
Computational Steering in Visualization Dataflow
Environments

Brodlie, K.W. and J.D. Wood

School of Computing, University of Leeds, UK
Email: kwb@comp.leeds.ac.uk

Keywords: Visualization, computational steering, modular visualization environments

EXTENDED ABSTRACT

This paper traces the evolution of computational
steering within visualization dataflow
environments. In computational steering we
integrate simulation and visualization into a single
environment, in which the scientist can control the
simulation on the basis of the visualization of the
current results. This paper is essentially a review
paper, in which we describe a number of projects
with which we have been involved over the last
twenty years.

We begin with a historical look-back to the early
development of dataflow visualization systems.
These are also known as modular visualization
environments. They typically consist of a library
of elementary visualization components that can be
wired together in a visual editor in order to
compose a pipeline forming the visualization
application. From an early stage these have been
used for computational steering, because it is
possible to include user code, for example a
simulation, as a component in the pipeline.

Moreover modules are able to run on a distributed
set of resources, allowing simulation code to run
on a remote resource. Indeed, if the simulation is
producing large volumes of data, then the
visualization modules can be co-located with the
simulation thus reducing the amount of data
returned to the desktop for visualization. This very
useful facility has been surprisingly little used.

Our own involvement in computational steering
began in 1993 with the GRASPARC project, and
interest was re-kindled in 2000 with the emergence
of Grid computing and the UK e-science
programme. Our first task was to re-work the
distributed computing model of IRIS Explorer (the
dataflow system we use at Leeds) so as to provide
the security that is expected in modern computing
environments. This was followed by a re-working
of the architecture for computational steering, in
the gViz project, where we separated the
simulation code from the visualization dataflow,
and allowed the simulation to run autonomously.

This gives the advantage of disconnecting
simulation lifetime from visualization system
execution time. In doing this it allows simulations
to run over greater time scales than the time period
a user may wish to actively interact with them in
any one session. Previously, shutting down the
visualization would have shut down the simulation
component. This was achieved using the gViz
computational steering library.

Our more recent work in the e-viz project has
extended the architecture further, basing the work
around an abstract description of the visualization
pipeline from which a user interface for steering
can be automatically generated. Likewise the
pipeline description can be interpreted in terms of
different visualization systems, providing an extra
level of abstraction.

As interest in service-oriented architectures
develops, we are seeing a reworking of
visualization systems as a pipeline of services,
rather than modules. We can expect this trend to
carry over to computational steering in future
research.

3077

INTRODUCTION

Visualization plays a key role in understanding the
results of the large simulations that now occur
routinely in computational science and
engineering. A particularly useful aspect of
visualization is an ability to understand the
progress of a simulation as it evolves, so that
action can be taken to adjust control parameters.
This engagement between the scientist and the
simulation is called computational steering. In this
paper we shall review the emergence of
computational steering over the past twenty years,
and reflect particularly on recent work at Leeds in
the context of the UK e-Science research
programme.

In section 2 of the paper we trace the development
of dataflow visualization systems, and note how
from an early stage they have been designed with
computational steering in mind. Section 3
describes our research in computational steering
carried out within three e-Science projects, and
with a particular application to environmental
science. In section 4 we widen the scope by
briefly looking at related work by other research
groups, and section 5 concludes with a look at
future research.

1. DEVELOPMENT OF DATAFLOW
VISUALIZATION ENVIRONMENTS

A starting point for the modern era of visualization
is often taken as the NSF report ‘Visualization in
Scientific Computing’ (McCormick et al, 1987).
The report provided the stimulus for the
development of a new type of visualization system
– the Modular Visualization Environment, or
MVE, in which scientists could compose
visualization applications by linking different
components into a processing pipeline, or network,
using a visual programming editor. The basic
concept is that data flows along the pipeline, the
output from one module passing as input to
another module connected downstream.

Figure 1 : Visualization Dataflow Reference
Model

The first two MVEs to be developed were AVS
(Upson et al, 1989) and apE (Dyer, 1990), both of
which were in use by scientists in 1990. AVS was
produced by Ardent, and despite having passed
through various owners, still exists as a
visualization system today; apE was a product of

the Ohio Supercomputing Graphics Centre, and
gradually faded during the 1990s. At the same
time as AVS and apE emerged, Haber and
McNabb (1990) presented an elegant abstraction of
the dataflow concept. This reference model shown
in Figure 1 has underpinned many subsequent
developments in visualization.

The NSF report foresaw that visualization would
not only be used for understanding the results of a
simulation, but would also be valuable as a way of
‘guiding simulations interactively’ – what we
would now term ‘computational steering’. One of
the first to demonstrate this was the apE team from
Ohio, who studied turbulence effects on Lake Erie
(Marshall et al, 1990). They successfully used
steering to study the impact of sudden changes of
wind velocity on the surface water level, allowing
scientists to understand better the consequences of
severe storms. Another important contribution of
this paper was to characterise different approaches
to linking simulation and visualization: post-
processing, where the entire simulation is
executed, and the results stored for later
visualization; tracking, where the visualization is
connected directly to the simulation, and used to
monitor its progress; and steering, where in
addition there is an opportunity to change
simulation parameters as the computation proceeds
(see Figure 2). All three approaches have their
advantages: post-processing allows a scientist to
work at their own pace in studying the simulation
results; tracking allows an early decision on
terminating an unproductive simulation – thus
saving scarce computational resource; and steering
allows the computation to be focussed on a
productive region of the parameter space.

Figure 2: Post-processing, tracking and steering

In the early 1990s, two further dataflow
visualization systems emerged: IRIS Explorer
(Walton, 2005), originally developed by Silicon
Graphics, later taken over by NAG, and still in
widespread use today; and IBM Data Explorer
(Abram and Treinish, 1995), now an open source

3078

product, OpenDX. An important feature of all
these MVE systems is their extensibility: all are
designed to allow user-written code to be
embedded within a module and included in a
dataflow pipeline. In particular this enables
simulation code to be incorporated into the
pipeline – thus both tracking and steering of
simulations becomes immediately feasible.
Moreover some systems, IRIS Explorer in
particular, were explicitly designed around a
distributed computing concept, whereby modules
are allowed to run on different machines. This
enabled for example the simulation code to run on
a remote supercomputer, while the visualization
modules ran on the desktop.

Another important development, in 1995, was the
emergence of SCIRun, a dataflow visualization
system from the SCI Institute at Utah (Parker and
Johnson, 1995). This was designed primarily as a
problem-solving environment for computational
science, integrating simulation and visualization,
and has been successfully used for many
applications including computational medicine.
Parker et al (2000) provide a very useful
discussion of computational steering using
SCIRun.

Figure 3: GRASPARC history tree

The GRASPARC project (Brodlie et al, 1993) was
the first to extend the concept of steering beyond a
simple adjustment of parameters as the simulation
executes. They argued that, by the time a
‘problem’ was observed, it could easily be too late
to apply a corrective change of parameters. They
therefore proposed the addition of a data
management system to allow checkpoints, or
snapshots, to be recorded as the simulation
proceeds. This allows the idea of back-tracking to
a previously stored point from where the

simulation can be resumed with changed
parameters. The set of checkpoints naturally form
a tree of exploration points, termed a ‘history tree’
(see Figure 3).

Thus by the end of the 1990s computational
steering was established as a useful concept in
computational science. However its use was
perhaps less prevalent than might have been
expected at the start of the decade, and post-
processing probably remained the dominant
approach when visualizing simulations. The
advent of Grid computing at the turn of the
millennium re-kindled interest in tackling large-
scale simulations, and with it the idea of
controlling simulations on-line. In the following
section we review some of the recent
computational steering research with which we
have been involved. Our practical experiments
have been based around the IRIS Explorer
visualization system, and indeed have benefited
from our close collaboration with NAG over many
years.

2. COMPUTATIONAL STEERING IN
GRID COMPUTING – RECENT
RESEARCH AT LEEDS

2.1. An exemplar application

We have used a simple but persuasive application
in order to drive our research. This is the scenario
of a ‘fugitive pollutant’, issued from a chimney
and driven by the prevailing wind. It has been a
useful application as a demonstrator because the
simulation can be scaled from solution of the
advection equation for the pollutant concentration
over a simple mesh (which can run on a laptop), to
a complex atmospheric model describing the
transport of different chemical species through
space and the reactions between these species.

The steering parameter is the wind direction,
enabling us to model various ‘what-if’ scenarios.
It is also a useful example because it supports
different collaborative scenarios, for example
where numerical modeller, meteorologist and
political decision maker all share an interest in
understanding the behaviour of the pollutant.

2.2. Extending IRIS Explorer to Grid
computing – early work in the gViz project

As explained earlier, the early dataflow
visualization systems were designed with
distributed computing in mind. However the era of
Grid computing brings issues of security,
authentication and authorisation to the forefront.
Our first step therefore was to re-visit the

3079

mechanism by which modules can be located on
remote resources. This used the now deprecated
rsh facility, but a simple replacement by the ssh
utility gives a robust and secure mechanism.

The Globus toolkit provides important middleware
for Grid computing, and in particular a means of
secure access to remote resources based on
certificates. This was incorporated into IRIS
Explorer as an alternative to ssh.

Figure 4: Grid-enabled IRIS Explorer

Figure 4 shows a screenshot of the Grid-enabled
version of IRIS Explorer being applied to the
pollution application. There is just one dataflow
network, but the modules are executing on two
different host computers. The dataflow network is
designed on the local host: the available modules
on the two hosts, local and remote, are shown in
the library panels on the left of the picture, and the
user drags and drops modules from the appropriate
libraries. Here the simulation runs remotely,
together with modules that filter the data to ensure
that only relevant data is transferred back to the
local machine. The steering widget, to control the
wind direction, runs locally, as do the visualization
and rendering modules. Further detail is provided
in Brodlie et al (2004).

However it soon became apparent that including
the simulation as a module in the dataflow of IRIS
Explorer was somewhat restrictive. The
timescales of simulations (essentially a machine-
based process) are typically quite different from
those of visualization (a human-based process).
Complex simulations may run for days or weeks.
We were also aware of user requirements to
interface to a range of different visualization
systems. This led to the idea of allowing the
simulation and visualization to run independently,
and this is described in the next section.

2.3. The gViz computational steering
library

The new architecture is shown in Figure 5. The
simulation now runs externally to the dataflow.
The two are connected by the gViz library acting
as middleware. One component of the library is
used to instrument the simulation: it is designed to
be minimally intrusive, queueing parameter change
requests from the user until the simulation is ready
to process the changes (in contrast to including the
simulation as an IRIS Explorer module when it
proved very difficult to handle user interrupts
efficiently, and substantial compute time was used
by asking the simulation to poll the user interface).

Figure 5 – gViz computational steering
architecture

The second component of the library is embedded
in modules in the dataflow visualization system. In
our example, this means that the wind control
widget is instrumented with gViz calls to
communicate parameter changes to the
corresponding gViz code in the simulation. Again
the full description is given in Brodlie et al (2004).

An advantage of this approach is that the work can
be applied to other visualization systems, and we
successfully implemented the pollution
demonstrator not only with IRIS Explorer, but also
with vtk, Matlab and SCIRun (see Figure 6).

Figure 6: Pollution demonstrator implemented in
SCIRun using gViz library

Note that the steering is still carried out through
the visualization system, and indeed we can still

3080

use the distributed features described in the last
section – for example, to place a data filter on the
same host as the simulation, to reduce the data
traffic to the local machine.

Each of the visualization applications – IRIS
Explorer, vtk, SCIRun, Matlab – was handcrafted
with the aim of getting similar behaviour. This
prompts the idea of abstracting a description of the
pipeline that is system-independent, and can be
(potentially) automatically translated into the
language of a particular system.

2.4. Describing the visualization pipeline –
and user interface generation

This strand of work began within the gViz project,
and was developed by Duce and Sagar (2005).
They created skML, an XML application that
describes the way modules are connected in
dataflow networks. A visualization consists of one
or more maps (i.e., pipelines); a map consists of
modules and links, where a link connects an out-
port on one module to an in-port on another. The
language is very general, and so a user is free to
define the names of modules and specify their
functionality.

Figure 7: e-Viz architectural model

In the e-viz project, we have extended skML to
include a full description of the parameters of a
module. This has the advantage that we can now
automatically generate a user interface for each
module – again independently of any particular
visualization system. Our architectural model,
shown in Figure 7, now has the user interface
‘attached’ to a skML description of the dataflow;
this in turn can be interpreted in terms of whatever
visualization system is preferred. There is no need
to pass simulation control parameters via the
visualization system, and so these connect directly,
using the gViz library mechanism described in the
previous section. We also assume now that the
visualization system is running remotely, and we

therefore include a local viewer as part of the e-
Viz client system.

Yet another re-working of the pollution
demonstrator was carried out, and the result is
shown in Figure 8.

Figure 8: Pollution demonstrator re-worked within
the e-Viz framework

The question arises: how is the skML description
created in the first place? Duce and Sagar (2005)
describe a visual editor which allows skML to be
generated. In the e-Viz project, work was begun on
generating skML automatically from a higher level
description of the visualization task – see Brodlie
et al (2007). The automatic user interface
generation is described in Wood et al (2007).

2.5. Collaborative computational steering

In many applications, a number of scientists share
an interest in the control of the simulation and
visualization of the results. Early work by Wood
et al (1997) showed how MVEs could be extended
to collaborative working, by allowing pipelines of
different users to be interconnected – i.e., the
output from a module in scientist A’s pipeline
could be wired as input to a module in scientist B’s
pipeline. Wood et al implemented the concept as
the COVISA toolkit for IRIS Explorer, extending
this single-user system to team working.

This idea carries over automatically to the Grid-
enabled IRIS Explorer described in section 3.2.
Similarly the gViz library of section 3.3 was
designed to allow simultaneous access to
simulations by a number of users, and this idea
was developed more rigorously by Wood and
Wright (2005).

Likewise the e-Viz developments of section 3.4
continue the policy of making sure that any new
visualization approaches are feasible in a
collaborative context.

3081

3. RELATED WORK IN
COMPUTATIONAL STEERING

We mention briefly here a selection of work in
computational steering by other groups.

The Computational Steering Environment (CSE),
developed by van Liere et al (1997), introduced the
idea of steering widgets – the user designs (with a
drawing tool) an object to act as a widget, and
links the object to an item of data, for example a
simulation parameter. Manipulating the object then
corresponds to manipulating the steering
parameter.

An important issue in computational steering is
addressed by Wright (2004). When a steering
parameter is changed, there is an inevitable lag
before the result of the change appears in the
visualization. This can cause confusion in the mind
of the scientist, who ultimately loses any sense of
synchronisation between input and output. By
involving visualization in both the input and output
of computational steering, Wright shows that an
improved mental model is achieved by the
scientist, with an understanding of what parameter
values correspond to the current display, and what
parameter changes are in the pipeline. As with van
Liere et al, the steering is achieved via interactors
embedded in the visualization.

Significant research in computational steering has
been carried out within the Reality Grid project.
This project has developed a library for
computational steering, similar to the gViz library
described in section 3.3 above (Pickles et al,
2004). The scientist instruments their application
code with calls to the library, and there is a
corresponding section of the library that is
integrated into the visualization system. The
steering library has been used in conjunction with
the AVS dataflow visualization system, although
the paradigm is similar to that of Figure 5 with the
simulation separate from the visualization.

4. CONCLUSIONS AND FUTURE TRENDS

This paper has shown how dataflow visualization
systems have evolved to support computational
steering of large-scale simulations. It has always
been possible to include a simulation process as a
module in a dataflow pipeline in many MVEs, but
recent developments have focussed on ensuring
this is done securely. To improve efficiency and
flexibility, we have shown how it can be
advantageous to separate out the simulation as an
autonomous process with a link to the visualization
system. Finally, by providing an XML-based
description of a visualization pipeline, we are able

to provide an automatically generated user
interface.

A current trend is towards service-oriented
computing. Charters et al (2004) have shown how
it is possible to combine services in a dataflow
pipeline, just as modules are connected in an
MVE. Thus the reference model of Figure 1 can
still be used, but with services for filter, map and
render. In principle, the models of Figure 2 and
Figure 5 can extend in a similar manner to provide
service-oriented computational steering, and this
would be an important area for future work.
Charter’s work has been further developed (though
not for computational steering) by Wang et al
(2006). This also brings in some ideas from the
gViz and e-Viz projects so that for example, a
skML description is used to generate a connected
set of services, and the user interface is
automatically generated. This work too could
easily extend to computational steering
applications.

5. REFERENCES

Abram, G. and L. Treinish (1995), An extended
dataflow architecture for data analysis and
visualization, Computer Graphics, 29(2),
17-21.

Brodlie, K.W., L. Brankin, G. Banecki, A. Gay, A.
Poon and H. Wright (1993), GRASPARC –
A problem solving environment integrating
computation and visualization, in
Proceedings of IEEE Visualization 1993,
edited by G.M. Nielson and R.D. Bergeron,
102-109, IEEE Computer Society Press.

Brodlie, K.W., D. Duce, J. Gallop, M. Sagar, J.
Walton, J. Wood (2004), Visualization in
Grid Computing Environments.
Proceedings of IEEE Visualization 2004,
155-162.

Brodlie, K.W., J. Brooke, M. Chen, D. Chisnall, C.
Hughes, N.W. John, M.W. Jones, M.
Riding, N. Roard, M. Turner and J.D.
Wood (2007), Adaptive Infrastructure for
Visual Computing, in Theory and Practice
of Computer Graphics 2007, eds D.A. Duce
and I.S. Lim, Eurographics.

Charters, S.M., N.S. Holliman and M. Munro
(2004), Visualization on the Grid: a Web-
service approach, in Proceedings of UK e-
Science All Hands Meeting, available at:
http://www.allhands.org.uk/2004/proceedin
gs/index.html.

3082

Duce, D.A. and M. Sagar (2005), skML: A
Markup Language for Distributed
Collaborative Visualization. In Proceedings
of Theory and Practice of Computer
Graphics, 171-178, Eurographics UK.

Dyer, D.S. (1990), A dataflow toolkit for
visualization, IEEE Computer Graphics
and Applications, 10(4), 60-69.

Haber, R.B. and D.A. McNabb (1990),
Visualization Idioms: A Conceptual Model
for Scientific Visualization Systems. In
Visualization In Scientific Computing,
Shriver, B., Neilson, G.M., and Rosenblum,
L.J., Eds, IEEE Computer Society Press,
74-93.

McCormick, B.H., T.A. de Fanti and M.D. Brown
(1987), Visualization in Scientific
Computing, Computer Graphics, 21(6).

Marshall, R., J. Kempf, S. Dyer and C. Yen
(1990), Visualization methods and
simulation steering for a 3D turbulence
model for Lake Erie, ACM SIGGRAPH
Computer Graphics, 24(2), 89-97.

Parker, S.G. and C.R. Johnson (1995), SCIRun: a
scientific programming environment for
computational steering, in Proceedings of
ACM IEEE Supercomputing, 2, 1419-1439,
IEEE.

Parker, S.G., M. Miller, C. D. Hansen, and C. R.
Johnson (2000), Computational Steering
and the SCIRun Integrated Problem Solving
Environment, In Proceedings of Scientific
Visualization - Dagstuhl `97, Hans Hagen,
ed., 267-276.

Pickles, S., R. Haines, R.L. Pinning and A. Porter
(2004), Practical tools for computational
steering, in Proceedings of UK e-Science
All Hands Meeting, available at:
http://www.allhands.org.uk/2004/proceedin
gs/index.html.

Upson, C., T. Faulhaber, D. Kamins, D. Laidlaw,
D. Schlegel, J. Vroom, R. Gurwitz and A.
Van Dam (1989), The Application
Visualization System: A computational
environment for scientific visualization.
IEEE Computer Graphics and Applications,
9(4), 30-42.

Van Liere, R., J.D. Mulder and J.J. van Wijk
(1997), Computational steering, Future

Generation Computer Systems, 12 (5), 441-
450.

Walton, J.P.R.W. (2005), NAG’s IRIS Explorer, in
Visualization Handbook (C.D. Hansen and
C.R. Johnson, eds), Elsevier.

Wang, H., K. Brodlie, J. Handley and J. Wood
(2006), Service-oriented approach to
collaborative visualization, in Proceedings
of UK e-Science All Hands Meeting,
available at:
http://www.allhands.org.uk/2006/proceedin
gs/index.html.

Wood, J.D., H. Wright and K.W. Brodlie (1997),
Collaborative Visualization. In Proceedings
of IEEE Visualization '97. Yagel, R., and
Hagen, H., Eds, 253-259.

Wood, J.D. and H. Wright (2005), Steering via the
image in local, distributed and collaborative
settings, in Proceedings of UK e-Science
All Hands Meeting, available at:
http://www.allhands.org.uk/2005/proceedin
gs/index.html.

Wood, J.D., M. Riding and K.W. Brodlie (2007),
A user interface framework for Grid-based
computational steering and visualization. In
Proceedings of UK e-Science All Hands
Meeting (to appear).

Wright, H. (2004), Putting visualization first in
computational steering, in Proceedings of
UK e-Science All Hands Meeting, available
at:
http://www.allhands.org.uk/2004/proceedin
gs/index.html.

3083

