshop of public and private 
leaders where the group was presented with 
model forecasts and asked to decide on a policy. 
Changes were then made to the model and the 
group was presented with the new forecasts. 
Based on those forecasts, the group was again 
asked to vote on the policy. If the policy decision 
was unchanged the model could be regarded as 
insensitive to the changes. So it might well be that 
some change in a parameter value or function  
causes a very large change in a state variable but 
if this does not alter the decision of the policy-
making body then in practical terms the model is 
insensitive. 
 
The main purpose of a SA of a model used in 
decision support should be to determine the 
extent to which the decisions or policies based on 
model results are robust with respect to the 
uncertainty in the model.  Walker et al (2003) 
recently noted the increasing requirement to 
articulate uncertainty, when working at the 
interface of science and management, in model-
based decision support. They recognise two 
extremes as a feature of the nature of uncertainty: 
‘Epistemic uncertainty’, which is due to the 
imperfection of our knowledge and may be 
reduced by more research or data, and ‘variability 
uncertainty’, which is due to the inherent 
variability in a system.  
 
Epistemic uncertainty includes uncertainty in 
parameter values, model inputs, and the functions 
in a model. As noted, most analyses of models do 
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include a SA of the parameters and a scenario 
analysis of the inputs. Alternative functions 
within a model, however, are only sometimes 
tested and in an ad hoc manner. Little has been 
done to perform a SA of functions in the 
automated way that is done with parameters.  
This paper takes some tentative steps towards 
addressing this problem. 

2. METHOD 

Consider the following system of difference 
equations: 

,,,2,1,),,()()( nittxftxttx iii K=Δ+=Δ+ α
 (1)     

where x  is the state vector and  α  a vector  of 
parameters. 
 
A basic parameter sensitivity analysis involves 
changing the values of the parameters in the 
functions ),,( αtxfi  by a small amount, one at a 
time, and observing the change it produces in the 
output. Although changing the parameters in the 
functions ),,( αtxfi  does change the shape of 
the functions it does so in very restrictive ways.   
Clearly other changes to the shape of the 
functions are possible.  This is an important 
consideration if there is uncertainty about the 
appropriateness of the functional form chosen for 
the model.  The functions contain the information 
about the dynamics of the model, with different 
functional forms corresponding to different 
choices of dynamics for the system.  Changes in 
the functions then correspond to changes in the 
dynamics of the model. 
 
A possible pragmatic approach for this more 
general form of function SA is to multiply each 
function or rate by a parameter with a nominal 
value of one. These parameters can then be 
perturbed as is done in parameter SA. This should 
yield some indication as to which rates are the 
most sensitive. This method was tried with some 
success by Lawrie and Hearne (2007). One of the 
shortcomings of this approach, however, is that 
no information is obtained on the sensitivity of 
the output to changes in the shape of the 
functions.  The simplest approach towards this 
end, going beyond the method mentioned above, 
is to multiply each function by the following 
function which comprises a product of triangular-
shaped functions: 
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Note that by choosing im to be negative we can 

invert the triangular shaped function ih . 

Reasonable choices of    ia and    ib  are the 
respective minimum and maximum values of the 
corresponding state variable ix  over the solution 

interval ],[ ii ba . 

 

Figure 1. An example of the function  
),,( mpxH  in two dimensions, where both 

1m  and 2m  are negative.  

The function ),,( mpxH  deviates from the 
constant function 1, where the greatest change 
occurs at px = , with magnitude determined 

by m .    

The SA now proceeds by investigating changes in 
each of the functions ),,( αtxfi  obtained by 
multiplying each in turn by a 
function ),,( mpxH . The SA tests the 
sensitivity of some objective measure chosen by 
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the user.  In this project, we are interested in a 
decision-making objective. In this context further 
development of our idea is best achieved with an 
illustrative example. 

3. ILLUSTRATIVE EXAMPLE 

An agricultural product X will be ready for 
harvesting in T (=12) months time. A pest species 
Y consumes X at a certain rate depending on the 
density of X.  The damage caused by Y is 
unacceptable and two means of controlling the 
pest have been proposed: (1) biological control 
through the introduction of a parasitoid Z and (2) 
chemical control.  The first method is much 
cheaper and also more desirable from 
environmental considerations but there is more 
confidence in the efficacy of chemical control.  
To facilitate making a decision, a model of the 
system with Z has been formulated. The aim of 
the model is to answer the following question: 

Will the introduction of population Z ensure that 
the biomass of X achieves a minimum level at 
harvest time T? In particular will the 10th 
percentile of X be above a threshold value V 
(=60)? 

Let  ,, 21 xx  and 3x  denote the population levels 
of X, Y, and Z, respectively. The model is given 
by the system of equations (1) with the following 
RHS functions: 
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Initial and parameter values are 
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where N(0,10) is a normally distributed random 
number with mean 0 and standard deviation 10. 

Figure 2. Deterministic solution: The 
system behaviour without bio-control 
shows population X decreasing below the 
acceptable threshold.  The introduction of 
population Z reduces Y enabling X to 
maintain a level well above the threshold 
at harvest. 

That the introduction of Z is effective can be seen 
by comparing the two graphs with and without 
population Z in Figure 2.  These are solutions of 
the deterministic model with k held constant at 
100. Further analysis was undertaken by 
performing 500 simulations of the stochastic 
model. These solutions indicated that at the final 
time T, X would have a mean of approximately 
78 and a 10th percentile of 66 (>V). This suggests 
that the decision can be made tentatively to go for 
option (1), biological control.  

Normally at this point SA of parameters and 
initial values would be undertaken and possibly 
some experimenting with alternative model 
formulations.  As the purpose of this project is to 
go beyond that, we assume that all parameter and 
initial values are perfectly known. The question 
then remains whether the functions ),,( αtxfi  
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of the model are correct. In particular, we are 
interested in the following: 

By how much can the functions be distorted while 
still ensuring that the decision criterion is 
satisfied? The decision criterion being that the 
10th percentile of population X lies above the 
threshold V at the final time and hence that the 
first option for control will be the  preferred one?  

 Table 1: Results from the application of 
the proposed method to the illustrative 
model. The third column, Relative 
Insensitivity, is indicative of the relative 
magnitude of change that can be made to a 
function before the critical value of the 
decision criterion is reached. The last three 
rows contain the point where the function 
is most sensitive to function changes. 
 

If the criterion is satisfied, despite large changes 
to the functions, then one might conclude that the 
decision is insensitive to the choice of model 
functions. We now formulate the mathematical 
problem to answer this question. 
 
Formulation of the function sensitivity problem 
 
Problem P1 
 
Consider, one at a time, a change to each 
function ),,( αtxfi , where the changed function 

is given by ),,(),,( αtxfmpxH i  (see equation 

(2) for definition of ),,( mpxH ). If the 

functions ),,( αtxfi  are independent of ix  then 

),m,p(xh iiii  are set to zero. For the ith equation 
this means: 
 
Find ),( ** mp , the solution to the constrained 
minimization problem: 

2

,
min m

mp
 

constrained by the condition that the 10th 
percentile of .)(1 VTx ≤   
 
This is the smallest change of ),,( αtxfi  which 
no longer ensures that the harvest has minimum 
biomass greater than 60 units.   
 
Effectively P1 means that we find the position in 
state space where the model is most sensitive to 
changes in the functions ),,( αtxfi .   Moreover, 
we can determine if increasing the function or 
decreasing the function at that point produces the 
greatest change in the output measure – through 
the sign of m . This means that regardless of 
position or direction (increase or decrease) any 
smaller change in the function will ensure that the 
final level of population X is acceptable, and 
hence robust to the decision.  

4. RESULTS 

Problem P1 is solved for the three cases 
corresponding to each of the three RHS functions. 
The results are shown in Table 1. Note that, 
looking at the values of m , one can see that the 
function f2 is the most sensitive. Compared to 
function f2 the other two functions are relatively 
insensitive.  In fact functions f3 and f1 can endure 
changes which are 14.38 and 6.06 times larger, 
respectively, than that of f2.  This relative measure 
is given as the “Relative Insensitivity” in Table 1.  
 
The position of the peak changes the shape of the 
function. This in turn generally influences the 
results.   The original function ),,(1 αtxf  is 
shown in Figure 3.  The modified function  

),,(),,( 1
** αtxfmpxH , where the  ),( ** mp  

values for function f1 are given in Table 1, is 
shown in Figure 4. 
 
To further show that the result depends on the 
shape of the function we change the location of 
the peak of  ),,( mpxH .  To do this, we replace 

the function ),,( ** mpxH  with the   function 

Function m  Relative 
Insensitivity 

f1 0.97 6.06 
f2 0.16 1.00 
f3 2.30 14.38 

 
Function Peak Vector 

 m1 m2 m3 
f1 -0.35 -0.9 --- 
f2 0.11 0.11 0.04 
f3 --- -1.5 -1.75 

 
Function Critical Point 

 p1 p2 p3 
f1 58 18 --- 
f2 56 28 8 
f3 --- 18 10 
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),,( *# mpxH , where #p  is the new location 
for the peak.  Choosing the function f1, for 
example and using )30,65(# =p  we get the 
10th percentile for population X greater than 68, 
compared with 60 in the previous solution.  
 
For the purposes of comparison we also apply an  
approach similar to that taken by Lawrie and 
Hearne (2007).  In this approach, each RHS 
function is multiplied by a constant parameter of 
nominal value one. The constants are then 
perturbed by 1%, one at a time, and the 
simulations are repeated.  
 

 
 
Figure 3. This figure is the original function 

),,(1 αtxf given in Equation 4 above.  
 
 

 
 
 
Figure 4. This figure shows the modified 
function ),,(),,( 1

** αtxfmpxH .  

This is equivalent to setting iiiii k),m,p(xh =  for 

some small constants ik , or alternatively setting 

KmpxH +=1),,( for a small constant K .  
For perturbations to functions f1, f2, and f3 the 
changes in the magnitude of the 10th percentile of 
X are 2.36%, 1.89% and 1.5% respectively. This 
suggests that f1 is most sensitive to change 
followed by f2 and then f3.  This contrasts with the 
results given in Table 1. 

5. CONCLUSION 

Decision and policy making can be determined or 
influenced by the output of a model. In this 
context the techniques needed to explore the 
relationship between a model’s output and 
uncertainties in its parameter and initial values 
are well-developed. However, techniques for the 
analysis of uncertainty in the functions used in a 
model is less developed.  It is often dealt with by 
changing the functions used in the model on a 
trial and error basis, or as a scenario based 
analysis. This is both difficult and time-
consuming when dealing with large complex 
models. In this paper, we investigate the effects of 
uncertainty in the functions of a model through an 
automated process.  
 
The proposed method is tested in our simple 
model. For this model quite large changes can be 
made to functions before reaching a critical value 
in the decision criterion. This insight is as useful 
as the corresponding knowledge of the effect of 
uncertainty in parameter values.   
 
Research is in progress to investigate the 
procedure further by extending the process to 
individual terms in a RHS function. This may in 
turn yield useful information about all the 
relationships within a model.  The intention is 
then to test the whole procedure on a large 
complex model.  
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