Applying Genetic Programming to Model Rainfall-Runoff

P.A. Whicham
CSIRO Land and Water, P.O. Box 1666,Canberra, A.C.T. 2001, AUSTRALILA
Peter Whigham @chr.ciw csiro.au
P.¥. Crapper
CSIRC Land and Water, P.O. Box 1666,Canberra, A.C.T. 2601, AUSTRALIA
Peter.Crapper@cbr.clw.csiro.au

Abstract Genetic Programming is ar inductive form of machine learning that evoives a compuier program te perform a task
defined by a set of presented (training) examples. An initially random population of programs, generated using a formal
grammar, evolves as a population over a number of generations using the genetic operators of crossover and muiation. Each
generation programs are selected for crossover, mutation and reproduction based on their relative [itness with the training
examples. This technique mimics aspects of Darwinian natural selection and drives the system towards discovering more
useful programs. Genetic Programming has been successfully applied to problems that are complex, non-linear and where the
size, shape and overall form of the solution are aot explicitly known in advance. This paper describes the application of a
arammaticalty-based Genetic Programming systemn to discover rainfali-runoff relationships for twe vastly different catchments.
A context-free grammar is used to define the search space for the mathematical language used to express the evolving
programs. A daily time series for of rainfall-runoff is used to train the evolving population. A deterministic lumped parameter
model, based on the unit hydrograph, is compared with the results of the evelved models. The favourable results of the Genetic
Programming approach show that machine learning techniques are potentially a useful tool for developing hydrofogical models,
especiaily when surface water movement and water losses are poorly understood.

s Mutation of an individual, which is an asexual

I INTRODUCTION operalion causing (normally) a small change in the
individual, and

The major objective of rainfall-runoff modelling is 0 s Mating between individuals, which mixes the pareat
predict the ruaoff of a catchment from the rainfall incident represeniations to create a child.

on the catchment. The response of the catchment Individuals are given a fitness measure, which is defined
(especially Australian catchmentsy is highly capricious by their performance against a training set of examples
depending not only on the catchment characteristics (e.g. relating input and output patterns. Selection of individuals
topography, area).  vegetation  characteristics  and for mutation and mating are based in a proportional way
antecedent conditions, but the meteorotogical conditions on their fimess. 'This selection mechanism (similar to
(c.g. areal distribution of rainfall) in a highly non-linear Darwinian paturat selection} drives the population towards
and unpredictable fashion.  Developing models that better individuals and therefore better solutions,

describe this reiationship may help in understanding the

overall behaviour of the catchment and support the

development of more process-based models and catchment 1.2 Bias and Learning
clagsification schemes.

This paper will compare two different approaches 1o Bias may be defined as the factors that influence a learning
predicting rainfail-runoff relationships, One approach uses system 1o favour certain hypotheses or strategies. The
an evolutionary machine learning algorithin which evolves application of a learning system always involves some
programs defined in & formal language; the other approach form of bhias. Bias may be introduced in any of the
uses a {more traditional} deterministic  modelling following areas:

framework based on the unit hydrograph.
e The problem representation.
s  The operators used to search the representation space.

1.1 Machine Learning s The structural constrainis of the representation.

. = The search constraints when manipulating  the
The field of evolutionary computation has been »\fidci.y representation.
studied since the 1960°s, This form of machine learning s e The criterion used (o evaluate proposed solutions.

characterised by the use of a population of objects that
compete to perform some specilied task. Using biological

h - _ ; ; The use of bias in machine learning has been promoted
analogies, the population of possible solutions are

it ' for many years when knowledge is avaiiable that can help
maodified 1o twoe main ways: narvow the search space of the problem.  For example,
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Lenat [1984] stated “Al our experiences in Al research
have led us to belicve that for automatic programming, the
answer lies in knowledge, in adding a collection of expert
rules which will guide code synthesis and transformation”,

When knowledge about the structure and form of good
solutions is known there should be the opportunity to
define this knowledge explicitly. This is described as
background knowledge, and includes bias of the language
and how particular paris of the search space are to be
explored.

1.3 Rainfali-Runoff Modelling

One of the traditional approaches to hydrograph modelling
is 1o use the concept of the Instantaneous Unit Hydrograph
(IUH). The IUH can be defined as the hydrograph
produced by the instantanecus application of a unit depth
of rainfall to a catchment. The shape of the IUH is similar
to a single peak hydrograph with a rapid rise and a slower
decay. The fundamental assumption in the TUH model is
that the precipitation input is egual o the integrated
streamflow output.  The non-linear relationship between
rainfall and streamflow has led to the development of
effective rainfall, which is determined by applying a non-
linear filter to the raw rainfali data. This effective rainfall
is then equaicd with the integrated streamilow for the
specified catchment,

The ITHACRES model applied in this paper is based on
[UH principles. The model defines a unit hydrograph for
total streamilow by defining separate unit hydrographs for
the quickfiow and the slowflow components. The model is
defined by six parameters, four of which are determined
directly from the raw rainfall, sireamflow and temperarure
{or a surrogate)}, while the other two (the non-linear
parameters) are calibrated using a trial and error search
procedure, optimising the model to fit the observed
rainfall-runciT relationship.  Addittonal details about the
model are contained in Jakeman et al.(1} and Littlewood
and Jakeman(2).

1.4 Format of the paper

This paper will proceed as follows: Genetic
Programming (GP) will be introduced as a form of
program induction using evolution. Formal grammars are
then shown to be a useful method for defining language
structure and may be neatly described in the same
framework as GP. Grammars are shown Lo be able to be
used as generators for sentences of structured languages
and may be manipulated using a crossover operator that
maintains the language structure,  Additionally, a grammar
s shown to be able to express both language and search
bias. Finally, a grammatical GP system is applied to two
calchments with vastly different rainfall-runoff behaviour,
The results are compared with the deterministic madel
THACRES.

2. GENETIC PROGRAMMING

The field of program induction, using a tree-structured
approach, was first clearly defined by John Koza [1992].
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This field, named Genetic Programming (GP), evolved a
soluion in the form of a Lisp program using an
evolutionary, population-based, scarch algorithm which
extended the fixed-length concepts of Genetic Algorithms
defined by Holland [1992]. The structures were defined as
a combination of functions {arity > 0) and terminals (0-
arity functions} which combined to form Lisp programs.
The following steps summarise the search procedure used
with GP.

1. Create an initial population of programs, randomly
generated as compositions of the function and terminal

sets.

2, WHILE termination criterion not reached DO

a) Execute each program to obtain o performance
(fitness) measure representing how well each program
performs the specified task.

b} Use a fitness proportionate selection method to select
programs for reproduction to the next generation.

¢} Use probabilistic operators {crossover and mutation)

to combine and modify components of the selectad
programs.

3. The fittest program represents a (partiai) selution to the
probiem,.

GF has been applied successfully to many problems,
however the lack of structure in the possible combinations
of functions and terminals meant that there was no way o
define bias in terms of program construction or how the
programs were modified. This lack of explicit biasing
mechanisms has probably slowed the wider application of
GP to real-world problems.

3. FORMAL GRAMMARS AND LEARNING

A formal grammar is a production system which defines
how acnterminal symbols may be transformed to create
terminal seniences of a language, A grammar s
represented by a four-tuple (N, I, P, S), where M is the
alphabet of nonterminal symbols, T is the alphabet of
terminal symbols, P is the set of productions and S is the
designated start symbol.
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Figure 1. A Derivation Tree

3.1 Derivation Steps and Derivation Trees

A derivation step represents the application of a
production to some string which contains a nonterminal,
In general, a series of derivation steps may be represented
by & syntax tree or derivation tree. As shown in Figure t,
the derivation steps



S = xAy = xzBy = XzAXy = XZZXY (1}
may be represented as a tree.  The genetic operators
crogsover and mutation are applied directly (o these trees.

3.2 How do we use the grammar ?

& grammar G may be used as a generator of sentences
which are a part of the language L{G). A limit on the
depth of the derivation tree created from the grammar is
necessary to ensure that the gencration process halis (there
is also the practical issues of implementing the generation
on a finite machine and being able to execute the created
programs).  There are two steps involved in using G w©
generate random sentences from L{G). Initially cach
production P & G, is labelied with the minimum depth of
derivation tree that can be created from this production to
produce a siring of terminal symbols. This min-depth-tree
value is used to guide the selection of preductions when
randomly creating sentences from L(G), limited by some
maximum depth of derivation tree.

Bach derivation tree is evaluated against the test data to
obiain a fltness measure. Selection of programs
(derivation trees) for crossover and mutation are based on
their relative fitness. Each generation, the population is
wansformed using the genetic opsrators of crossover and
matation to give the next population.  This process
continues until some maximum number of generations
have passed, or an acceptable solution has been
discovered.

o

3.3 Genetic Operators

This section describes how o derivation tree is modified
from one generation to the next. Since mulation is not
used in the examples, only the crossover operator will be
deseribed.

3.3.1 Crossover

Crossover applies 2 (parent) individuals and creates 2

{offspring) individuals.  Crossover is defined by two

parameters: the probability of crossover occurring and the

nonterminal A € N where crossover witl be attempted.

Cliven two derivation trees dy and d, the steps involved are

{sce Fig. 20

s Randomly select a nonterminal site A; from dy and A;
from d.

s Swap the derivation trees below Ap and Ay thereby
creating two new derivalion trees.

»  Insert these trees into the next-generation population.

If dy or da do not contain the nonterminal A then no
crussover i possible and the operation is aborted.

The benefit of using the derivation trees to represent the
population now becomes clear; by delining crossover w
swap subtrees wt the same nonterminal guarantees that the
language defined by the grammar is maintzned.
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4, LAMGUAGE AND SEARCH BIAS

The language L(G) is shaped by the grammar G. Since
this grammar is declaratively defined the language bias for
the learning system is clearly stated and easily changed
without changing underlying functions of the system. This
promotes the exploration of new language constructions
which become apparent during the evolution of partial
solutions. For example, a combination of terms that
consistently appear in partial solutions may be explicitly
stated as part of the grammar. Thus an incremental
approach to developing a solution may be performed ina

Figure. 2. Crossover between Derivation Trees

declarative manner.

An additional tenguage bias may be introduced when
defining the grammar. Bach production is labeiled with a
weighting factor, which biases the probubility of cach
production being selected during the generation of the
initial population. This aflows background knowledge
about which terminal symbols are likely to be most useful
in developing a solution,

Search bias is introduced by allowing the crossover and
mutation sites (i.c. the nonterminals) to be individually
specified. For a particular setup, a number of crossover
and mutation operations may be defined. Each crossover
and muation is defined as a nonterminal with a probability
of occurrence. The ability te specify which nonterminals
are used for these operators allows o  declarative
specification of where the majority of the scarch for better
sotutions will be performed. It also promotes the
exploration of the search space in an interactive sense by
the user. This paper will not pursue the goal of achieving
the best possible solution. Rather, the paper is being used
to demonstrate the appropriateness of this technigque o
rainfali-runoff modeliing, recognising the potential for
further discovery and improvements. The system
described in this paper has been previcusly defined by
Whigham {1993, 19961 and is entited CFG-GP.

5 CATCHMENT DESCRIPTIONS

In order to test the two modelling approaches two very
different catchments were chosen, The first catchiment was
the Teifi catehment at Glan Teili in Wales. The Teifi
cutchment is a rural caichment draining 893.6 km’ with an



average annual rainfall of 1368 mm. This station was
maintained and operated by the UK Environment Agency
and the data can be obtzined from the Institute of
Hydrology. Compared with the Namoi caichment, the
number of rain days per annum is much greater at Teifi but
the maximum daily rainfall is only about half the value far
the Namoi. The other major difference is that runoff
percentages are very much higher at Teifi. For the
calibration period the runoff percentage was 66.7% and for
the simulation period the runoff perceatage was 74.95%.

The second catchment was located within the Namai
River catchment in northeastern New South Wales. This
catchment wus chosen to be as different as possible from
the Namoi catchment. Using the Department of Land and
Water Conservation  (the gnuging authority) naming
convention the catchment is referred to as 419030 or the
Manilla Rv a1 Barraba (30° 23" 247 S and 150° 37" g»” Eh
This catchment is of 568 km® and drains the southern part
of the Nandewar Range. Within the catchment there are
three reliable long-lerm raingauge stations with average
annual rainfalls of 686mm, 704mm and 727mm. These
stations have a reasonable spread of location and aftitude
and the average of the three values has been used as the
catchment rainfall. More sophisticated techniques do exist
for determining catchment rainfall but given that there were
only three rainstations such sophisticated approaches are
inappropriate ( Fleming P, M. pers comm). For very large
events (greater than 100mm) thers was a strong relationship
between rainfall and runoff but as the size of the event
decreased the relationship between rainfall and runof!
became more random. The rainfall in this part of the
country is sirongly summer dominated, which influenced
the selection of the calibration and sinwlation periods. The
calibration run was done from 13 November 1965 to 10
March 1966 and the simulation run was done from 4
November 1966 to 13 March 1967, In spite of this
catchment having a comparatively high rainfall (by
Australian standards at least) and our selection of the high
rainfall moaths, the runolf percentage over the calibration
period was only 6.12% and the simulation period was
8244

6. CFG-GP SETUP
The grammar, G, used by CEG-GP 1o develop the

rainfall-runofl  models  allowed  general  mathematical
functions to be evolved, and was defined as Follows.

chp =
{8,
N={EQU, NL, EXPN},
2= - A0 F2,03,r4d,r3,0v3 av 1G,av 1 5,av20,
avZ35, av30, avdl, av30.ave0,avi00, R,
P
{

S — + EQU NL
NL - * EQU EXPN

EXPN — exp EQU

EQU — + EQU EQU | - EQU EQU

EQU - * EQU EQU | / EQU EQU

EQU 0 I vt |2 | v3 ]t o5

EQU — av5 l aviQ E avls | av20 | av2s
EQU — av30 | ava0 |avso | aveo | avioo
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EQU — %
]
}

The terminal symbaols rO.rl,..r5 represeat the rainfall for the
current day ep to the last 5 days rain. The avs, av](, .
av100 terminals are the average rainfall for the last 5, 10, ...
100 days, respectively. The terminal R is a random floating
peint number between -10.0 and 10.0 which is generated for
each occurrence of R when the initial population is created.
The grammar has a structural bias o form equalions that are
composed of a linear component and a  non-linear
(exponential) component. This is shown by the production
S — + EQU NL, which forces ali programs to have the
minimal structure of A + B * exp(C), where A, B and C are
ciimate variables.

POPULATION SIZE 1000
GENERATIONS 50

GRAMMAR G

MAX. TREE DEPTH i35
CROSSOVER & = [BQU} | 90%

FITNESS MEASURE Minimise RMSE

Table I. CFG-GP Parameter Settings for evolving a
simpie rainfall-runoff Model

Table | shows the CFG-GP setup parameters which were
used to develop both catchment models.  The [itness
measure used to evalvate the performance of cach program
during calibration was the root mean square error (RMSE).
This approach treated each point, irrespective of magnitude,
as equally important. Further work of interest would be to
study the affects of different metrics for the [itness
measurement, based on various criterion. A likely oulcome
of this work would be a classification for calchments based
on which type of metric best evolves an overall rainfall-
runoff refationship.

Weamred Rairdali-Bunoff at Glan Teif

Rainfail {mmyday}

[E

July, 8t

July. 82

July B0

Runoff (cumecs)

Figure 3. Measured Rainfall and Runoff at Teifi
7. RESULTS
7.1 The Glan Teifi Catchment
The measured rainfall and sweamflow, for the Teifi

catchment between 1979 and 1982, is shown in Figure 3
(rainfall events are shown in black). The simulated




streamflows determined by IHACRES and CFG-GP are
shown in Figures 4 and 5. A visual comparison with the
measured  sireamflow  (Figure 3), indicates that both
approaches have captured the basic response of the
carchment, however ITHACRES appears to have better
represented the extreme streamflow events. The root mean
square error (RMSE) for [HACRES was 0.46 and for
CEG-GP was 0.47. The CFG-GP eguation for the Teifi
catchment was defined as follows,

events, there i1s not a significant relationship between the
rainfalt and runoff. The simulated streamflows determined
by the two approaches are shown in Figures 7 and 8. The
RMSE for the THACRES approach was (.54 and for CFG-
GP was 0.50. For the purposes of our comparison these
results are similar, The evolved equation found by CFG-
GP was:

SUH8,-1.911790),-0.474622),-4.164400),
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-(f{-1.542888,5.944119),-{av10.r0))), )]
+(+{rl,+avdl *(av1d.av100))),%(*{avs, (2) *(rlh,exp(/(0.251564,av10))))
+(-17.121983,%(av3 avdl))) exp(-3.7398%6))) 1
Measured Rainfall-Runoff at Barraba {Manilla River)
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Eguation (2) shows that the catchment was influenced by @
aatecedent conditions that could extend for several months £0
into the past (the av100 variable represents the average it
rainfall for the fast 100 days). MNote also that the constant 50 0
exponential expression in equation (2}, mamely exp(- g 'g
3.739896), means that the resulmnt equation is a linear g “0 g
S . - £ &
function of ¥1,av3, avl{, avdl, and aviGd. Z . z
o !
7.2 The Manilla River at Barraba, N.SJW,
10
The measured rainfall and subsequent streamilow for the
simulated period in the Burrada catchment are showa in N ’ ) ) '
. . . . Moy, Bet, 66 Jan, 66 b, 66 Mar, 66
Figure 6. As can he seen for Jarge events, there is a strong - -
relwtionship between rainfall and runoff.  For smaller Figure 8. Rainfall andBCFG};GP Modelied Runoff at
arraba



It is worth noting that equation (3) uses the current days
rainfall (rf), and the average of the last 10 days rainfall
(av1(). Additionatly, (3) has the nonlinear term
{exp(/(0.251564,av10)), which is a function of avl0., A
comparison of equations (2} and (3} shows that the two
catchments have been modelled in very different ways. The
Welsh calchment has been moadelled using long term
averages in a linear combination, whereas the Australian
catchment has been modelled using short average times and
the current day in a nonlinear fashion. This woisdd suggest
that the underlying processes that are driving the water
movement throughout both carchments are quite different.

When an attempt was made to calibrate over different
consecutive seasons for the Barraba data, the THACRES
madel was not able to find coefficients o suit all seasons,
and therefore could not converge. This also accounts for
the short calibration and simulation periods. However the
CFG-GP approach, because it makes no assumption about
underlying relationships, was able to be calibrated over
successive seasons. When CFG-GP was calibrated using
this longer period (1000 days) the resultant model achieved
significantly better results on the original simulated data set
(RMSE = 00.27), The response of this modelted streamflow
is shown in Figure 9. The evolved eguation was:

+(exp(+{/exp(-4.874963) -0.796608),
J(f(r0,-1.864706),+(-3.018028 ,-4.4 1 8388) {(4)
INE(-3.240420,exp(-1.181253))

The interesting comparison between equations (3) and (4) is
that using the larger dataset for calibration resulted in a
soluticn that was a nonlinear function of (r0). No average
rainfall value was found to be useful. This implies that the
Barrada catchment has a very quick response between
rainfall and runcff, and no significant seasonal signal.

|
Modelled CFG-GP Raindall-Runoff at Barraba (1000 days)

&=

Runolf {cumecs)

Ralnfal {mim/day)
&

Nuv,fif Cigs, 15 dun, 66 Feh, 64 ur, 66

Figure 9. Rainfall and CFG-GP Modelled Runoff
based on a calibration perind of 1968 days.

8. CONCLUSION

In the present work we have compared the results obtained
with a deterministic lumped parameter model, based on the
anit hydrograph approach, with thosc obtained using a
stochastic machine learning model.

For the Welsh catchiment the results between the two
models were similar. Since rainfall and runoff were highly

correlated the deterministic assumption underiying the
IHACRES model was satisfied. Therefore [HACRES could
achieve a satisfactory correlation between simulated and
unseen data. It is also interesting to note that for this
catchment the runoff ratio was approximately 70% which
suggests that a relationship does indeed exist between the
rainfall and runoff. The CFG-GP approach does not require
any causal relationships but achieved similar resuits. The
behavicur of the studied Australian cawchment is very
different from the Welsh catchment. The runoff ratio was
very loew (7%) and hence the a priori assumptions of
IHACRES {(and other deterministic models) were a poor
representation of the real worid. This was demonstrated by
the imability of IHACRES to use more than one seasons
data for calibration purposes and only able 10 use data from
a high rainfail period. Since the CFG-GP approach did not
make any assumptions sbout the underlying physical
processes, calibration periods over more than one season
could be used. These led to significantly improved
generalisations for the modelied behaviour of the
catchment.

In summary, either approach worked satisfactorily when
rainfall and runcfl were correfated. However, when this
correlation was poor, the CFG-GP had some advantages
because it did not assume any underlying relationships. In
these circumstances the use of evolutionary algorithms
warranis further consideration.
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