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EXTENDED ABSTRACT 

Severe wind is one of the major hazards facing the 
Australian continent. While cyclonic winds are the 
major source of wind hazard in the northern states, 
non-cyclonic winds driven by synoptic lows, 
thunderstorms and tornadoes affect the southern 
states. Severe winds are responsible for about 40% 
of damages to Australian residential buildings.  
 
Geoscience Australia’s Risk and Impact Analysis 
Group has developed a statistical model to assess 
severe wind hazard. The model has been tested 
using observational data from wind stations 
located in South Eastern Australia and has shown 
to match the results of the Australian/NZ standard 
for wind loading of structures (AS/NZS 1170.2) 
using a more efficient, fully computational method 
(Sanabria & Cechet, 2007). 
 
The main limitation of the statistical model is its 
dependency on the quality of the recorded data 
used. In particular, gust speed recordings are 
unreliable as instruments are calibrated for mean 
wind speeds; the procedure does not determine 
their transient response. The transient response is 
instrument dependent. This is a serious limitation 
because of the possible inconsistency and reduced 
accuracy between instrument types. These 
instruments have been developed over a period of 
more than 50 years and some studies have shown 
that differences occur with regard to their ability to 
measure short wind gusts (say gusts of 1-3 sec 
duration). These short duration wind gusts are the 
cause of wind-related damage and thus crucial in 
wind hazard studies.  
 
The second limitation of the statistical model 
involves the calculation of confidence intervals for 
the wind hazard return period. This interval 
increases in proportion to  the return-period (years) 
considered. For observing stations with record 
lengths of 20 to 30 years, it has been found that the 
derived return periods beyond about 500 years are 
too unreliable for use in practical applications.  
 
Geoscience Australia has also developed an 
alternative wind hazard estimation method; this 
alternative method is fully based on physical  

 
considerations. The main motivation for such an 
approach is to overcome the problems of the 
statistical model. The proposed approach assumes 
that surface gusts result from the deflection of air 
parcels flowing higher in the boundary layer, 
which are brought down by turbulent eddies. The 
method takes into account the mean wind and the 
turbulent structure of the atmosphere (gust to mean 
ratio) and produces statistical distributions from 
observational data for these components (mean and 
gust-to-mean ratio). Monte Carlo sampling 
provides a range of likely gust magnitudes which 
can be used to evaluate the quality of the original 
gust observations. 
 
This Monte Carlo approach has been used to create 
synthetic datasets that attempt to describe the full 
range of possible outcomes for peak wind gusts. In 
some cases a shorter dataset than the observed 
peak wind gusts was used for generation of the 
synthetic dataset. It is assumed that the shorter 
record retains the level of variability expected in 
the longer record. This is true for the majority of 
mid-latitude observing stations (say for return-
periods less than 500 years) where peak wind gusts 
are mainly the result of relatively frequent 
thunderstorms and intense synoptic weather 
systems (i.e. not caused by rare tropical cyclone or 
small-scale tornado activity).  
 
Results from the Monte Carlo simulation show the 
algorithm is robust and can produce long records 
equivalent to thousands of years of data. 
Examination of subsets of these long records 
shows a stable process (narrow band of peak wind 
gust return periods with small standard deviations). 
The confidence intervals calculated from these 
longer datasets are narrower than those from the 
statistical model. In examples shown here, we 
observe that the results from the statistical model 
lay within the narrower 95% confidence interval 
calculated from the Monte Carlo approach. This 
adds to our confidence in the peak wind gust 
datasets being utilised for wind hazard studies. The 
technique has been found to be useful for data 
quality checking of problematic datasets and 
assists in determining whether we use all or part of 
the dataset for hazard determination. 
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1. INTRODUCTION 

The aim of this paper is to present a Monte Carlo 
(MC) technique for the generation of synthetic 
peak wind gust datasets (with thousands of years 
of data) for comparison with observed datasets 
which typically have a record length of only 20 to 
50 years.  The observed peak wind datasets have 
been obtained using a variety of instruments, 
calibration procedures and recording systems 
(paper record and digital) which introduce 
inconsistencies (data quality issues are discussed 
in Section 2).  The synthetic datasets can be used 
for consistency checking to build confidence in the 
observed datasets.  

Severe wind is one of the major hazards facing the 
Australian continent.  While cyclonic winds are the 
major source of wind hazard in the northern states, 
non-cyclonic winds driven by synoptic lows, 
thunderstorms and tornadoes affect the southern 
states as well as the southern part of both the east 
and west coasts.  Severe winds are responsible for 
about 40% of the damage to Australian residential 
buildings (Chen, 2004).  
 
Geoscience Australia’s Risk and Impact Analysis 
Group (RIAG) has developed a statistical model to 
assess severe wind hazard (Sanabria & Cechet, 
2007).  The model produces return periods (RP) 
for gust wind speeds.  It has been tested using 
observational data from wind stations in southern 
NSW including the Sydney region. 
 
The main limitation of the model is its dependency 
on the quality of the observational peak wind gust 
data.  A second limitation of the statistical model 
involves the calculation of a confidence interval 
for the RP based on a short data record length (say 
20-50 years).  The interval increases in proportion 
to the RP (years) considered.  Results show that 
return periods beyond about 500 years are too 
unreliable for use in practical applications 
(Sanabria & Cechet, 2007). 
 
To overcome these problems RIAG has developed 
an alternative approach to calculate wind hazard. 
The proposed approach assumes that surface gusts 
result from the deflection of air parcels flowing 
higher in the boundary layer, which are brought 
down by turbulent eddies. The method takes into 
account the mean wind and the turbulent structure 
of the atmosphere (gust to mean ratio) and 
produces statistical distributions from 
observational data for each of these components.  
Section 4 describes the generation of the peak gust 
to mean ratio. 
 
 

 
 
A MC sampling technique is utilised to provide a 
range of likely gust wind speed magnitudes which 
can be used to determine RP wind gust estimates 
(see Section 5). This approach has been used to 
create synthetic datasets that attempt to describe 
the full range of possible outcomes for peak wind 
gusts. In some cases a shorter dataset than the 
observed peak wind gusts was used (cases 2 and 3 
below). It is assumed that a shorter record retains 
the level of variability expected in the longer 
record. This is true for the majority of mid-latitude 
observing stations (say for return-periods less than 
500 years) where peak wind gusts are mainly the 
result of relatively frequent thunderstorms and 
intense synoptic weather systems (i.e. not caused 
by rare tropical cyclone or small-scale tornado 
activity).  

Results from the Monte Carlo simulation are 
described in Section 6.  The synthetic datasets that 
have been created utilise the mean and gust to 
mean observations from the following datasets: 
Case 1: Sydney airport (half-hour sampling) 
period 1952-2005. Case 2: Sydney airport (half-
hour sampling) period 1973-2005. Case 3: Sydney 
airport (half-hour sampling) period 1994-2005. 
Case 4: Sydney region (half-hour sampling) period 
1973-2005. Case 5: (Mixed datasets): Sydney 
airport, 3-hourly mean and half-hour sampling, 
period 1973-2005. Case 6: (Mixed periods): 
Sydney airport (half-hour sampling). 

In Case 5, the mixed datasets case, the daily mean 
was calculated from the 3-hour dataset while the 
gust to mean ratio was calculated from the half-
hour, both in the period 1973-2005. In Case 6, the 
mixed period case, the daily mean was calculated 
from the whole dataset (1952-2005, see Fig. 2.1c) 
while the gust to mean ratio was calculated from 
the more reliable part of the dataset, i.e. 1994-
2005, as will be explained in Section 6. 

The results show that the Monte-Carlo technique is 
robust and can produce consistent, long-length 
data records. Examination of subsets of these long 
records shows a stable process (narrow band of 
peak wind gust RP with small standard 
deviations).  

The confidence intervals calculated from these 
longer datasets are narrower than those from the 
statistical model. In examples shown here, we 
observe that the results of the statistical model lay 
within the narrower 95% confidence interval 
calculated from the MC distributions, adding 
confidence in our modelling methodology.  
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2. DATA QUALITY 

Most of the wind speed data quality limitations 
arise as the instruments are calibrated for mean 
wind speeds; the calibration procedure does not 
determine the transient response of the 
anemometer as experienced during a short wind 
gust (say of 1-3 second duration). This is a serious 
limitation for wind gust hazard studies. 
 
Wind speed dataset quality can be examined by 
considering some of the Sydney Airport wind 
datasets available from the Australian Bureau of 
Meteorology (BoM). Figure 2.1a shows the scatter 
plot of the airport’s maximum daily gust exceeding 
15 m/s. The vertical (dotted) lines indicate the date 
on which the wind recording instrument was 
changed as shown in Table 2.1 (BoM, 2006). 
Figure 2.1a clearly shows three different speed 
regions; one from the start of the record until 
31/12/1973 when the first Synchrotac anemometer 
was installed; the second period stretches from the 
installation of the first Synchrotac until the new 
Synchrotac was installed (01/07/1994); the third 
region comprises the data after the 1994 upgrade. 
Each region seems to be drawn from different 
populations; the first region in particular presents 
higher speeds than the other two. Regions 1 and 2 
show outliers at 42.2 m/s. Studies conducted by 
BoM show that some stations can be affected by 
the growth of nearby trees or housing 
developments, movement of the anemometer, 
recalibration or changes in the reading frequency 
(Muirhead et al., 2005).  
 
    Table 2.1. Changes in recording instruments. 

 
To further examine the dataset, consider the 3-
hourly mean speed from the same observing 
station, as presented in Figure 2.1b. Notice that the 
outliers are not present in this dataset.  Region 1 
still provides the highest speeds in the dataset.  

  Fig.2.1a. Maximum daily gust speed.  
 

                  Fig.2.1b. 3-hour mean wind speed 
 

      Fig.2.1c. Half-hour maximum gust speed. 
 

 
Fig. 2.1d. Daily mean wind speed from   
                3-hourly observations.        

Date Change Instrument 
04/01/1939 Installation Dynes 
31/12/1973 Installation Synchrotac  

S/N 706 
01/07/1994 Installation Synchotac   

S/N 706 
28/04/1999 Replacement Synchrotac 

S/N 706 
10/09/1999 Replacement Synchrotac  

 S/N 897 
28/04/2000 Installation Mast installation 
05/09/2003 Installation Synchrotac cups 

S/N 732  
03/01/2006 Replacement Synchrotac cups 

S/N 732 
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Two more plots of the Sydney Airport wind station 
are presented in Figures 2.1c and 2.1d, the former 
was generated from the half hour sampling dataset. 
This dataset includes half-hour values for mean 
wind speed, i.e. wind speeds averaged over the 10 
min previous to observation time; and for gust 
speed. For automatic weather stations (AWS) the 
gust speed recorded is the highest 1 sec value over 
the last 10 min previous to observation time. These 
two speeds will be used in Section 3 to calculate a 
gust factor. Figure 2.1c shows the half hour gust 
speed scatter plot. Figure 2.1d shows the daily 
mean wind speed calculated from the 3-hourly 
dataset. This dataset will be used in case 5. Figure 
2.2 shows the relationship between wind gust and 
mean speeds as found in the half-hour dataset; the 
straight lines are the linear regression in periods 1, 
2 and 3. The regression lines show a different trend 
for each time period, with the data for the period 
1972-94 showing a long-term trend towards higher 
values than the other two. 
 

 

              Fig. 2.2. Gust to mean ratio (half-hourly). 

3. STATISTICAL MODEL OF PEAK WIND 
GUST SPEED 

To facilitate comparison of the statistical model 
results with the results produced by the MC model, 
Figure 3.1 (taken from Sanabria & Cechet, 2007) 
shows RP of gust speed using the Sydney Airport 
max. daily gust speed. This dataset covers a range 
of 66 years from 1939 to 2005. The circles are the 
actual return periods; the solid line shows the 
calculated RP using an Extreme Value 
Distribution, in this case the Generalised Pareto 
Distribution (GPD). Notice that the RP can be 
extended from 66 up to 10000 years by using the 
GPD. The dotted lines show the 95% confidence 
interval. The confidence interval at 500-year RP is 
indicated by the vertical line. The 500-year RP 
speed is 44.9 m/s, this value is between the 

confidence limits of 36.8 and 52.8, theoretically 
there is a 95% probability that a value in the range 
is correct. In practice the confidence interval may 
be too wide and hence its usefulness will be 
dependent on the level of risk/confidence required 
for the application.  
 
Accurate results for wind RP are important as they 
are used in the energy generation and the building 
construction industries. For example the 500-year 
RP wind gust is utilised in the Australian building 
codes for residential and commercial 
constructions. These considerations provided the 
impetus for the Monte Carlo simulation discussed 
in this paper. 
 

 
         Fig. 3.1. Return period of gust wind speed 
 

4. GUST TO MEAN RATIO 

In most of the datasets used to develop the 
algorithm it was necessary to split the mean wind 
speed axis into two intervals to better capture the 
gust to mean ratio (gust factor) variability across 
the range of mean wind speed observed. The mean 
speed intervals selected were [5, < 15] and [≥ 15] 
m/s. The corresponding values of gust speed found 
in these mean wind speed intervals were selected 
for calculation of the gust to mean ratio in each 
interval. A minimum mean wind speed of 5 m/s 
was chosen as gust factors associated with light 
winds were of no concern in this study. 
 
The Sydney Airport half-hour dataset was used to 
test the algorithm (Case 2 of Section 1). The 
dataset covers the range 1952-2005 (54 years of 
data) but only the length of record after the 
installation of the Synchrotac anemometer on 
31/12/1973 was used. This part of the data record 
is considered more reliable (Muirhead et al., 
2005). 
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Figure 4.1(a) and (b) shows the histograms of gust 
to mean ratio in the two intervals. Table 4.1 
summarises the characteristics of the gust to mean 
ratio in each interval. 

 
                                       (a) 

 
                                      (b) 
 
Fig. 4.1. Histograms of gust to mean ratio for 
intervals (a) [5, < 15m/s] and (b) [≥15m/s] 
 
Table 4.1. Characteristics of the gust to mean ratio 
 

5. DESCRIPTION OF THE MC 
SIMULATION 

The MC simulation used in this project relies on 
the fact that the mean wind records are more 

reliable than the gust records. Gust and mean 
speeds were extracted from the BoM half-hour 
dataset. The gust factor (gust to mean ratio) was 
calculated as the ratio of the vectors of gust and 
mean speed. 
 
Using the ratios of Figure 4.1 the empirical 
cumulative distribution function (CDF) of the gust 
to mean ratio was determined; this is the 
probabilistic function used for the sampling 
process in the Monte Carlo simulation. 
 
In the simulation a numerical convolution of 
maximum daily mean wind speed and a 
distribution function of gust to mean ratio was 
carried out. The maximum daily mean wind speed 
was found from the half-hour mean speeds using 
the R-package “zoo” (Zeileis & Grothendieck, 
2005). The numerical convolution was carried out 
by taking a sample from the max. daily mean wind 
speed dataset in an ordered fashion, then a sample 
from the gust to mean ratio CDF was selected at 
random (using a uniform random distribution) and 
the two samples were multiplied together to 
produce a sample for the max. daily gust speed 
dataset.  

6. RESULTS 

The maximum daily mean wind speed vector has 
4893 observations, and hence the max daily gust 
speed, calculated as explained in Section 5, has the 
same number of elements. To obtain a large 
dataset for statistical analysis the process was 
repeated 200 times to produce 200 max daily gust 
speed vectors which were combined into one large 
vector. This vector had  898,985 wind speed 
elements corresponding to 2512 years of consistent 
gust speed data. 
 
Some of the 200 synthetic max. daily gust speed 
datasets were compared against the actual 
observed gust wind speed dataset. Datasets are 
similar if the residuals are normally distributed 
with a mean of zero. The residuals are defined as, 
 

residuals =  synthetic – observed datasets 
 
The comparisons show that the residuals follow 
the normal distribution very closely except for the 
tail of the distribution (values with speeds greater 
than 10 m/s). The MC simulation can generate 
synthetic datasets close to the observed except in 
the tail of the distribution (see top part of Figure 
6.1). This is because an insufficient number of 
values were generated in the tail. Unfortunately in 
wind hazard analysis, values in the upper tail 
region of the distribution are very important and 
hence this limitation of the method must be 
removed.

[5, < 15m/s] [≥ 15m/s] 
Minimum 1.00 1.03 
Maximum 3.32 1.84 
Mean 1.36 1.35 
Std. deviation 0.17 0.11 
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Fig. 6.1.Residuals  with and without improved tail. 
 
To remove the tail bias of the distributions 
produced by the simulation it was necessary to 
split the axis of the observed maximum daily gust 
into 5 m/s ‘bins’ and calculate the percentage of 
values falling within each bin. The Monte Carlo 
distribution was then sampled within each bin to 
give the same percentage of values per bin as in 
the observed dataset. Figure 6.1 (bottom) compares 
the residuals against the normal distribution 
(straight line) after the tail bias was removed; 
notice the closer agreement. The completed 
simulations (200 synthetic datasets) were 
combined to form the resulting distribution of the 
MC simulation. Figure 6.2 shows the CDF of both 
the observed gust speed and the MC simulation. 
The density functions are also shown (right y-
axis). 

   Fig. 6.2. Observed and synthetic prob. functions. 

The GPD was used to calculate the RP for the 
synthetic gust speed dataset generated by the MC 
process. Figure 6.3 shows the results. Since the 
synthetic dataset is equivalent to 2512 years of 
data, the confidence interval has narrowed 
reflecting a greater reliability in the calculations. 
Comparison of Figures 3.1 and 6.3 shows close 
agreement between the mean of the synthetic and 
the observed wind speed return periods; this is 
expected since both have a similar distribution 
function as shown in Figure 6.2. 

The MC process explained above was run 999 
times. Each time one large vector of gust speeds 
made up of the 200 synthetic datasets was 
produced, with data equivalent to 2512 years. 
Return periods, without confidence intervals, for 
each of the 999 runs were calculated and plotted as 
shown in Figure 6.4. A summary of the results is 
presented in Table 6.1. 

   

Fig. 6.3. Return periods of a synthetic dataset. 

 
       Fig. 6.4. Return periods of 999 simulations 
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Table 6.1. Summary of Monte Carlo simulation 
      wind speeds (Sydney airport 1973-2005). 

The results show a narrow band of RP wind speeds 
with a small standard deviation, indicating a very 
stable process. The synthetic datasets contain a 
significantly greater number of extreme values 
which better define the extreme upper tail of the 
distribution and allow a higher threshold value to 
be selected (optimum) for the fitting of the GPD. 
This produces a smaller range for confidence 
limits whilst assuming that the full range of 
possible outcomes is encompassed by the dataset 
utilised (i.e. both the distributions of means and 
gust to mean ratio). The Sydney airport wind 
speeds at RP of 10, 100, 1000 and 10000 years 
produced by the statistical model (Fig. 3.1) 
compare well with the Monte Carlo results of 
Figure 6.4 as shown in Table 6.2. The same 
characteristic was observed for the ‘Sydney 
region’ as shown in Case 4, bottom of Table 6.2. 
 
The input datasets discussed in Section 1 were run 
to further test the simulation algorithm. In cases 1, 
2 and 3 different ranges of the half-hour dataset 
were used for the calculation of a daily mean and 
for gust to mean sampling. These simulations 
produce identical results for each range as shown 
in Table 6.2. Case 6 is a mixed period case, it also 
uses the half-hour dataset but the range is different 
for mean calculation (1952-2005) and for gust to 
mean sampling (1994-2005). Notice that the 
simulation in Case 5, the dataset mixed case (mean 
from the 3-hour while gust ratio from the half-
hour) and Case 6 produce similar results to the 
other cases.  The results also show that the MC 
simulation produces similar results to the 
Statistical Model. In practical terms the MC 
methodology provides upper and lower bounds for 
the statistical results. This characteristic can be 
used in the validation of the statistical model. 
 
Mixing input datasets for the MC simulation is an 
important feature as it allows the calculation of 
wind hazard in locations where wind stations only 
record mean values. In addition, for non-metered 
sites (i.e. no observations) gust ratio distributions 
for either nearby/neighbouring stations or similar 
landscapes could be utilised in conjunction with 
3D modelled mean wind calculations to determine 
the gust hazard using the MC simulation. 

7. CONCLUSIONS 

A MC simulation method to calculate wind hazard 
has been developed at Geoscience Australia. The 
model has been used to validate the results of a 
recently developed Statistical Model of wind 
hazard. A large number of MC simulations were 
run which produced RP winds within a narrow 
band providing upper and lower bounds for the 
statistical results. Taking advantage of the large 
number of equivalent years of data generated by 
the method, better defined RP winds (narrower 
confidence intervals) were generated. In these 
cases, the results of the statistical method were 
found within this interval adding confidence to the 
quality of the data used in the wind hazard studies. 

Table 6.2. RP of wind speed in m/s. Comparison 
                of MC (mean) and statistical results. 
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Return 
period 
(years) 

Mean Standard 
deviation 

Min Max 

10000 52.9 0.41 51.6 54.7 
1000 47.2 0.28 46.4 48.6 
500 45.4 0.26 44.8 46.7 
100 41.4 0.19 41.0 42.3 
10 35.3 0.07 35.2 35.6 

Station \ RP 10 100 1000 10000 
Sydney airport:     
Statistical model  35 41 46 51 
Case 1  (1952-2005, 
half-hour dataset) 

35 41 47 53 

Case 2  (1973-2005, 
half-hour dataset) 

35 41 47 53 

Case 3  (1994-2005, 
half-hour dataset) 

35 41 47 53 

Case 5  (1973-2005, 
3-hour dataset) 

35 41 47 53 

Case 6  (mixed, half-
hour dataset) 

35 41 47 52 

     

Sydney region:     
Statistical model  34 40 46 52 
Case 4  (1952-2005, 
half-hour dataset) 

35 41 47 53 
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