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ABSTRACT

Markov chains provide excellent statistical models
for studying many natural phenomena that evolve
with time. One particular class of continuous-time
Markov chain, called birth-death processes, can be
used for modelling population dynamics in fields
such as ecology and microbiology. The challenge
for the practitioner when fitting these models is to
take measurements of a population size over time
in order to estimate the model parameters, such as
per capita birth and death rates. In many biological
contexts, it is impractical to follow the fate of each
individual in a population continuously in time, so
the researcher is often limited to a fixed number of
measurements of population size over the duration
of the study. We show that for a simple birth-
death process, with positive Malthusian growth rate,
subject to common practical constraints (such as the
number of samples and timeframes), there is an
optimal schedule for measuring the population size
that minimises the expected confidence region of
the parameter estimates. This type of experimental
design results in a more efficient use of experimental
resources, which is often an important consideration.

Throughout our exposition of the optimal experimen-
tal design, we compare it to a simpler equidistant
design, where the population is sampled at regular
intervals. This is an experimental design worthy of
comparison, since it can represent a much simpler
design to implement in practice. We acknowledge
that practitioners are likely to prefer using the
simplest possible design and therefore focus upon
the conditions under which the optimal design is
expected to be particularly beneficial over the simpler
alternative. We also examine the exact manner in
which the optimal design acts to minimise the area
of the confidence region compared to the alternative
design.

In order to find optimal experimental designs for our
population model, we make use of a combination of
useful statistical machinery. Firstly, we use a Gaussian
diffusion approximation of the underlying discrete-
state Markov process which allows us to obtain

analytical expressions for Fisher’s Information matrix
(FIM), which is crucial to optimising the experimental
design. We also make use of the Cross-Entropy
method of stochastic optimisation for the purpose of
maximising the determinant of FIM to obtain the
optimal experimental designs. Our results show that
the optimal schedule devised by Becker and Kersting
(1983) for a simple model of population growth
without death can be extended, for large populations,
to the two-parameter model that incorporates both
birth and death.

Population models have a history of creating
problematic likelihood functions with high levels of
dependence between model parameters (see Givens
and Poole (2002)). For the simple birth-death process,
we find that the likelihood surface is also problematic
and poses serious problems for point estimation and
easily defining confidence regions. There is also very
high level of correlation between the estimates for
the birth and death rates indicated by the likelihood
surface having a long narrow ridge falling away
steeply at either side.

We use simulation to examine the practical benefits
of the optimal design over an equidistant design.
Unless the period of time over which the population
is observed is very long, the optimal design is only
likely to provide a significant efficiency gain when
the number of samples is relatively small. However,
we find that, in general, confidence regions cannot
be assumed to have elliptical contours. We therefore
base our confidence regions on the asymptotic χ2

distribution of the generalized likelihood ratio, which
restricts the region to the appropriate domain. Whilst
the confidence regions of this type may be poor
due to the atypical nature of the likelihood surface,
we utilise these regions for comparative purposes,
since they reflect the contours of the surface. We
find that our optimal design remains optimal even
though the likelihood contours are not elliptical. It
is suggested that Bayesian inference and the use of
an informative prior probability distribution could
overcome problems associated with the likelihood
surface and parameter uncertainty for the model.

2946

mailto:pagendam@maths.uq.edu.au


1 INTRODUCTION

Many natural phenomena, such as the dynamics
of a population of organisms, exhibit an element
of randomness which renders a purely deterministic
approach to modelling inappropriate. Markovian
models, such as birth-death processes, can be ideal
stochastic population models for addressing many
pertinent questions in population biology regarding
issues such as the probability of extinction and
sustainable harvesting rates. In order to make
use of such models, it is necessary to monitor a
population over time in order to obtain data that can
be used to estimate the parameters of the underlying
random process, such as per capita birth and death
rates. However, in many typical experiments, the
practitioner has constraints on the timeframe for the
research and the number of times the individuals in
the population can be counted. In such cases, there
is a clear need for research to be carried out in a
manner that maximises the amount of information
obtained and results in as precise an estimate of these
parameters as possible.

We examine a simple model of population growth,
known as the simple birth-death process. This model
has two parameters: the per capita birth rate (λ) and
death rate (µ) and we restrict our attention to the case
where the Malthusian growth rate (α = λ − µ) is
positive. We demonstrate how the use of an optimal
design or schedule for the proposed census dates can
reduce the area of our confidence regions for the
estimated parameters. Such a design is useful, since
it allows the practitioner to make the most of the
experimental resources available. The optimal design
for the simple birth-death process is identified using a
diffusion approximation to the underlying Markovian
population model in conjunction with the Cross-
Entropy (CE) method of stochastic optimisation.

For the purposes of illustration, we compare the
use of the optimal design, to the much simpler, but
sub-optimal ‘equidistant’ design, where observations
are scheduled at regular intervals. We outline the
scenarios where the use of an optimal design is most
advantageous and also where it results in almost
negligible benefits. Additionally, we outline the
precise manner in which the optimal design acts to
reduce the area of the confidence ellipse.

2 THE MODEL

2.1 Simple birth-death processes

Let Y (t) be a birth-death process taking values in
S := {0, 1, . . . } and let y(t) denote the observed
population size at time t. In addition, we define the
non-zero transition rates of the Markov process to be

q(y, y + 1) = λy and q(y, y − 1) = µy,

where µy and λy are the birth and death rates
respectively when the population is of size y. For
the simple birth-death process, we treat the population
birth and death rates as being linearly related to the
per capita birth and death rates (λ and µ), that is,
λy = λy and µy = µy. This model, commonly
referred to as the linear or simple birth-death process
can be used to model the growth of a population of
organisms in continuous time under the assumption
of density-independent or weakly density-dependent
population growth. From the perspective of parameter
estimation, the model has received attention from a
number of authors (see Keiding (1975) and Moran
(1953) for example). Since our model is the stochastic
counterpart to the deterministic model of exponential
growth, we might use such a model to examine
the bloom of a problematic algal population in an
aquatic ecosystem or the initial population growth of
an invasive species.

3 THE DESIGN PROBLEM

3.1 The Experiment and Constraints

Suppose we wish to estimate the parameters λ and
µ of a simple birth-death process by conducting a
census of a population as it grows over time. We
begin our experiment with the knowledge of the initial
population size y0 at time t0 = 0 and, as a result of
constraints on experimental resources such as budget,
manpower and available time, we are limited to n
opportunities to census the population over the time
interval (0, tmax]. Our design problem amounts to
finding the set of sampling times (t1 < · · · < tn)
that will result in the most precise estimate of the
parameter vector θ = (λ, µ). We note that the
same design problem was considered by Becker and
Kersting (1983) for the one parameter, simple birth
process, which assumes that there is no death in the
population (i.e. µ = 0).

3.2 The Gaussian Diffusion Approximation and
Maximum Likelihood Estimation

In order to effectively use models for addressing
problems associated with real phenomena, it is
necessary to obtain accurate and precise estimates
of the model’s parameters. In most statistical
problems, including stochastic models, the most
widely accepted method of parameter estimation
is maximum likelihood estimation. This involves
forming the likelihood as the joint probability density
of the data and then maximising this function over the
parameter space. In order to formulate the likelihood,
it is first necessary to obtain analytical expressions for
the probability of the population making transitions
from one observed state to another in the time
intervals defined by our experimental design. We
write the likelihood, conditional upon the initial state
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of the population being known, as

L(λ, µ; y1, . . . , yn|y0) =
n∏

i=1

p(yi, ti|yi−1, ti−1),

where p(yi, ti|yi−1, ti−1) is the probability of the
birth-death process making a transition from a
population size of yi−1 to yi in the time interval
formed by adjacent sample times ti−1, ti.

In the case of maximum likelihood estimation for
Markov processes, obtaining analytical expressions
for the transition probabilities is not always simple
and, furthermore, these expressions may not allow
the likelihood to be maximised easily. This is
certainly true of the simple birth-death process and we
therefore rely on a Gaussian diffusion approximation
of the model to form an approximate likelihood.
Gaussian diffusion approximations have been used
with great success in modelling population models
and we refer the reader in particular to Ross et al.
(2006) and Pollett (2001) for more information on
their application in population biology. The likelihood
from the resulting diffusion approximation is given by

L(λ, µ; y1, . . . , yn|y0) =

(2π)−n/2|Σ|−1/2 exp
(
− 1

2 (y −m)Σ−1(y −m)′
)
,

where y = (y1, . . . , yn) and m = (y0 exp((λ −
µ)t1), . . . , y0 exp((λ − µ)tn)) are the vectors of the
observed and expected population sizes respectively
for the sampling times t = (t1, . . . , tn) and Σ is the
n by n covariance matrix, with elements

Σi,j =

{
y0Var(Z(ti)) i = j,

y0Var(Z(min(ti, tj)))e((λ−µ)|ti−tj |) i 6= j,

where

Var(Z(t)) =

{
λ+µ
λ−µe(λ−µ)t(e(λ−µ)t − 1) λ 6= µ

2λt λ = µ.

We note that our diffusion approximation is only a
good approximation when the initial population size
y0 is reasonably large (say ≥ 100) and improves as
y0 →∞.

3.3 The D-Optimal Design via the Cross-Entropy
Method

The Gaussian diffusion approximation used for
maximum likelihood estimation is also particularly
useful in that it allows us to tackle experimental design
problems of the type described above for the simple
birth-death process. An optimal experimental design
is one that minimises the expected variability of the
parameter estimates in some way. Formally, a design
g? in the set of possible designs, G, is considered to
be D-optimal if it maximises the determinant (det(·))
of FIM, I, which is a function of g, that is,

g? = argmax
g∈G

det(I(g)),

where, for our model,

I =

[
∂2 log L

∂λ2
∂2 log L
∂λ∂µ

∂2 log L
∂λ∂µ

∂2 log L
∂µ2

]
,

whose elements have a particularly simple form
for the multivariate Gaussian distribution (see Porat,
1995), namely

Ii,j =
(

∂m
∂θi

)
Σ−1

(
∂m
∂θj

)′

+
1
2

tr
(

Σ−1

(
∂Σ
∂θi

)
Σ−1

(
∂Σ
∂θj

))
.

One notable and somewhat counter-intuitive aspect of
optimal designs in general is that, in order to design
the best experiment for estimating the parameters
of interest, the practitioner must already know the
parameter values. This arises, since the optimal
design is dependent upon the parameters. In practice
however, we make some educated guess, use this
to design the experiment and then perform the
experiment to obtain better estimates.

We utilise the CE method of stochastic optimisation
to obtain the optimal design for the process. Our
method works by generating random designs over the
time interval [0, tmax] by using n beta probability
density functions, each with parameter vector νi =
(αi, βi). The probability distributions are initiated
with parameter vector νi = (1, 1), so that the
densities are uniform on the time interval under
consideration. Our algorithm for the updating of these
beta probability distributions is outlined below and
is based upon recommendations in Rubinstein and
Kroese (2004).

CE algorithm for the D-optimal design

1. Define values for tmax, n, y0, λ and µ.

2. Set γ = 0.9.

3. Set the maximum variance threshold, used to
end the optimisation routine, to be ε = 10−5.

4. Set the timestep k = 0 and the initial parameter
vectors θi for each of n beta probability density
functions fi(ti;νi) as (1, 1).

5. Create m inspection schedules, T1,k . . . ,
Tm,k, such that the ith element of each
schedule is generated from the beta probability
density function fi(ti;αi,k, βi,k), where Tj =
(T1,j,k, . . . , Tn,j,k) and the inspection times
satisfy 0 < T1 < · · · < Tn ≤ tmax.

6. Calculate the performance (D-optimality)
p1,k, . . . , pm,k of each of the m inspection
schedules by calculating the det(FIM).

7. Calculate the γ-quantile of p1,k, . . . , pm,k and
record this as qk.
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8. Calculate the mean and variance for each of the
n beta densities (indexed by i) using the best
performing observation points .

9. Update the time step: k = k + 1.

10. Update the parameter vectors for each of the
beta probability densities, such that the density
giving rise to the ith inspection point has the
mean and variance calculated in step 8 for the
ith inspection point.

11. If max(Var(T1,k), . . . , Var(Tn,k)) ≤ ε, then
return the vector (Mean(T1,k, . . . , Tn,k)) as
the optimal design and terminate the routine;
otherwise go to step 5.

3.4 Checking Optimal Designs via Simulation

For the purpose of illustrating our methods, we
simulated the growth of a population of organisms
according to birth-death processes with per capita
birth rate, λ = 2 and death rate µ = 1 and initial
populations of 100 individuals. We simulated the
growth of populations according to a number of
scenarios (various time intervals with various numbers
of samples) to assess the benefits of the optimal
design, using 10 simulated trajectories for each
scenario. For each simulation, the areas (Aopt and
Aeq) of 95% confidence regions were calculated
for data collected using the optimal design and the
equidistant design respectively. For each trajectory
the relative areas of the confidence regions were
calculated as Arelative = Aopt/Aeq, which can be
thought of as being analogous to the efficiency of the
equidistant design relative to the optimal design.

We found that confidence ellipses frequently extended
into illegal parts of the parameter space and the
classical assumption that θ̂ was normally distributed
was therefore flawed. This was largely because
the maximum likelihood estimate frequently occurred
very close to the boundary of the parameter space
and the likelihood surface had an unusual shape. It
was apparent that the confidence regions were not
elliptical and we instead generated confidence regions
by basing them on the asymptotic χ2 distribution
of the generalised likelihood ratio test, giving an
approximate (1-α)% confidence region for θ as {θ ∈
Θ : 2[l(θ̂)] − l(θ) ≤ χ2

2;1−α}. The maximum
likelihood estimate was identified using a simple
CE algorithm similar to that presented in Ross et
al. (2006) and, although convergence of the routine
was achieved, estimates were poor since the greatest
likelihood appeared to consistently occur very close
to the edge of the parameter space. As noted by Poole
and Givens (2002) in their discussion of problematic
likelihood surfaces of population models, confidence
regions based on the likelihood ratio are likely to be
unreliable. However, they also noted that since such

confidence regions are based on the contours of the
likelihood surface, they still have a convenient use
in comparing the shapes and contours of different
surfaces. We find such regions to be convenient herein
for examining the change in the shape of the contours
of the likelihood surface under different experimental
designs.

Since the D-optimal design is formed under the
assumption of elliptical confidence regions, we
examined the differences in areas of simulated (non-
elliptical) confidence regions, approximating their
area via Importance Sampling (IS), using a bivariate
Gaussian sampling density with parameters obtained
using the CE method. The CE algorithm for the IS was
based on an example given on page 40 of Rubinstein
and Kroese (2004). For each of the 10 simulations,
we wished to generate random points over the square
region R in the parameter space, where R :=
{[0, 15]× [0, 15]}. Since the confidence regions were
very narrow, the probability of random points being
generated in these regions was very low. IS allowed us
to simulate these rare events in a much more efficient
manner. For each simulation, 50 000 points were
generated according to the IS density, rendering a
high probability of the points being contained in the
confidence region. We were then able to estimate the
probability, p, that a single point was contained in the
confidence region, had it been generated uniformly at
random over R . The area of the 95% confidence
region was estimated by multiplying p by 225 (the
area of R). Figure 1 demonstrates how the random
points were used to obtain a confidence region for
an example simulation. The shape of the confidence
region and the placement of the maximum likelihood
estimate highlight the problematic nature of likelihood
surfaces obtained from this model.
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Maximum Likelihood Estimate

Figure 1. Plot of randomly generated points in the
parameter space falling within the 95% confidence
region for a simulated birth-death process with a 2
sample optimal design over the time interval [0, 1].
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4 RESULTS

4.1 The Optimal Design

The Gaussian diffusion approximation in conjunction
with the CE method allowed us to quickly establish
D-optimal designs for the estimation of the parameter
vector θ = (λ, µ). We found that for the simple
birth-death process (when y0 is sufficiently large), the
optimal design is, for all practical purposes, identical
to that obtained by Becker and Kersting (1983) for
the simple birth process, where the design is now
dependent upon the Malthusian growth rate α = λ−µ,
rather than the just birth rate λ. The D-optimal design
is therefore defined by the relation

φ1(α(ti − ti−1)) = φ2(α(ti+1 − ti)),
i = 1, . . . , n− 1,

where,

φ1(x) = x(ex − 1)−2(2ex − x− 2), (1)

φ2(x) = xex(ex − 1)−2(2ex − 2− xex), (2)

and where tn = tmax. Figure 2 illustrates the optimal
sampling times for a population with initial population
size of 100 individuals, observed over the interval
[0, 5]. Figure 3 was generated by obtaining
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Figure 2. An example of a 3 sample optimal design,
showing the expected trajectory of a population and
the times at which observations should be made.

optimal designs for various numbers of observations
and time intervals and comparing the determinant
of FIM under this design to the determinant under
equidistant sampling. We define the relative efficiency
of designs using the D-efficiency criterion Deff =
( |Ieq|
|Iopt| )

1/2 (see Atkinson and Donev, 1992), which
(for the two parameter model) gives the relative areas
of the theoretical confidence ellipses expected under
the two experimental designs. Averages of the
relative confidence region areas and the standard
errors obtained by simulation are shown in Table 1.
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Figure 3. Relative efficiency of the equidistant design
compared with the D-optimal design for different
numbers of samples (labels).

Table 1. Relative areas of 95% confidence regions
obtained from simulated data.

n tmax Ārelative std. err.

2 2 0.9993 0.0058
5 0.9039 0.0131

10 0.5372 0.0179

5 2 0.9924 0.0034
5 0.9879 0.0121

10 0.9072 0.0443

We note that Ārelative can be considered analogous to
the D-efficiency of the equidistant design relative to
the optimal design.

5 DISCUSSION

5.1 D-Optimal Versus Equidistant Design

It was noted in the previous section that once the
D-optimal design was applied to the analysis of
simulated data, we found that the likelihood surface
did not have elliptical contours and, furthermore,
presented serious problems for point estimation.
This cast some doubt upon whether maximising the
determinant of FIM would necessarily provide an
optimal design in practice, since FIM relies upon the
asymptotic normality of the estimator and associated
elliptical contours of the likelihood surface. However,
upon further investigation of the optimal design, we
found that we could also consider the D-optimal
design as maximising objective functions equal to
(i) the smallest eigenvalue of FIM, and (ii) the trace
of FIM (the so called A-optimal design), because the
maximum eigenvalue of FIM is relatively insensitive
to the sampling times. This indicated that the major
axis of the confidence region was unlikely to be
reduced significantly by changing sampling times,
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as long as tn = tmax. However, it also highlighted
that the optimal design operated by narrowing the
confidence region (i.e. minimising the minor axis
of the region). We note that since the profile of
the log-likelihood surface in the direction of the
minor axis generally appears to be approximated
well by tangent parabolas (a characteristic typical
of a normally distributed parameter estimate) and
since it is along this axis that the optimal design
was found to minimise the confidence region, we
conclude that our optimal design based on FIM will
remain optimal (or very close to optimal) even though
the confidence regions are not necessarily elliptical.
The relative areas of the simulated non-elliptical
confidence regions displayed in Table 1 support this
finding and appear to be strongly consistent with the
theoretical relative efficiencies depicted in Figure 3.

In general, the likelihood surface for the parameters
λ and µ of the simple birth-death process was a
problematic one from the point of view of point
estimation and identifying confidence regions. The
surface had two unusual features: (i) a very long ridge
running along a line with an approximate gradient
of 1 and intercept on the λ axis approximately equal
to α (= λ − µ); and (ii) non-elliptical contours that
appeared to be maximal very near (possibly on) the
boundary of the parameter space. Observation of long
thin confidence regions from population models was
also made by Ross et al. (2006) and Poole and Givens
(2002), and is related to the fact that the individual
parameter estimates are highly correlated. However,
in the case of Ross et al. (2006), the likelihood
surface was well behaved and allowed the evaluation
of confidence ellipses.

Observations of high levels of dependency between
parameters in population models has been noted
by previous authors and led to discussion of the
problematic likelihood functions that can arise in
these situations (see Givens and Poole (2002)).
Indeed, the shape of likelihood based confidence
regions for the simple birth-death process makes it
very difficult to visually compare the areas unless
the observation period is quite short (as used for
Figure 1). The use of the CE method for rare-
event simulation did allow us to compare the areas
however and indicated that the optimal design was
more efficient than the equidistant design, narrowing
the ridge of the likelihood surface so that a confidence
region more closely resembled a straight line.

It seemed that the optimal design allowed us to obtain
a more precise estimate of the Malthusian growth
rate (α), but did practically nothing to improve our
certainty about the reproductive ratio λ/µ. Point
estimates based on the likelihood surface are likely
to be poor and grossly underestimate the death rate
since the net change in the population is unlikely to

be negative between successive observations and the
likelihood function therefore favours the model where
the death rate is negligible. This appears to be the case
even when the period between successive observations
is very short and a decline in the population size is
observed over some of the time intervals.

Figure 3 demonstrates the conditions under which
the optimal design greatly outperforms the equidistant
design. It is apparent that the differences are
greatest when the sample size is small. When
sample sizes are relatively large, the benefits are only
likely to be realised for much longer observation
periods (i.e. large values of tmax). Even though
the relative efficiencies in Figure 3 are based on
FIM, our simulations suggest we can rely upon
these for the non-elliptical contours observed. In
practice, the optimal design is therefore likely to be
most advantageous in situations where the number of
samples is a more serious constraint than the length of
time available for the sampling. This is likely to be
the case in the ecological context, where sampling the
population is often labour intensive and contributes
greatly to the overall experimental cost, or, data is
required in a relatively short time-frame in order to
aid urgent management decisions.

We have seen that the likelihood surface presents
some significant problems for point estimation and
quantifying parameter uncertainty, even when the
optimal sampling design is used. The practitioner
might overcome these deficiencies by employing a
Bayesian approach, which treats model parameters as
random variables rather than as fixed but unknown
constants in the parameter space. This approach to
statistical inference can be particularly useful when
the researcher has some prior ‘expert knowledge’ of
the distribution of parameters across the parameter
space. In simple terms, the practitioner uses available
information to propose a joint probability density for
the model parameters (p(θ)) prior to performing the
experiment (commonly called the prior probability
density). The data are then collected and the
likelihood L(y|θ) is calculated. Bayes rule is then
used to calculate the posterior probability density of
the parameters in light of the data as

p(θ|y) =
L(y|θ)p(θ)∫
L(y|θ)p(θ)dθ

.

For the simple birth-death process, the use of an
informative prior for the per capita birth and death
rates seems logical since we know that the likelihood
surface has a very long ridge spanning a wide
range of parameter values, many of which are likely
to be absurd in a biological context. Under the
Bayesian approach, posterior credible regions (similar
to confidence regions) can be determined via Markov
Chain Monte Carlo (MCMC) methods. It should be
noted, however, that MCMC methods may suffer from
poor mixing because of the high degree of correlation
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between parameters. For this reason, it may be more
desirable to work in the parameter space formed by
(λ− µ, λ

µ ).

Figure 4 illustrates how the Bayesian approach can aid
our analysis and reduce parameter uncertainty. For
our example we created a prior using independent
Gamma densities for each of the parameters, such that
λ ∼ Gam(9, 1/3) and µ ∼ Gam(4, 1/2). We see that
even though the prior consisted of two independent
gamma densities, the posterior density exhibits the
correlation between the parameters that was noted as
a characteristic of the likelihood surface and which
is apparent in Figure 1. We note that the posterior
mode in Figure 4 is heavily influenced by the prior
probability density and highlights that, when using
Bayesian inference, the prior should be based on the
best available information.

Bayesian inference may be an avenue for future
research in optimal design for population models.
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Figure 4. Contours of the posterior density of
the parameters of a simulated birth-death process
observed using a 2 sample optimal design over the
time interval [0, 1].

6 CONCLUSION

We have presented an optimal design for the linear
birth-death process, which is both D-optimal and
approximately A-optimal for large initial population
sizes. The optimal sampling times appear to be
identical to those obtained by Becker and Kersting
(1983) for the linear birth process and can therefore
be formulated according to equations (1) and (2). The
CE algorithm, used to find the optimal design, can
easily be utilised for other population models where
a Gaussian diffusion approximation is appropriate.

For the linear birth-death process, we have shown
that the likelihood surface has some unusual features
which hinder point estimation and the definition of
confidence regions. We have suggested the use of
Bayesian inference for overcoming the issues associ-
ated with the likelihood surface. Our exploration of

the optimal design and its use in reducing parameter
uncertainty has shown that our optimal design should
remain optimal even when the confidence region is
based on contours of the likelihood surface, as is
the case in Bayesian inference. Using numerical
methods we have demonstrated that the optimal
design for our model remains optimal even though
the contours of the likelihood function are not
elliptical. We have shown that for observations of
a population where research constraints allow only a
limited number of observations of a population over
a fixed interval of time, the optimal design results in
greater experimental efficiency than a scheme where
sampling is undertaken at regular intervals, and this
is most pronounced when the number of samples is
small, but time is in relative abundance.
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