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EXTENDED ABSTRACT

The spread of the human immunodeficiency virus
(HIV) depends prominently on the migration of
people between different regions. An important
consequence of this population mobility is that HIV
control strategies that are optimal in a regional sense
may not be optimal in a national sense. The question
is how the local governments can, individually and
collectively, make better use of their budgets to reduce
the number of new cases of HIV infection taking
into account that people travel among regions. We
formulate the problem of epidemic intervention as an
optimal control problem, finding control sequences
(functions) that optimize a given objective function.
The mobility of people among regions is modelled via
a transition graph as shown in Figure 1
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Figure 1. The scheme for the mobility of people
among patches. The size of a circle corresponds to
the total population size in that patch.

Since heterosexual contact is the primary mode of
HIV infection worldwide, we consider only sexually-
active populations in the regions. The transmission of
the disease is schematically depicted in Figure 2
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Figure 2. The scheme of the model. Susceptible fe-
males (males) are infected by infected males(females)
via sexual contact only, indicated by the dashed lines.

We assume that the infection rates in patchr decrease
as the function of the amount of budget applied. We
formulate various mathematical control problems for
the HIV spread in mobile heterosexual populations,
and show how optimal regional control strategies can
be obtained that minimize the national spread of HIV.

We apply the Cross-Entropy method to solve
these highly multi-modal and non-linear optimiza-
tion problems, as an alternative to Nonlinear
Programming and Dynamic Programming. A
gentle tutorial of the Cross-Entropy method can be
found in Kroeseet al. (2006) or one can visit
http//www.cemethod.org. We demonstrate
the effectiveness of the method via a range of
experiments, and illustrate how the form of the
optimal control function depends on the mathematical
model used for the HIV spread.

In particular, for the patches that are initially infectives
free, the first part of the control function is concave,
starting and ending at zero (for the patch where
the infectives are initially concentrated is linearly
decreasing), the second part is zero (no control), and
the third part is linearly increasing, an example is
depicted in Figure 3
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Figure 3. The optimal functionsu(r) for five patches
obtained via the Cross-Entropy method.

However, quantitatively the control functions (i.e.,
which part the budget should be concentrated) depend
significantly on the form of the model used.
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1 INTRODUCTION

The control of infectious diseases such as Acquired
Immune Deficiency Syndrome (AIDS), which is
caused by HIV, is a challenging public health problem.
As the awareness of AIDS increases and the urgency
to control it becomes crucial to many nations, more
and more local and national governments provide
funding to combat the disease. In Indonesia, for
example, where a high population mobility among its
regions seems to have a high risk for the spread of
the epidemic (e.g. Hugo 2001, Woods 2004), many
local governments have planned and allocated funds
and resources to control the spread of HIV in their
regions. However, as the people travel among regions,
it is not clear whether an allocation of funds that is
optimal for local regions is also optimal for the nation
as a whole. The main goal on a country level is to
find regional control strategies that minimize the total
number of new infectives in the country as a whole,
without using more than the allocated budget in each
individual region.

The literature on optimal control for the spread
of HIV is not extensive. One of the reasons
is that the mathematical models used to describe
the dynamics of the HIV spread tend to be quite
complex. For example, the disease can be transmitted
in many different ways — via sexual contact,
blood transfusions, birthing and infected syringes;
and the migration of people among subgroups has
significant consequences for the dynamics of the
epidemic spread (Modeet al. 2000, Schinazi 2002).
As a consequence, mathematical models involving
complex HIV transmission mechanisms usually do
not lend themselves to conventional mathematical
control techniques such as dynamic programming and
convex optimization.

Sani et al. (2007) introduced several epidemic
models for the spread of HIV in a mobile population.
There, the infection rates were considered to be fixed
for all times. In this paper we formulate various
mathematical control models for the spread of HIV
by assuming that the infection rates for all patches can
vary; see also, Whitakeret al. (2004). The problem
is to minimize the number of new infectives over a
finite time horizon. These control models turn out
to be highly non-linear, and are infeasible to solve
via standard (convex) optimization procedures. The
optimal control function is derived via the Cross-
Entropy (CE) method (Rubinsteinet al. 2004); to our
knowledge this is the first application of CE to optimal
control, as an alternative toNonlinear Programming
(NLP) and Dynamic Programming(DP), both of
which suffer from the “curse of dimensionality” (e.g.
Bertsekas 2002, Sniedovich 1992).

The mathematical control problems in the present

paper are mostly motivated by the papers in (e.g.
Blountet al. 1997, Brandeauet al. 2003, Richteret al.
1999), which is shown that it is not generally possible
to derive the optimal solution of such complex
problem in a closed form and therefore one needs
resort to approximation techniques. For a more recent
application of mathematical control theory to some
other simple disease models, see for example Clancy
et al. (2005).

2 EPIDEMIC OPTIMAL CONTROL FORMU-
LATION

Let s
(r)
F (t), i

(r)
F (t), s

(r)
M (t), i

(r)
M (t), z(r)(t) denote the

proportion of susceptible and infected females,
susceptible and infected males, and AIDS cases in
patchr at time t, respectively, relative to a scaling
parameterV , see Saniet al. (2007). For the case
of constant population sizes, the scaling parameter
V is equal to the total population of all patches
N =

∑R

r=1 N (r), where N (r) = N
(r)
F + N

(r)
M

is the population size of patchr, with N
(r)
F the

size of female subpopulation andN (r)
M the size of

male subpopulation. The population sizesN (r), r =
1, . . . , R need not be the same. For the case of varying
population sizes, the scaling parameterV = 2B

µ
,

where B is the rate at which new susceptible females
or males enter their corresponding subpopulation in
each patch, for simplicity it is assumed to be a
constant, andµ is the natural death rate of individuals.

Models with the Force of Infection

For the case of constant population size, all individ-
uals that leave the system are replaced (balanced)
by an inflow of susceptibles, at a proportionξ for
females and1 − ξ for males. Thus, the inflow rates
for susceptible females and males are given byBF =
ξ (µ c(r) + δ z(r)) andBM = (1− ξ) (µ c(r) + δ z(r))

respectively, where z(r) = c(r) − n
(r)
F − n

(r)
M

with c(r) = N (r)/N, n
(r)
F = N

(r)
F /N , andn

(r)
M =

N (r)/N .

The evolution of susceptibles and infectives among
patches for both cases is governed by the following
system of differential equations:

ds
(r)
F

dt
= BF −

R∑

j=1

βjr

i
(j)
M

n
(j)
M

s
(r)
F − µ s

(r)
F ,

di
(r)
F

dt
=

R∑

j=1

βjr

i
(j)
M

n
(j)
M

s
(r)
F − (µ + γ) i

(r)
F ,

ds
(r)
M

dt
= BM −

R∑

j=1

βjr

i
(j)
F

n
(j)
F

s
(r)
M − µ s

(r)
M ,

di
(r)
M

dt
=

R∑

j=1

βjr

i
(j)
F

n
(j)
F

s
(r)
M − (µ + γ) i

(r)
M ,

(1)
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where βjr is the rate (force) of infection in patch
r from patchj and BF = BM = µ

2 for varying
population size. The force of infection in each patchr

is described by the term
∑R

j=1 βjr
i
(j)
M

n
(j)
M

for susceptible

females and
∑R

j=1 βjr
i
(j)
F

n
(j)
F

for susceptible males.

Model with Actual Mobility

Unlike in the previous models, we assume in this
model that people physically visit other patches and
the force of infection is only from within a patch. Let
n(r) = n

(r)
F + n

(r)
M and ν(r) denote the population

size and the migration rate of patchr, respectively,
relative to a scaling parameterV = 2B

µ
. The evolution

of the state variables in this model is described by the
following system of ODEs:

ds
(r)
F

dt
=

µ

2
− β

(r) i
(r)
M

n
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M

s
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− µ s
(r)
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+

RX
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−
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di
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M

dt
= β

(r) i
(r)
F

n
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F

s
(r)
M

− (µ + γ) i
(r)
M

+

RX
j=1

vrj

n(j)
i
(j)
M

−

ν(r)

n(r)
i
(r)
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,

(2)

with vrj = ρrj ν(r), whereρrj is the probability to
visit patchj from patchr. Note that all variables, such
ass

(r)
F andi

(r)
F , are relative to the parameterV . The

dynamic behavior of these models is discussed in Sani
et al. (2007).

The epidemic control problem is formulated as
follows. Suppose each patchr has a fixed budget,
sayK(r), for r = 1, . . . , R, which needs to be spent
over a finite time horizon[0, T ]. Let u(r) = u(r)(t)
denote the control function, which is to be interpreted
as the amount of budget spent per unit time in patch
r. Suppose the infection rate in patchr, denoted
β(r) = β(u(r)), is a decreasing function with respect
to the control functionu(r). The functionβ(r) can be,
for example, of following form:

β1 = β(u) = βmax − c1 u , (3)

or

β2 = β(u) =
βmax

1 + c2 u
, (4)

for some constantsc1, c2 ∈ R. In this study, we
use the formβ2 which is frequently used in epidemic
control, see for example Blountet al. (1997).

The problem we are interested in is to determine the
shape of the control functionu(r) for each patchr,
such that the total number of new infectives in all
of the patches over the time horizon is minimized.
Let u = {u(r), r = 1, . . . , R}. Then, our epidemic
intervention problems are formulated as follows:

For the models with a force of infection

min
u

J(u) = min
u

Z T

0

RX
r=1

RX
j=1

βjr

h i
(j)
M

n
(j)
M

s
(r)
F

+
i
(j)
F

n
(j)
F

s
(r)
M

i
dt,

(5)
subject to the dynamic constraint (1) and the following
integral constraints:Z T

0
u(r) dt = K(r), 0 ≤ u(r) ≤ K(r), r = 1, . . . , R. (6)

For the model with actual mobility

min
u

J(u) = min
u

Z T

0

RX
r=1

β(r)
h i

(r)
M

n
(r)
M

s
(r)
F

+
i
(r)
F

n
(r)
F

s
(r)
M

i
dt (7)

subject to the dynamic constraint (2) and the integral
constraints (6).

The terms inside the integral in the objective
functions describe the rate at which new infectives are
generated. For the case of the constant population
size, J(u) is the proportion of new infective cases
relative to the total population sizeN in theR patches.
For the case of the varying population size,J(u) is
the proportion of new infective cases relative to the
scaling parameterV = 2B

µ
.

Finding the optimal solution in a closed form via
standard control theory is not feasible due to the
high non-linearity and multi-dimensionality of the
problem. As the number of control functions and
stateequations increases, these two approaches (NLP
and DP) become inefficient to solve such problems
(Sniedovich 1992) due to high computational effort.
We introduce an alternative method by employing a
Cross-Entropy(CE) technique to solve the problem
numerically.

3 CE METHOD FOR OPTIMAL CONTROL

The cross-entropy(CE) method (Rubinsteinet al.
2004) is a recent Monte Carlo method that has proven
to be very successful in solving a wide range of
difficult optimization and estimation problems.

Main Procedure. Suppose, we wish to minimize
some objective, or performance, functionJ(u), over
some setU of continuous functionsu = {u(r)(t), r =
1, . . . , R, t ∈ [0, T ]}, for some finite timeT . We can
think ofU as a subset of functions inCR[0, T ], the set
of continuous functions from[0, T ] to R

R, that satisfy
certain integral and/or dynamic constraints, such as
discussed in the previous section. Let us denote the
minimum byγ∗, assuming it exists. Thus,

γ∗ = J(u∗) = min
u∈U

J(u). (8)

Instead of solving this functional optimization
program directly, we consider a relatedparametric
optimization program, namely

min
c∈C

J(uc),
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where uc is a function inU that is parameterized
by somecontrol vectorc ∈ R

m, for somem, and
C ⊂ R

m is the collection of such control vectors.
Clearly, if the collection{uc, c ∈ C} is chosen
large enough, the solution to the parametric problem
should approximate that of the original problem. In
particular, letc∗ be the optimal control vector andγc∗

the corresponding optimal value, that is,

γc∗ = J(uc∗) = min
c∈C

J(uc), (9)

thenγ∗ ≈ γc∗ andu
∗ ≈ uc∗ , if the set of parametric

control functions can approximateU well enough.

A simple way to parameterize the problem is
to partition the interval[0, T ] into n subintervals

[t0, t1], . . . , [tn−1, tn], and let c = {c
(r)
i , r =

1, . . . , R; i = 0, . . . , n} be a vector ofcontrol

points, and then define each functionu(r)
c via

some interpolation of the points{(ti, c
(r)
i )}. The

interpolation could, for example, be based on thefinite
element method(FEM) (Zienkiewiczet al. 2000), in
which case eachu(r)

c is of the form

u(r)
c

(t) =
n∑

i=0

c
(r)
i vi(t), (10)

where

vi(t) =





t−ti−1

ti−ti−1
, for t ∈ [ti−1, ti],

ti+1−t

ti+1−ti
, for t ∈ [ti, ti+1],

0, otherwise.

(11)

This is illustrated in Figure 4.

t
t0 t1 . . . tk−1 tk tk+1 . . .

1

u(t)
vk(t)

(tk, ck)

tN

(t0, c0)

(tN , cN)

Figure 4. A piecewise linear functionuc(t) that
passes through the points{(t0, c0), . . . , (tn, cn)}
using linear FEM.

Remark 3.1 Instead of linear FEM, one can use
many different types ofspline function, such as
the popular cubicB-Spline, to represent the control
functions, or one can apply the Lagrange interpolating
polynomial.

For a given control functionuc, the performance
value J(uc) can be evaluated directly by solving
numerically the ODE system which describes the

dynamic (state) constraints, e.g., viaRunge-Kutta
(RK) techniques. The CE method is employed to
find the optimal control vectorc∗ = {c

(r)∗
i , r =

1, . . . , R; i = 0, . . . , n}. The idea is to generate

each control pointc(r)
i randomly from a Gaussian

distribution with meanµ(r)
i and standard deviation

σ
(r)
i , and to update these parameters via CE to produce

better performing control vectors in the next iteration
(De Boeret al. 2005). We summarize the approach in
the following algorithm.

Main Algorithm

1. Initialize: Chooseµ0 = {µ
(r)
i0 , r = 1, . . . , R;

i = 0, . . . , n} andσ0 = {σ
(r)
i0 , r = 1, . . . , R;

i = 0, . . . , n}. Setk := 1.

2. Draw: Generate a random sample
C1, . . . ,CN ∼ N(µk−1, σ

2

k−1
) with Cm =

{C
(r)
mi , r = 1, . . . , R; i = 0, 1, . . . , n}.

3. Evaluate: For each control vectorCm evaluate
the objective functionJ(uCm

), e.g., by solving
the ODE system using RK techniques.

4. Select: Find theN e best performing (=elite)
samples, based on the values{J(uCm

)}. Let
I be the corresponding set of indices.

5. Update: for all r = 1, . . . , R; i = 0, 1, . . . , n,
let

µ̃
(r)
ki :=

1

N e

∑

m∈I

C
(r)
mi and

σ̃
(r) 2
ki :=

1

N e

∑

m∈I

(
C

(r)
mi − µ

(r)
ki

)
.

6. Smooth: For a fixed smoothing parameter
0 < α ≤ 1, let

µ̂k := αµ̃k + (1 − α)µ̂k−1 and

σ̂k := ασ̃k + (1 − α)σ̂k−1.

7. Stop: Repeat 2–6 untilmaxi σki < ε. Let L
be the final iteration number. ReturnµL as an
estimate of the optimal control parameterc

∗.

4 NUMERICAL EXPERIMENTS

In this section, we apply our CE procedure to solve the
epidemic control problems introduced in Section 2.
For simplicity, we refer to these epidemic intervention
problems as;Problem I: the case with a force of
infection and constant population size;Problem II: the
case with a force of infection and varying population
size, andProblem III: the case with actual mobility.

In the numerical experiments we choose the number
of patchesR = 5 and the initial values for the female
and male susceptibles are set to be 50,000. We assume
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that 100 male infectives are initially concentrated in
patch 1 only, and no infectives in other patches at
time t = 0; The available budgets for the patches
are K(1) = 10, K(2) = 5, K(3) = 2, K(4) =
7, K(5) = 10, and the time horizon is fixed atT = 25
years. The infection rate is of the formβ2 in (4), with
βmax = 0.5 andc2 = 1 for all patches. We assume
that the sizes of patches are all equal (except patch
1 where the disease is initially concentrated) and the
parameters,µ = 0.02, ν(r) = 10, ρij = 0.25 for
i 6= j = 1, . . . , 5, are set to be equal for all patches.

Problem I
We study Problem I first under auniform strategy
(U1 or U2). Then, we compare the results to those
obtained via the CE technique. Here, in the case
of multiple patches, the U1 scenario means that
u(t)(r) = K(r)/ta for t ∈ [0, ta] andu(t)(r) = 0
for t ∈ (ta, T ], and U2 meansu(t)(r) = 0
for t ∈ [0, T − ta] and u(t)(r) = K(r)/ta for
t ∈ [T − ta, T ].

Uniform Strategy. To see the optimal strategy for
U1 and U2, we vary the variableta and solve the
corresponding control problem. Figure 5 provides an
example how the values of objective function (5) (the
new infective cases relative to the total population size
of whole patches) vary for these two scenarios. As
can be seen from the graphs in Figure 5, policy U1 is
always better than U2 for this case. And the best U1
policy is the one withta ≈ 9.5 (i.e., spend all budget
uniformly and simultaneously in the first9.5 years for
all patches).

0 5 10 15 20 25
1.55

1.6

1.65

1.7

1.75

t
a
 (years)

J(
u) spent in [0, t

a
]

spent in [25−t
a
, 25]

Figure 5. The value of the objective function for the
two uniform strategies, as a function ofta. Thesolid
line corresponds to U1 and thedashedline to U2.

Solution via CE. The shapes of optimal control
functions obtained via CE are quite different from the
uniform bang-bang solution. Indeed, the functions
have a “parabolic” shape for all patches (except patch
1 which seems to be “linearly” decreasing) in the
interval [0, 10], and zero on [10, 23], followed by a
linearly increasing part in[23, 25], see Figure 6.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

t (years)

u(
t)

u(1)

u(2)
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Figure 6. The optimal control functionsu(r) of
Problem I for patchr = 1, . . . , 5 obtained via CE.

Although a little funding should be allocated in the
last 2 years, the numerical results via CE suggest that
most budget should be concentrated in the first 10
years. This is in accordance with the best uniform
strategy. However, the CE strategy suggest to spend
only a very small portion of the budget in the first one
or two years, whereas in the U1 strategy a significant
amount of budget for all patches has been allocated
in the beginning. This CE result seems reasonable
since it might not be worth spending much budget
in the first one or two years when no or only a few
infectives might be present, except in patch 1. The
control strategy obtained via CE gives quantitatively
a better solution, which isJ(u) ≈ 1.5543, than that
using the uniform strategy (J(u) ≈ 1.5724).

Varying the time horizonT . It is interesting to
examine how the shape of the control function
changes under the uniform policies if one varies
the time periodT , while keeping other parameters
unchanged. Figure 7 shows that the graphs of
the performance functionJ(u) (given by (5)) are
qualitatively quite different.
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Figure 7. The first column of figures represent the
values of objective functionJ(u) with the strategies
U1 (solid lines) and U2 (dashedlines), for three
different time horizonsT = 5, 15, and50. Thesecond
column of figures represent the optimal trajectoryu of
Problem I via the CE method as the time horizonT is
varied. The other parameters remain unchanged.
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However, the numerical results also indicate that the
optimal uniform control strategy remains the same,
namely to spend the whole budget in all patches
simultaneously up to9.5 years, and ifT ≤ 9.5, to
spend all budget uniformly in[0, T ]. As shown in
Figure 7, the optimal solutions via CE also behave
similar to those in the uniform strategies, when
varying the time horizonT . For T ≤ 10, all budget
is spent almost uniformly in the interval[0, T ] and for
T > 10, the optimal solution has a similar structure to
that in Figure 6.

Problem II

The numerical experiments of Problem II use the same
initial values and parameters as for Problem I.

Uniform Strategy. In contrast to Problem I, the
minimum number of new infective cases is achieved
by employing the U2 policy; specifically, withta ≈ 3
years; see Figure 8(a). Varying the time horizonT
or the budgetK for the uniform strategies gives quite
similar results as in Problem I.
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2.32

2.34

2.36

2.38

2.4

2.42

2.44

t
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spent in [25−t
a
, 25] 

(a) The values of objective
functions for U1 and U2.
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J(u) = 2.307825

(b) The optimal control func-
tion via CE.

Figure 8. Numerical results of Problem II forT = 25.

Solution via CE. The optimal solution via CE method
suggests a similar result to the second uniform
strategy, where most budget is concentrated in the last
3 years. As in Problem I, the numerical experiments
also indicate that some portion of the budget should
be spent approximately in the first9.5 years for all
patches. Moreover, the control functions in[0, 9]
have again a “parabolic” shape, except for patch 1
where the infectives are initially concentrated. The
best strategy is to allocate the budget in the first
9.5 years, with “parabolic” control functions for all
patches except for patch 1 which has a “linearly”
decreasing control function, spend nothing for the
next 13 years, and spend the rest of budget in the last
2.5 years in a linearly increasing way, for all patches.

Thus, although the optimal strategies suggested via
CE for Problem I and Problem II are quantitatively
different (i.e., the amount of budget is concentrated
in different time intervals), the shapes of control
functions in both models look similar, that is a
parabolic-like function in the first 10 years, a zero
function for the next 13 years, and followed by an

linearly increasing function in the last 2 years.

When varying the time horizonT in Problem II, the
optimal trajectoriesu obtained via CE also behave
much similar to those in Problem I.

Our numerical results suggest that allowing for some
reallocation of resources over the time horizon of the
problem, rather than allocating resources just once
at the beginning (or at the last) of the time horizon,
can qualitatively lead to significant decreases in the
number of new infectives.

Problem III

We set the same migration rate,v(r) = 10 per unit
time, for all patches,r = 1, . . . , 5. We assume
that the probability that an individual leaving a
patch i visits patchj is equal for all patches, so
that ρij = 1

R−1 = 0.25, i 6= j. Thus, the rate at
which individuals leaving a patchi visit patch j
is νij = ρij v(i) = 2.5. Initial values and other
parameters remain the same as specified in the
previous simulations for Problems I and II.

Uniform Strategy. As shown in Figure 9 (a) for the
time horizonT = 25 years, Problem III appears to
have a different structure of the optimal trajectory
to those in Problems I and II for the uniform
strategies. The best uniform strategy is to spend the
budget evenly (uniformly) over the entire time period.
However, if we extend the time scale, sayT = 100,
see Figure 9 (b), we obtain a similar structure as in the
previous problems.
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Figure 9. The values for the objective functionJ(u)
for several uniform control scenarios.

Solution via CE. Solving the problem via CE gives a
quite similar result to the U1 strategy over the interval
[0, 25], see Figure 10. Note, however, that the optimal
curves are, except for patch 1, significantly lower at
the beginning and end of the time period. The optimal
valueJ(u) obtained via CE turns out to be very close
to that of the uniformly distributed strategy with a
bang-bang structure solutionu(r) = K(r)/T, r =
1, . . . , 5. By varyingT , see Figure 10, orK we obtain
a significant different structure of the solution.
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Figure 10. The optimal control functionu of Problem
III for 5 patches obtained via CE.

5 CONCLUSIONS

In this paper, we have formulated various epidemic
intervention models for the spread of HIV in multiple
populations and introduced a new CE technique
to solve these problems. The numerical results
indicate that the shapes of the control functions for
the different models are qualitatively similar. In
particular, for the patches that are initially infectives
free, the first part of the control function is concave,
starting and ending at zero, the second part is zero
(no control), and the third part is linearly increasing.
However, quantitatively the control functions depend
significantly on the form of the model used. For
example, in the model with a force of infection and
a fixed population size, most budget is concentrated
in the first part, whereas in the model with a force of
infection and a varying population size most budget is
concentrated in the last part. This notable difference
can also be observed when applying “uniform”
strategies, where the budget is spent at a constant rate
in either the first or the last part of the time interval.
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