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EXTENDED ABSTRACT 

This paper traces the evolution of computational 
steering within visualization dataflow 
environments.  In computational steering we 
integrate simulation and visualization into a single 
environment, in which the scientist can control the 
simulation on the basis of the visualization of the 
current results.  This paper is essentially a review 
paper, in which we describe a number of projects 
with which we have been involved over the last 
twenty years. 

We begin with a historical look-back to the early 
development of dataflow visualization systems.  
These are also known as modular visualization 
environments.  They typically consist of a library 
of elementary visualization components that can be 
wired together in a visual editor in order to 
compose a pipeline forming the visualization 
application.  From an early stage these have been 
used for computational steering, because it is 
possible to include user code, for example a 
simulation, as a component in the pipeline. 

Moreover modules are able to run on a distributed 
set of resources, allowing simulation code to run 
on a remote resource. Indeed, if the simulation is 
producing large volumes of data, then the 
visualization modules can be co-located with the 
simulation thus reducing the amount of data 
returned to the desktop for visualization. This very 
useful facility has been surprisingly little used.  

Our own involvement in computational steering 
began in 1993 with the GRASPARC project, and 
interest was re-kindled in 2000 with the emergence 
of Grid computing and the UK e-science 
programme.  Our first task was to re-work the 
distributed computing model of IRIS Explorer (the 
dataflow system we use at Leeds) so as to provide 
the security that is expected in modern computing 
environments.  This was followed by a re-working 
of the architecture for computational steering, in 
the gViz project, where we separated the 
simulation code from the visualization dataflow, 
and allowed the simulation to run autonomously.  

This gives the advantage of disconnecting 
simulation lifetime from visualization system 
execution time. In doing this it allows simulations 
to run over greater time scales than the time period 
a user may wish to actively interact with them in 
any one session. Previously, shutting down the 
visualization would have shut down the simulation 
component. This was achieved using the gViz 
computational steering library. 

Our more recent work in the e-viz project has 
extended the architecture further, basing the work 
around an abstract description of the visualization 
pipeline from which a user interface for steering 
can be automatically generated.  Likewise the 
pipeline description can be interpreted in terms of 
different visualization systems, providing an extra 
level of abstraction. 

As interest in service-oriented architectures 
develops, we are seeing a reworking of 
visualization systems as a pipeline of services, 
rather than modules. We can expect this trend to 
carry over to computational steering in future 
research. 
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INTRODUCTION 

Visualization plays a key role in understanding the 
results of the large simulations that now occur 
routinely in computational science and 
engineering.  A particularly useful aspect of 
visualization is an ability to understand the 
progress of a simulation as it evolves, so that 
action can be taken to adjust control parameters.  
This engagement between the scientist and the 
simulation is called computational steering.  In this 
paper we shall review the emergence of 
computational steering over the past twenty years, 
and reflect particularly on recent work at Leeds in 
the context of the UK e-Science research 
programme. 

In section 2 of the paper we trace the development 
of dataflow visualization systems, and note how 
from an early stage they have been designed with 
computational steering in mind.  Section 3 
describes our research in computational steering 
carried out within three e-Science projects, and 
with a particular application to environmental 
science.  In section 4 we widen the scope by 
briefly looking at related work by other research 
groups, and section 5 concludes with a look at 
future research. 

1. DEVELOPMENT OF DATAFLOW 
VISUALIZATION ENVIRONMENTS 

A starting point for the modern era of visualization 
is often taken as the NSF report ‘Visualization in 
Scientific Computing’ (McCormick et al, 1987).  
The report provided the stimulus for the 
development of a new type of visualization system 
– the Modular Visualization Environment, or 
MVE, in which scientists could compose 
visualization applications by linking different 
components into a processing pipeline, or network, 
using a visual programming editor.  The basic 
concept is that data flows along the pipeline, the 
output from one module passing as input to 
another module connected downstream. 

  

Figure 1 : Visualization Dataflow Reference 
Model 

The first two MVEs to be developed were AVS 
(Upson et al, 1989) and apE (Dyer, 1990), both of 
which were in use by scientists in 1990.  AVS was 
produced by Ardent, and despite having passed 
through various owners, still exists as a 
visualization system today; apE was a product of 

the Ohio Supercomputing Graphics Centre, and 
gradually faded during the 1990s.  At the same 
time as AVS and apE emerged, Haber and 
McNabb (1990) presented an elegant abstraction of 
the dataflow concept.  This reference model shown 
in Figure 1 has underpinned many subsequent 
developments in visualization. 

The NSF report foresaw that visualization would 
not only be used for understanding the results of a 
simulation, but would also be valuable as a way of 
‘guiding simulations interactively’ – what we 
would now term ‘computational steering’.  One of 
the first to demonstrate this was the apE team from 
Ohio, who studied turbulence effects on Lake Erie 
(Marshall et al, 1990).  They successfully used 
steering to study the impact of sudden changes of 
wind velocity on the surface water level, allowing 
scientists to understand better the consequences of 
severe storms.  Another important contribution of 
this paper was to characterise different approaches 
to linking simulation and visualization: post-
processing, where the entire simulation is 
executed, and the results stored for later 
visualization; tracking, where the visualization is 
connected directly to the simulation, and used to 
monitor its progress; and steering, where in 
addition there is an opportunity to change 
simulation parameters as the computation proceeds 
(see Figure 2).  All three approaches have their 
advantages: post-processing allows a scientist to 
work at their own pace in studying the simulation 
results; tracking allows an early decision on 
terminating an unproductive simulation – thus 
saving scarce computational resource; and steering 
allows the computation to be focussed on a 
productive region of the parameter space. 

 

Figure 2: Post-processing, tracking and steering 

In the early 1990s, two further dataflow 
visualization systems emerged: IRIS Explorer 
(Walton, 2005), originally developed by Silicon 
Graphics, later taken over by NAG, and still in 
widespread use today; and IBM Data Explorer 
(Abram and Treinish, 1995), now an open source 
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product, OpenDX.  An important feature of all 
these MVE systems is their extensibility: all are 
designed to allow user-written code to be 
embedded within a module and included in a 
dataflow pipeline.  In particular this enables 
simulation code to be incorporated into the 
pipeline – thus both tracking and steering of 
simulations becomes immediately feasible.  
Moreover some systems, IRIS Explorer in 
particular, were explicitly designed around a 
distributed computing concept, whereby modules 
are allowed to run on different machines.  This 
enabled for example the simulation code to run on 
a remote supercomputer, while the visualization 
modules ran on the desktop. 

Another important development, in 1995, was the 
emergence of SCIRun, a dataflow visualization 
system from the SCI Institute at Utah (Parker and 
Johnson, 1995).  This was designed primarily as a 
problem-solving environment for computational 
science, integrating simulation and visualization, 
and has been successfully used for many 
applications including computational medicine. 
Parker et al (2000) provide a very useful 
discussion of computational steering using 
SCIRun. 

 

Figure 3: GRASPARC history tree 

The GRASPARC project (Brodlie et al, 1993) was 
the first to extend the concept of steering beyond a 
simple adjustment of parameters as the simulation 
executes.  They argued that, by the time a 
‘problem’ was observed, it could easily be too late 
to apply a corrective change of parameters.  They 
therefore proposed the addition of a data 
management system to allow checkpoints, or 
snapshots, to be recorded as the simulation 
proceeds. This allows the idea of back-tracking to 
a previously stored point from where the 

simulation can be resumed with changed 
parameters.  The set of checkpoints naturally form 
a tree of exploration points, termed a ‘history tree’ 
(see Figure 3). 

Thus by the end of the 1990s computational 
steering was established as a useful concept in 
computational science. However its use was 
perhaps less prevalent than might have been 
expected at the start of the decade, and post-
processing probably remained the dominant 
approach when visualizing simulations.  The 
advent of Grid computing at the turn of the 
millennium re-kindled interest in tackling large-
scale simulations, and with it the idea of 
controlling simulations on-line.  In the following 
section we review some of the recent 
computational steering research with which we 
have been involved.  Our practical experiments 
have been based around the IRIS Explorer 
visualization system, and indeed have benefited 
from our close collaboration with NAG over many 
years. 

2. COMPUTATIONAL STEERING IN 
GRID COMPUTING – RECENT 
RESEARCH AT LEEDS 

2.1. An exemplar application 

We have used a simple but persuasive application 
in order to drive our research.  This is the scenario 
of a ‘fugitive pollutant’, issued from a chimney 
and driven by the prevailing wind.  It has been a 
useful application as a demonstrator because the 
simulation can be scaled from solution of the 
advection equation for the pollutant concentration 
over a simple mesh (which can run on a laptop), to 
a complex atmospheric model describing the 
transport of different chemical species through 
space and the reactions between these species.  

The steering parameter is the wind direction, 
enabling us to model various ‘what-if’ scenarios.  
It is also a useful example because it supports 
different collaborative scenarios, for example 
where numerical modeller, meteorologist and 
political decision maker all share an interest in 
understanding the behaviour of the pollutant. 

2.2. Extending IRIS Explorer to Grid 
computing – early work in the gViz project 

As explained earlier, the early dataflow 
visualization systems were designed with 
distributed computing in mind. However the era of 
Grid computing brings issues of security, 
authentication and authorisation to the forefront.  
Our first step therefore was to re-visit the 
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mechanism by which modules can be located on 
remote resources.  This used the now deprecated 
rsh facility, but a simple replacement by the ssh 
utility gives a robust and secure mechanism. 

The Globus toolkit provides important middleware 
for Grid computing, and in particular a means of 
secure access to remote resources based on 
certificates.  This was incorporated into IRIS 
Explorer as an alternative to ssh.  

  

Figure 4: Grid-enabled IRIS Explorer 

Figure 4 shows a screenshot of the Grid-enabled 
version of IRIS Explorer being applied to the 
pollution application.  There is just one dataflow 
network, but the modules are executing on two 
different host computers.  The dataflow network is 
designed on the local host: the available modules 
on the two hosts, local and remote, are shown in 
the library panels on the left of the picture, and the 
user drags and drops modules from the appropriate 
libraries.  Here the simulation runs remotely, 
together with modules that filter the data to ensure 
that only relevant data is transferred back to the 
local machine.  The steering widget, to control the 
wind direction, runs locally, as do the visualization 
and rendering modules.  Further detail is provided 
in Brodlie et al (2004). 

However it soon became apparent that including 
the simulation as a module in the dataflow of IRIS 
Explorer was somewhat restrictive.  The 
timescales of simulations (essentially a machine-
based process) are typically quite different from 
those of visualization (a human-based process).  
Complex simulations may run for days or weeks.  
We were also aware of user requirements to 
interface to a range of different visualization 
systems.  This led to the idea of allowing the 
simulation and visualization to run independently, 
and this is described in the next section. 

2.3. The gViz computational steering 
library 

The new architecture is shown in Figure 5.  The 
simulation now runs externally to the dataflow.  
The two are connected by the gViz library acting 
as middleware.  One component of the library is 
used to instrument the simulation: it is designed to 
be minimally intrusive, queueing parameter change 
requests from the user until the simulation is ready 
to process the changes (in contrast to including the 
simulation as an IRIS Explorer module when it 
proved very difficult to handle user interrupts 
efficiently, and substantial compute time was used 
by asking the simulation to poll the user interface).   

 

Figure 5 – gViz computational steering 
architecture 

The second component of the library is embedded 
in modules in the dataflow visualization system. In 
our example, this means that the wind control 
widget is instrumented with gViz calls to 
communicate parameter changes to the 
corresponding gViz code in the simulation.  Again 
the full description is given in Brodlie et al (2004). 

An advantage of this approach is that the work can 
be applied to other visualization systems, and we 
successfully implemented the pollution 
demonstrator not only with IRIS Explorer, but also 
with vtk, Matlab and SCIRun (see Figure 6). 

 

Figure 6: Pollution demonstrator implemented in 
SCIRun using gViz library 

Note that the steering is still carried out through 
the visualization system, and indeed we can still 
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use the distributed features described in the last 
section – for example, to place a data filter on the 
same host as the simulation, to reduce the data 
traffic to the local machine.   

Each of the visualization applications – IRIS 
Explorer, vtk, SCIRun, Matlab – was handcrafted 
with the aim of getting similar behaviour.  This 
prompts the idea of abstracting a description of the 
pipeline that is system-independent, and can be 
(potentially) automatically translated into the 
language of a particular system. 

2.4. Describing the visualization pipeline – 
and user interface generation 

This strand of work began within the gViz project, 
and was developed by Duce and Sagar (2005).  
They created skML, an XML application that 
describes the way modules are connected in 
dataflow networks.  A visualization consists of one 
or more maps (i.e., pipelines); a map consists of 
modules and links, where a link connects an out-
port on one module to an in-port on another.  The 
language is very general, and so a user is free to 
define the names of modules and specify their 
functionality. 

 

Figure 7: e-Viz architectural model 

In the e-viz project, we have extended skML to 
include a full description of the parameters of a 
module.  This has the advantage that we can now 
automatically generate a user interface for each 
module – again independently of any particular 
visualization system.  Our architectural model, 
shown in Figure 7, now has the user interface 
‘attached’ to a skML description of the dataflow; 
this in turn can be interpreted in terms of whatever 
visualization system is preferred.  There is no need 
to pass simulation control parameters via the 
visualization system, and so these connect directly, 
using the gViz library mechanism described in the 
previous section.  We also assume now that the 
visualization system is running remotely, and we 

therefore include a local viewer as part of the e-
Viz client system.   

Yet another re-working of the pollution 
demonstrator was carried out, and the result is 
shown in Figure 8. 

 

Figure 8: Pollution demonstrator re-worked within 
the e-Viz framework 

The question arises: how is the skML description 
created in the first place? Duce and Sagar (2005) 
describe a visual editor which allows skML to be 
generated. In the e-Viz project, work was begun on 
generating skML automatically from a higher level 
description of the visualization task – see Brodlie 
et al (2007).  The automatic user interface 
generation is described in Wood et al (2007). 

2.5. Collaborative computational steering 

In many applications, a number of scientists share 
an interest in the control of the simulation and 
visualization of the results.  Early work by Wood 
et al (1997) showed how MVEs could be extended 
to collaborative working, by allowing pipelines of 
different users to be interconnected – i.e., the 
output from a module in scientist A’s pipeline 
could be wired as input to a module in scientist B’s 
pipeline.  Wood et al implemented the concept as 
the COVISA toolkit for IRIS Explorer, extending 
this single-user system to team working. 

This idea carries over automatically to the Grid-
enabled IRIS Explorer described in section 3.2.  
Similarly the gViz library of section 3.3 was 
designed to allow simultaneous access to 
simulations by a number of users, and this idea 
was developed more rigorously by Wood and 
Wright (2005). 

Likewise the e-Viz developments of section 3.4 
continue the policy of making sure that any new 
visualization approaches are feasible in a 
collaborative context. 
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3. RELATED WORK IN 
COMPUTATIONAL STEERING 

We mention briefly here a selection of work in 
computational steering by other groups.  

The Computational Steering Environment (CSE), 
developed by van Liere et al (1997), introduced the 
idea of steering widgets – the user designs (with a  
drawing tool) an object to act as a widget, and 
links the object to an item of data, for example a 
simulation parameter. Manipulating the object then 
corresponds to manipulating the steering 
parameter. 

An important issue in computational steering is 
addressed by Wright (2004).  When a steering 
parameter is changed, there is an inevitable lag 
before the result of the change appears in the 
visualization. This can cause confusion in the mind 
of the scientist, who ultimately loses any sense of 
synchronisation between input and output.  By 
involving visualization in both the input and output 
of computational steering, Wright shows that an 
improved mental model is achieved by the 
scientist, with an understanding of what parameter 
values correspond to the current display, and what 
parameter changes are in the pipeline.  As with van 
Liere et al, the steering is achieved via interactors 
embedded in the visualization.  

Significant research in computational steering has 
been carried out within the Reality Grid project.  
This project has developed a library for 
computational steering, similar to the gViz library 
described in section 3.3 above (Pickles et al, 
2004).  The scientist instruments their application 
code with calls to the library, and there is a 
corresponding section of the library that is 
integrated into the visualization system.  The 
steering library has been used in conjunction with 
the AVS dataflow visualization system, although 
the paradigm is similar to that of Figure 5 with the 
simulation separate from the visualization.   

4. CONCLUSIONS AND FUTURE TRENDS 

This paper has shown how dataflow visualization 
systems have evolved to support computational 
steering of large-scale simulations.  It has always 
been possible to include a simulation process as a 
module in a dataflow pipeline in many MVEs, but 
recent developments have focussed on ensuring 
this is done securely.  To improve efficiency and 
flexibility, we have shown how it can be 
advantageous to separate out the simulation as an 
autonomous process with a link to the visualization 
system.  Finally, by providing an XML-based 
description of a visualization pipeline, we are able 

to provide an automatically generated user 
interface. 

A current trend is towards service-oriented 
computing.  Charters et al (2004) have shown how 
it is possible to combine services in a dataflow 
pipeline, just as modules are connected in an 
MVE. Thus the reference model of Figure 1 can 
still be used, but with services for filter, map and 
render.  In principle, the models of Figure 2 and 
Figure 5 can extend in a similar manner to provide 
service-oriented computational steering, and this 
would be an important area for future work.  
Charter’s work has been further developed (though 
not for computational steering) by Wang et al 
(2006).  This also brings in some ideas from the 
gViz and e-Viz projects so that for example, a 
skML description is used to generate a connected 
set of services, and the user interface is 
automatically generated.  This work too could 
easily extend to computational steering 
applications. 

5. REFERENCES 

Abram, G. and L. Treinish (1995), An extended 
dataflow architecture for data analysis and 
visualization, Computer Graphics, 29(2), 
17-21. 

Brodlie, K.W., L. Brankin, G. Banecki, A. Gay, A. 
Poon and H. Wright (1993), GRASPARC – 
A problem solving environment integrating 
computation and visualization, in 
Proceedings of IEEE Visualization 1993, 
edited by G.M. Nielson and R.D. Bergeron, 
102-109, IEEE Computer Society Press. 

Brodlie, K.W., D. Duce, J. Gallop, M. Sagar, J. 
Walton, J. Wood (2004), Visualization in 
Grid Computing Environments. 
Proceedings of IEEE Visualization 2004, 
155-162. 

Brodlie, K.W., J. Brooke, M. Chen, D. Chisnall, C. 
Hughes, N.W. John, M.W. Jones, M. 
Riding, N. Roard, M. Turner and J.D. 
Wood (2007), Adaptive Infrastructure for 
Visual Computing, in Theory and Practice 
of Computer Graphics 2007, eds D.A. Duce 
and I.S. Lim, Eurographics. 

Charters, S.M., N.S. Holliman and M. Munro 
(2004), Visualization on the Grid: a Web-
service approach, in Proceedings of UK e-
Science All Hands Meeting, available at: 
http://www.allhands.org.uk/2004/proceedin
gs/index.html. 

3082



Duce, D.A. and M. Sagar (2005), skML: A 
Markup Language for Distributed 
Collaborative Visualization. In Proceedings 
of Theory and Practice of Computer 
Graphics, 171-178, Eurographics UK. 

Dyer, D.S. (1990), A dataflow toolkit for 
visualization, IEEE Computer Graphics 
and Applications, 10(4), 60-69. 

Haber, R.B. and D.A. McNabb (1990), 
Visualization Idioms: A Conceptual Model 
for Scientific Visualization Systems. In 
Visualization In Scientific Computing, 
Shriver, B., Neilson, G.M., and Rosenblum, 
L.J., Eds, IEEE Computer Society Press, 
74-93. 

McCormick, B.H., T.A. de Fanti and M.D. Brown 
(1987), Visualization in Scientific 
Computing, Computer Graphics, 21(6). 

Marshall, R., J. Kempf, S. Dyer and C. Yen 
(1990), Visualization methods and 
simulation steering for a 3D turbulence 
model for Lake Erie, ACM SIGGRAPH 
Computer Graphics, 24(2), 89-97. 

Parker, S.G. and C.R. Johnson (1995), SCIRun: a 
scientific programming environment for 
computational steering, in Proceedings of 
ACM IEEE Supercomputing, 2, 1419-1439, 
IEEE. 

Parker, S.G., M. Miller, C. D. Hansen, and C. R. 
Johnson (2000), Computational Steering 
and the SCIRun Integrated Problem Solving 
Environment, In Proceedings of Scientific 
Visualization - Dagstuhl `97, Hans Hagen, 
ed., 267-276. 

Pickles, S., R. Haines, R.L. Pinning and A. Porter 
(2004), Practical tools for computational 
steering, in Proceedings of UK e-Science 
All Hands Meeting, available at: 
http://www.allhands.org.uk/2004/proceedin
gs/index.html. 

Upson, C., T. Faulhaber, D. Kamins, D. Laidlaw, 
D. Schlegel, J. Vroom, R. Gurwitz and A. 
Van Dam (1989), The Application 
Visualization System: A computational 
environment for scientific visualization. 
IEEE Computer Graphics and Applications, 
9(4), 30-42. 

Van Liere, R., J.D. Mulder and J.J. van Wijk 
(1997), Computational steering, Future 

Generation Computer Systems, 12 (5), 441-
450. 

Walton, J.P.R.W. (2005), NAG’s IRIS Explorer, in 
Visualization Handbook (C.D. Hansen and 
C.R. Johnson, eds), Elsevier. 

Wang, H., K. Brodlie, J. Handley and J. Wood 
(2006), Service-oriented approach to 
collaborative visualization, in Proceedings 
of UK e-Science All Hands Meeting, 
available at: 
http://www.allhands.org.uk/2006/proceedin
gs/index.html. 

Wood, J.D., H. Wright and K.W. Brodlie (1997), 
Collaborative Visualization. In Proceedings 
of IEEE Visualization '97. Yagel, R., and 
Hagen, H., Eds, 253-259. 

Wood, J.D. and H. Wright (2005), Steering via the 
image in local, distributed and collaborative 
settings, in Proceedings of UK e-Science 
All Hands Meeting, available at: 
http://www.allhands.org.uk/2005/proceedin
gs/index.html. 

Wood, J.D., M. Riding and K.W. Brodlie (2007), 
A user interface framework for Grid-based 
computational steering and visualization. In 
Proceedings of UK e-Science All Hands 
Meeting (to appear). 

Wright, H. (2004), Putting visualization first in 
computational steering, in Proceedings of 
UK e-Science All Hands Meeting, available 
at: 
http://www.allhands.org.uk/2004/proceedin
gs/index.html. 

 

 

 

3083




