
The Spheroidal Analysis Library and Toolkit: Tools for
Climate Model Output Analysis

1,2,3J. W. Larson, 2E. T. Ong, and 2C. Tokarz

1ANU Supercomputer Facility, The Australian National University
Canberra ACT 0200, Australia

E-Mail: Jay.Larson@anu.edu.au
2Mathematics and Computer Science Division, Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL 60439, USA
3 Computation Institute, University of Chicago

Chicago, IL, USA

Keywords: Spatial Statistics; Climate Data Analysis; Software Architecture; Parallel Computing

EXTENDED ABSTRACT

We believe two great opportunities exist in the
analysis of climate model data: 1) introduction of
parallel computing techniques; and 2) expansion of
the types of techniques used to study these data.

Climate modelling has long been recognised as a
grand-challenge computational science application.
The analysis of climate model output, however, has
remained a workstation or personal computer (PC)
application using a single-processor programming
approach. This situation will not last as global climate
models approach mesoscale resolution, and begin to
produce petabyte-scale datasets for long integrations.

Climate model and reanalysis data represent large
multivariate, logically Cartesian datasets. The ability
to analyse and manipulate these data with aplomb
is crucial to studies of climate variability, model
intercomparison, and model validation. Most studies
using these data rely on low-order statistics (i.e.
means and variances), forgoing opportunities for
deeper and richer analyses—for example, probability
density function estimation and high-order statistics
from information theory.

A typical analysis application takes input data from
files, passes these data in the form of arrays and
associated metadata to analysis compute kernels, and
after analysis these data will be passed to either
visualisation utilities or to file-handling utilities that
will create output files (Figure 1). Our work is focused
on the center box (“Analysis of Gridded Data”).

There is a need for spatially-aware, robust, modular,
flexible, and extensible tools that can enable a
wide variety of climate data analyses, but are also
portable to parallel architectures. Our object is to
create a programming model and overall design for
analysis kernels that will 1) result in a straightforward
programming model that enables rapid development
of analysis applications, and 2) will allow the seamless

introduction of parallel computing techniques. In this
paper we concentrate on the object foundation and
will discuss only in brief a parallelisation strategy.

The Spheroidal Data Analysis Library and Toolkit
(SpheroiDAL-Tk) is a set of tools for analysing
Cartesian gridded data in curvilinear coordinates.
SpheroiDAL-Tk offers a data object model for
describing and storing gridded field data, and
a set of associated tools that manipulate these
objects to perform analyses across lower-dimensional
subsets (e.g., axes) of the data. We will describe
the SpheroiDAL-Tk data model classes and their
basic query and manipulation methods, including
data transposes, sub-sampling, and integrals. We
will illustrate with examples the SpheroiDAL -Tk
analysis infrastructure that support spatially aware
analysis methods including spatial integrals and
eddy statistics, scale separation, probability density
estimation, parameter estimation, and information-
theoretic metrics. We will describe the SpheroiDAL-
Tk Fortran-based programming model, and discuss
how it can be extended to other languages. We
conclude with a parallel processing roadmap for
SpheroiDAL-Tk that encompasses both distributed-
memory (i.e., message-passing) and shared-memory
(e.g., multicores) parallelism.

Figure 1. The data analysis and visualisation process.

2974

1 INTRODUCTION

Dramatic performance gains by global earth system
models will soon create a crisis situation in the
analysis of their output data, and each of the processes
in Figure 1 will require parallelism. Soon these
models will scale to thousands of processors, will
run with high resolution (∼ 10 km) grids, and
long integrations will produce petabyte-scale output.
Current popular climate data analysis packages
remain single-processor applications, and will soon
be inadequate to address the large amounts of data
they are expected to handle. This problem is twofold:
1) inadequate single address-space memory to handle
large data volumes; and 2) insufficient processing
power to analyse these data in a timely fashion.
The emergence of multicore processors now makes
parallel processing relevant to workstations and PCs.

The advent of ensemble climate modelling, and
the interest in daily and sub-daily sampled data
also creates new challenges. Probability density
function (PDF) estimation is increasingly popular, as
is the interest in extreme events. PDF estimation
requires at a minimum some binning mechanism, but
more rigorous approaches entail the use of kernel
smoothing techniques. Comparison of two PDFs is
an even more difficult task. Extreme events analyses
can require sorting and ordering of data. Neither
of these functions is offered in popular climate data
analysis packages such as Climate Data Analysis
Tools (CDAT; http://www-pcmdi.llnl.gov/software-
portal/cdat), NCAR Command Language (NCL;
http://www.ncl.ucar.edu/), and netCDF Operators
(NCO; http://nco.sourceforge.net/).

Both CDAT and NCL offer scientist-friendly pro-
gramming approaches suitable for single-processor
architectures. These packages are not immediately
portable to popular parallel programming approaches
such as MPI or OpenMP; CDAT’s implementation
language of Python can be interfaced directly with
MPI but not OpenMP, and NCL is not open-source,
and thus we are unable to modify it. This situation
has motivated our strategy of a lightweight data
object model similar to—but more general than—
CDAT implemented in Fortran, a language directly
compatible with MPI and OpenMP. We call this new
package the Spheroidal Data Analysis Library and
Toolkit (SpheroiDAL-Tk). This is data model has
been pursued to create a relatively straightforward
programming model with ease of use similar to
CDAT or NCL, and one that ultimately will be more
amenable to the inclusion of both shared-memory and
distributed-memory parallelism.

In Section 2 we will describe the SpheroiDAL-Tk
data model and state the package’s functionality.
In Section 3 we will describe the SpheroiDAL-Tk

programming model and present simple examples. In
Section 4 we present a nontrivial example of scale
separation using mean polishing, which constitute the
first results published for this technique. In Section
5 we present a strategy for parallelising SpheroiDAL-
Tk. In Section 6 we summarise and chart our future
course.

2 DESIGN AND FEATURES

Here we present the SpheroiDAL-Tk data model, and
describe the system’s core anlysis functionality.

2.1 DATA MODEL

The object model for SpheroiDAL-Tk’s mesh
representation is shown in Figure 2. Two classes
are of immediate interest to users, while other lower-
level “service classes” are hidden from the user. The
classes visible to the user are theCartesianMesh and
the CartesianField, and the SpheroiDAL-Tk spatial
statistics API is organised around these objects.
Note that the current design is being prototyped in
Fortran95, and fully object-oriented programming is
not supported by this language. When we use the
terms “class” and “method”, we are following the
convention set by Decyk et al. [1997], in which a class
is a Fortran datatype with well defined interfaces that
serve as its methods.

Field data residing on a logically Cartesian mesh is
encapsulated by theCartesianField, which contains
the field data stored as an appropriately-dimensioned
array, and has its spatial mesh described by a
CartesianGrid. The CartesianGrid encapsulates the
description of any logically Cartesian grid. That
is, the mesh points are the Cartesian product of a
set of axes. The CartesianGrid stores the following
attributes for a structured grid: its name; a brief
description of the grid; its dimensionality; definition
of each axis (using theAxis class); definition of each
of the spatial weights (using theWeight class). The
Axis class holds the name of the axis, the number
of points along the axis, and their corresponding
coordinate values. TheWeight class encapsulates
the data that defines a spatial weight, including its
name, a brief description, the dimension(s) upon
which it operates, and the spatial dimensions over
which it varies. Spatial weights can vary in dimension,
depending on what symmetries are present (e.g.,
azimuthal symmetry in the longitudeλ in spherical
coordinates). The flexibility of theWeight class allows
us to exploit where present underlying symmetries
in curvilinear grids to store as compactly as possible
their spatial weights. This flexibility is enabled by
basing our design of theWeight on theGenericArray
class, which implements generic arrays. SpheroiDAL-
Tk currently supports real-valued general arrays, and

2975

allows dimensionality ranging from zero (scalar) to
four. Hence, the current maximum dimensionality of
a SpheroiDAL-Tk grid is four.

Figure 2. Class dependency diagram for the
SpheroiDAL data model.

In addition to the data structures in which class
data is held, these objects also have service methods
that include creation and destruction, and set and
get (query) methods. Higher-level manipulation and
analysis functionality is described in the next section.

2.2 FUNCTIONALITY

Ideally, one data toolset would incorporate the types
of meteorological and climate analysis capabilities
present in the popular tools cited in Section 1.
We have long admired the comprehensive toolset
offered by the now-defunct CCM Modular Processor
package, and would like in the long-term to see a
toolset that again matches its functionality. For now,
we are concentrating on the generic spatiotemporal
statistics kernels required by any good meteorological
analysis package, and will add the application-specific
funcionality at a later time, implemented on top
of the SpheroiDAL-Tk data model and compute
kernels. This general approach allows application
of the SpheroiDAL-Tk code base to other problems;
for example the analysis of gridded data in toroidal
coordinates found in modelling of fusion plasmas in
tokamaks.

SpheroiDAL-Tk supports a wide variety of basic
analyses centered on theCartesianField class. Basic
arithmetic binary operations including addition,
subtraction, multiplication, and division are supported
both as operations involving twoCartesianField

objects of the same dimensionality (e.g., calculating
differences between fields), or of differing dimension-
ality (e.g., computing an anomaly field). Arithmetic
operations involving scalars (e.g., rescaling by a
constant value) are also supported. Computation
of spatial and time integrals are supported. A
module for computation of moments of arbitrary
order is also included. This core set of functions
allows computation of spatial and temporal means
and anomalies as well as moments, correlations, and
covariances.

A comprehensive set of multi-key, MergeSort-based
sorting tools allows for the determination of medians,
quantiles, and rank correlations.

Built on top of these basic averaging routines is a set
of scale-separation functions based on the techiniques
of mean- and median-polishing Cressie [1993].

A number of tools for distribution function analysis
are included. Modules encapsulating the normal
and Weibull distributions are included, each offering
functions to compute both their respective PDFs
and cumulative distribution functions (CDF). An
object-based Newton’s method solver is included
for maximum-likliehood estimation (MLE) of dis-
tribution function parameters. PDF estimation
through histogram construction is supported by a
UnivariateTable class, and associated methods that
allow for straight-forward binning of data sampled in
a particular direction or subsbace of aCartesianField.
One- and two-sample Kolmogorov-Smirnov test
functions are also offerd to compare and contrast
distribution functions.

Information-theoretic measures are available, notably
the Shannon Entropy and block-entropy complexity
measures that are used in symbolic dynamics and
computational mechanics.

3 PROGRAMMING MODEL

The programming model for SpheroiDAL-Tk follows
the Fortran approach ofmodule use to gain access
to class definitions and explicit interfaces to their
methods and other library routines,declaration of
variables of specific datatypes corresponding to
classes in use in a given application, andinvocation of
the necessary class methods or routines to accomplish
the desired analysis task. The SpheroiDAL-Tk
prototype code is implemented using the Fortran95
standard, and this is currently the only programming
language supported. We envison supporting other
programming languages such as C++ and Python
through use of the Babel language interoperability
toolkit, which we have used with success to create
a multilingual programming model for the Model
Coupling Toolkit (Ong et al. [2007]).

2976

To illustrate this process and the power of
SpheroiDAL-Tk, we present two simple, commonly-
encounterd examples in the analysis of global climate
data: 1) computation of zonal averages̄F for a
two-dimensional horizontal fieldF (φ, λ), and 2)
computation of a timeseries of global averages from a
two-dimensional plus time datasetT (φ, λ, t).

3.1 ZONAL AVERAGES

Consider a fieldF = F (φ, λ), which varies
over the latitudeφ ∈ [−90, 90] and longitude
λ ∈ [−180, 180]—for example, the geographic
distribution of the time-averaged sea-level pressure
field PSL from a coupled climate model (Figure
3). The zonal average is the spatial average in the
longitudinal direction along a given latitude band, that
is F̄ (φ) = 1

2π

∫ 180

−180
F (φ, λ)dλ. Below we describe

the computation of̄F (φ) using SpheroiDAL-Tk.

Figure 3. Time-averaged January mean seal-level
pressure field from a T85 CCSM 3.0 control
simulation.

The first step is gaining access to SpheroiDAL-Tk’s
class definitions and API:

use m_SpheroiDAL

Below are declarations of variables instantiating
SpheroiDAL-Tk classes that hold the spatial mesh
description, and theCartesianField variables for the
input PSL values and their zonal averages.

type(CartesianGrid) :: LatLonGrid
type(CartesianField) :: psl_LatLon
type(CartesianField) :: psl_ZonAvg

The mesh has two coordinatesφ and
λ, discretised on axes stored in one-
dimensional arrays phiVals(1:n phi) and
lambdaVals(1:n lambda), respectively. For
this particular lat-lon grid,dλ is constant for all
values of(φ, λ) and is thus a scalar.

call CartesianGridCreate(LatLonGrid, &
’phi:lambda’)

call SetAxis(LatLonGrid, ’phi’, n_phi, &
phiVals)

call SetAxis(LatLonGrid, ’lambda’, &
n_lambda, lambdaVals)

call SetWeight(LatLonGrid, ’d_lambda’, &
’lambda’, d_lambda)

The CartesianGrid variableLatLonGrid is used to
create theCartesianField variablepsl LatLon that
will hold our field data. The field data will be set from
a two-dimensional array of valuespslVals that have
been previously initialised.

call CartesianFieldCreate(pslField, &
LatLonGrid)

call SetFieldData(pslField, pslVals)

The zonal average calculation is accomplished
by invoking a spatial integration routine, with
the result created in the (previously uninitialised)
CartesianField output argumentpsl ZonAvg. The
length elementdλ is extracted from the input
CartesianField argument, keyed by the input string
token’d lambda’.

call SpatialIntegral(psl_LatLon, &
psl_ZonAvg, ’d_lambda’)

TwoPi = 2. * acos(-1.)
call Divide(SurfTempGlobAvg, TwoPi)

The resulting field psl ZonAvg is a one-
dimensional field containing zonal averages, and
its associatedCartesianGrid is one-dimensional with
one coordinate—the latitudeφ, and the result is show
in Figure 4.

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
Latitude (degrees)

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

Z
on

al
ly

 A
ve

ra
ge

d
P

S
L

(h
P

a)

CCSM 3.0 Control
January Averaged MSLP

Figure 4. Zonally-averaged mean-sea-level pressure
for time-averaged Januaries from a CCSM 3.0 Control
simulation.

2977

3.2 GLOBAL AVERAGES

The field T = T (φ, λ, t) varies over the latitude
φ ∈ [−90, 90], longitude λ ∈ [−180, 180], and
t ∈ [tmin, tmax]—for exmaple, a timeseries of the
geographic distribution of the surface temperature
field from an atmospheric GCM. The global
average is the spatial average in the longitudi-
nal and latitudinal directions, that is̄T (t) =
1

4π

∫
180

−180

∫
90

−90
T (φ, λ, t) cosφ dφdλ.

The application to compute a timeseries of global
averages has the same structure as the zonal average
application described above. The differences are
in the details of the creation of three-dimensional
CartesianGrid andCartesianField objects (as opposed
to two-dimensional), and the creation of a cell area
Weight object that varies with latitude (as opposed
to the scalardλ in the example in the Section
3.1. In addition to the definition of the coordinate
axis arrays for(φ, λ), the time axis is defined by
tVals(1:n t), and the latitude-dependent cell
areas are defined ind Area(1:n phi). The salient
portions of code are shown below.

use m_SpheroiDAL
type(CartesianGrid) :: LatLonTime
type(CartesianField) :: SurfTemp
type(CartesianField) :: SurfTempGlobAvg

call CartesianGridCreate(LatLonGrid, &
’phi:lambda:t’)

call SetAxis(LatLonGrid, ’phi’, n_phi, &
phiVals)

call SetAxis(LatLonGrid, ’lambda’, &
n_lambda, lambdaVals)

call SetAxis(LatLonTime, ’t’, n_t, tVals)
call SetWeight(LatLonTime, ’d_Area’, &

’lambda:t’, d_Area)
call SpatialIntegral(SurfTemp, &

SurfTempGlobAvg, &
’d_Area’)

FourPi = 4. * acos(-1.)
call Divide(SurfTempGlobAvg, FourPi)

4 CASE STUDY: SCALE SEPARATION

Below we show the results of a case study analysis
performed using the SpheroiDAL-Tk programming
model. The problem is large-versus-small scale
separation in the atmosphere. The traditional
approach used by atmospheric dynamicists iseddy
statistics (Peixoto and Oort [1992]), by which an
atmospheric field is expressed in terms of a zonal
average and a transienteddy, which is the zonal
anomaly. We are interested in a multidimensional
approach to eddy statistics based onmean polishing
(Cressie [1993]), through which a multidimensional
field is decomposed additively into large-scale effects

along each coordinate axis and a local small-scale
residual effect.field.

Let F (φ, λ) be a two-dimensional field, whereφ is the
latitude andλ is the longitude. We wish to separate the
large and small-scale variation inF (φ, λ). One way to
accomplish this is via an additive separation of scales,
such as

F (φ, λ) = FLS(φ, λ) + FSS(φ, λ), (1)

whereFLS(φ, λ) and FSS(φ, λ) are the large-scale
and small-scale components ofF , respectively. A
more general and ambitious approach to the problem
of scale separation in a two-dimensional fieldF (φ, λ)
is to expressF as

F (φ, λ) = FG+FZ(φ)+FL(λ)+FR(φ, λ), (2)

whereFG is a constant called theglobal effect,FZ(φ)
is the zonal effect, FL(λ) is the longitudinal effect,
andFR(φ, λ) is theresidual effect.

In terms of equation 1, the large-scale field is

FLS(φ, λ) = FG + FZ(φ) + FL(λ), (3)

and the small-scale field is the residual

FSS(φ, λ) = FR(φ, λ). (4)

Note that the above decomposition is desirable not
only because it isolates the small-scale and large-
scale effects, but also because the large-scale is also
an additive separation of the dependencies on the
variablesφ andλ. Although an additive separation of
variables is unusual, it is not unknown. For example,
an additive separation of variables is used to solve the
Hamilton-Jacobi equation (Goldstein [1980]).

SpheroiDAL-Tk offers a statistical polishing facility
capable of performing the aforementioned scale
decompositions, and this facility is built on top of
compute kernels for integrals over lower-dimensional
spaces (in this case over theφ- and λ-directions).
Polishing occurs through a series ofrounds compris-
ing computation of a directional average, removal
of this average from the two-dimensional field, and
accumulation of this quantity in the respective large-
scale directional (e.g.,FZ(φ) or FL(λ)) or global
(i.e.,FG) effect. This statistical polishing facility
is configurable to allow for either mean or median
polishing, and can allow the user to choose the
ordering of the polishing operations.

2978

For our case study, we examined January monthly-
averaged sea-level pressure data from the Community
Climate System Model (CCSM3; Collins et al.
[2006]) (Figure 3). Mean polishing was performed
for multiple rounds on this data, and the results
converged rapidly within a few iterations. Resulting
in the large-scale fieldFLS(φ, λ) shown in Figure 5
and the small-scale residual fieldFSS(φ, λ) shown
in Figure 6. The global effect for this analysis was
the constantFG = 1007hPa, and the zonalFZ(φ)
and longitudinalFL(λ) effects are plotted in Figures
7 and 8, respectively. The scale separation is fairly
complete, with only weak correlation (r ≈ 0.1)
betweenFLS(φ, λ) andFSS(φ, λ).

Figure 5. Large-scale PSL field structure computed
by SpheroiDAL-Tk statistical polish.

Figure 6. Small-scale “residual” PSL field structure
computed by SpheroiDAL-Tk statistical polish.

5 ROADMAP TO PARALLEL PROCESSING

Our chief aim in creating our own object-based data
model for SpheroiDAL-Tk was to leave room in the
design for implementing parallel processing at a later
date. Here we discuss briefly the roadmap to parallel
processing for SpheroiDAL-Tk.

Two parallel programming models are currently in

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
Latitude (degrees)

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Z
on

al
 E

ffe
ct

 (
hP

a)

CCSM 3.0 Control
January Averaged MSLP

Figure 7. Mean sea-level pressure “zonal effect”
computed using SpheroiDAL-Tk mean polish.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Longitude (degrees)

-4

-3

-2

-1

0

1

2

3

4

5

M
er

id
io

na
l E

ffe
ct

 (
hP

a)

CCSM 3.0 Control
January Averaged MSLP

Figure 8. Mean sea-level pressure “meridional effect”
computed using SpheroiDAL-Tk mean polish.

wide use in the modelling community:shared-
memory parallelism anddistributed-memory paral-
lelism (a.k.a. message-passing). Shared-memory
parallelism assumes a single memory address space
to which all physical processors have (in theory)
equal access (e.g., via a shared memory bus).
The dominant portable shared-memory programming
model is OpenMP (http://openmp.org), which entails
insertion of compiler directives in source code to
implement loop-level parallelism. OpenMP has the
advantage of simplicity of implementation, but has
the weakness of lack of strong control over load
balance, and thus typically offers limited scalability.
OpenMP has been identified as the emerging
programming model for multicore processors. The
dominant portable distributed-memory programming
model is the Message Passing Interface (MPI;
http://www.mcs.anl.gov/mpi/). MPI offers its users
fine-grain control over load balance, as well as a
number of communication models (i.e., blocking vs.
non-blocking) to hide communications costs behind
computation. MPI is scalable to large numbers
of processors. The chief weakness of MPI is the
difficulty in implementing a communications-based

2979

programming model. Because of the complementatry
nature of the OpenMP and MPI programming
models, another parallel programming model—hybrid
parallelism—has emerged that incorporates OpenMP
within shared-memory nodes and MPI message-
passing between physically distinct nodes.

The SpheroiDAL-Tk data model and compute kernels
will first be parallelised using OpenMP. This will
leave the data model in Figure 2 unaffected, but
will require instrumentation of the SpheroiDAL-Tk
compute kernel routines with OpenMP directives to
achieve do-loop-level parallelism. We are motivated
to do this first to provide near-term relief for
applications so they can exploit multicore processors,
which are becoming the norm for desktop and laptop
computers.

Distributed-memory (MPI) parallelism will be neces-
sary for SpheroiDAL-Tk to handle the petabyte-scale
data volumes we will soon see coming from long
high-resolution climate model integrations. Imple-
mentation of MPI parallelism will require extension
of the SpheroiDAL-Tk data model shown in Figure
2 to include description of thedomain decomposition
of the CartesianGrid andCartesianField classes. We
will almost certainly adopt a purely Cartesian data
decomposition (a.k.a. “checkerboard”) to achieve
this aim, confident that most of the analyses the
package performs will have fairly uniform load
balance characteristics. The SpheroiDAL-Tk compute
kernals will also have to be altered to incorporate
message passing across dimensions over which an
analysis is being performed.

Notice in all of the above discussion that the paral-
lelism will be implementedinside of SpheroiDAL-Tk.
That is, the programming examples cited throughout
this paper will remain unchanged.

6 CONCLUSIONS AND FUTURE WORK

Climate modelling is entering an exciting era in
which the size of model output datasets will explode,
reaching and exceeding the petabyte scale. The
computational toolset currently available to analyse
these data are inadequate to surmount the levels
of computational complexity required, and parallel
programming will be needed. Meanwhile, the level
of sophistication in spatiotemporal data analyses is
increasing, which will also require a more general
toolset.

We have designed a package called SpheroiDAL-
Tk to meet both of these emerging requirements.
We have prototyped both a data model and set of
compute kernels that are applicable to spatiotemporal
data analysis of logically Cartesian data in curvilinear
coordiantes. The design results in a scientist-friendly

programmming model, which we have demonstrated
with both standard examples and a more complex
scale separation case study.

Areas for future development work include: cre-
ation of an open-source, release-ready version of
SpheroiDAL-Tk; creation of multilingual program-
ming interfaces (e.g., Python); development of a
shared-memory parallel implementation to exploit
multicore processors; and inclusion of message-
passing parallelism to support analysis of very large
datasets. The long-term result will be a performance-
portable package capable of running on workstations,
PCs, and cluster-based supercomputers.

ACKNOWLEDGMENTS

This work is primarily supported by the United States
Department of Energy’s Scientific Discovery through
Advanced Computing (SciDAC) program. The ANU
Supercomputer Facility is supported in part by the
Australian Department of Education, Science, and
Training.

REFERENCES

References

Collins, W. D., C. M. Bitz, M. L. Blackmon, G. B.
Bonan, C. S. Bretherton, J. A. Carton, P. Chang,
S. C. Doney, J. J. Hack, T. B. Henderson, J. T.
Kiehl, W. G. Large, D. S. McKenna, B. D. Santer,
and R. D. Smith. The Community Climate System
Model: CCSM3.Journal of Climate, 19(11):2122–
2143, 2006.

Cressie, N. A. C.Statistics for Spatial Data. Wiley
Interscience, New York, Revised edition, 1993.

Decyk, V. K., C. D. Norton, and B. K. Syzmanski.
Expressing object-oriented concepts in fortran90.
ACM Fortran Forum, 16(1):13–18, 1997.

Goldstein, H.Classical Mechanics. Addison-Wesley,
Reading Mass., second edition, 1980.

Ong, E. T., J. W. Larson, B. Norris, R. L. Jacob,
M. Tobis, and M. Steder. Multilingual interfaces
for parallel coupling in multiphysics and multiscale
systems. In Shi, Y., van Albada, G., Dongarra, J.,
and Sloot, P., editors,Proceedings of the Seventh
International Conference on Computational Sci-
ence (ICCS 2007), volume 4487 ofLecture Notes
in Computer Science, pages 931–938, Berlin, 2007.
Springer-Verlag.

Peixoto, J. P. and A. H. Oort.Physics of Climate.
American Institute of Physics, New York, 1992.

2980

	INTRODUCTION
	DESIGN AND FEATURES
	DATA MODEL
	FUNCTIONALITY

	PROGRAMMING MODEL
	ZONAL AVERAGES
	GLOBAL AVERAGES

	CASE STUDY: SCALE SEPARATION
	ROADMAP TO PARALLEL PROCESSING
	CONCLUSIONS AND FUTURE WORK

