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EXTENDED ABSTRACT 
 

The Internet needs protocols and mechanisms to 
provide guaranteed quality of service. The existing 
Internet is surprisingly close to providing good 
quality for a very wide range of services, probably 
because the TCP protocols aim to achieve, and 
come to close to achieving, fair queueing, or 
processor sharing, whenever several flows 
compete for limited resources. The DiffServ 
architecture aims to do better than this by 
providing different performance standards for 
different classes of service. The obvious way to 
apply DiffServ is to allocate classes in accordance 
with the urgency or priority of the requests. 

However, another approach is to use DiffServ to 
allocate service classes according to the “size” of 
the requests – smaller requests receiving generally 
better service and longer requests worse.  

A Pareto distribution with small shape parameter 
has been used in a great deal of research, and in 
this paper, to model the widely accepted heavy-
tailed nature of flow lengths. We assume that the 
starting times of these flows forms a Poisson 
process. 

It was shown in (McNickle and Addie(2005)) by 
means of a queueing model with this traffic that 
serving flows in order of job size (in bytes, shorter 
flows served first) leads to significantly lower 
mean and standard deviation for response times, 
for flows of all lengths. This paper also provided 
evidence that it is unlikely that DiffServ can 
achieve a significantly better result. This poses the 
challenge of how to arrange for flows to be served 
in the shortest-job-first (SJF) order, or as close as 
possible to it. 

We define a simple approach to achieving this 
which can be implemented locally – in just two 
routers in the simplest case. Simulations have been 
used to demonstrate that some of the benefits of 
the SJF discipline can, indeed, be obtained. 

In this paper we propose a protocol for achieving 
an approximation to the shortest job first order of 
service at times of congestion. The proposed 
mechanism is scalable and local in the sense that 
the actions taken are confined to a small number of 

routers near the site of the congestion. This 
concept of a local protocol modification can be 
viewed as a generalization of Active Queue 
Management. Whereas AQM's are generally 
formed by modifying the queueing discipline and 
ensuing behavior at the congested node, in our 
proposal, which we shall term local QM (LQM), 
some nearby nodes also assist in managing the 
congestion, with the objective of approaching as 
close as possible to SJF. 

SJF is sometimes not achievable to acceptable 
accuracy for reasons which have nothing to do 
with the treatment of packets by the nodes near 
where congestion is occurring. In such situations 
we cannot expect our mechanism to do the 
impossible. For example, if the sending host is 
unable to deliver a flow at the maximum rate of the 
bottleneck link, it will not be possible to serve this 
flow ahead of all others, and so SJF will not be 
achievable. 

Two similar LQM strategies have been tested and 
compared in the context of a local premises 
network connected to the Internet via a congested 
link. In one of these strategies, packets are marked 
at the edge router are dropped or remarked at the 
gateway to the premises depending on the traffic 
conditions there. In the other strategy some packets 
are remarked and others have their ECN bits left in 
place. 

Simulation results have been able to demonstrate 
that the strategy is able to produce better response 
times than AQM’s of comparable complexity 
located at the edge router. 
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1. INTRODUCTION 
Because the fundamental requests for service 
submitted to the Internet appear to generate 
demands for resources distributed with a Pareto-
like tail (see for example, Crovella, Taqqu and 
Bestavros (1998)), the shortest-job-first queueing 
discipline is very close to optimal for all feasible 
demand profiles, i.e. even if users really wanted 
their middle sized jobs to achieve the tightest delay 
constraints it would still be virtually as good if 
shortest jobs were uniformly served first 
(McNickle and Addie(2005)). 

 Identifying the underlying requests by users is 
very difficult, perhaps impossible, however since 
we only need to identify these requests when there 
is a problematic resource constraint, any scheme 
which behaves in the same way at these times of 
resources limitation will be equivalent to a system 
in which the underlying requests have all been 
tagged and are readily identified. Furthermore, 
identifying problematic requests is much easier 
when they happen to be causing a resource 
shortage. Therefore, we do not necessarily need to 
be able to identify the underlying requests, except 
somewhat indirectly and under certain 
circumstances, in order to achieve performance 
similar to a system in which all requests have been 
identified.  

In this paper we propose a protocol for achieving 
an approximation to the shortest job first order of 
service at times of congestion. The proposed 
mechanism is scalable and local in the sense that 
the actions taken are confined to a small number of 
routers near the site of the congestion. This 
concept of a local protocol modification can be 
viewed as a generalization of Active Queue 
Management. Whereas AQM's are generally 
formed by modifying the queueing discipline and 
ensuing behavior at the congested node, in our 

proposal, which we shall term local QM (LQM), 
some nearby nodes also assist in managing the 
congestion, with the objective of approaching as 
close as possible to SJF. 

SJF is sometimes not achievable to acceptable 
accuracy for reasons which have nothing to do 
with the treatment of packets by the nodes near 
where congestion is occurring. In such situations 
we cannot expect our mechanism to do the 
impossible. For example, if the sending host is 
unable to deliver a flow at the maximum rate of the 
bottleneck link, it will not be possible to serve this 
flow ahead of all others, and so SJF will not be 
achievable. 

In Section 2 of this paper the real-world problem 
of performance degradation caused by congestion 
in bandwidth constrained links is described and 
existing work on this problem is reviewed. In 
Section 3, a queueing model of the problem, and 
the conclusion that Shortest Job First should be a 
very effective queue management strategy in 
routers, are presented. In Section 4, an approach to 
implementing the shortest job first queue 
management strategy is presented, and in Section 5 
a simulation experiment which tests this 
implementation and compares it to the queueing 
results are given. Conclusions are drawn in 
Section 6. 

2. BOTTLENECK BEHAVIOUR  
The performance of services using the Internet will 
be affected significantly by the way in which 
congestion is handled at all of the routers along the 
end-to-end path traversed by packets used to 
provide the service. 

Broadly speaking, we can distinguish between the 
links on this path which form a bottleneck and 
those that do not. It is expected that the majority of 
links will not form a bottleneck, simply because 

Figure 1. A premises in need of performance protection 
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the likelihood of the capacity at two links forming 
such a constraint seems low. We expect the 
proportion of links running near to capacity in the 
Internet to be low and because of TCP's congestion 
avoidance mechanism; even a congested link will 
not constrain our flow unless it happens to be the 
most severe constraint on the path. 

However, even if a small proportion of links form 
bottlenecks, it is the bottlenecks which ultimately 
determine the performance of the whole network 
and there will usually be a bottleneck because TCP 
will normally increase the rate at which it delivers 
packets until congestion is encountered. We 
therefore need to model these bottleneck links, and 
that is what we have set out to do in this paper. 

Because of the way the TCP protocol senses 
congestion in the Internet and causes sources to 
reduce their sending rate, requests for service are 
effectively held in a virtual queue, the physical 
implementation of which is at the sources. In order 
to evaluate strategies for managing congestion, it is 
this virtual queue we need to model. 

Some natural strategies for managing this queue 
include: Processor Sharing, which corresponds to 
fair queueing, First-in-first out, which we can 
readily see is a poor strategy, priority queueing, 
where priorities are allocated according to class of 
service, and shortest-job-first (SJF), which has the 
advantage of minimizing mean and standard 
deviation of waiting time. 

In McNickle and Addie (2005) it was shown, by 
means of a queueing model, that the benefits in 
overall reduction of waiting times (for all classes 
of traffic) afforded by the SJF protocol are so 
great, and the marginal advantages (for some 
classes of traffic) afforded by a priority queue 
strategy are so small, that the ideal queueing 
discipline to adopt at a congested link is SJF. 

How can SJF be implemented at the virtual queue? 
This paper is concerned with showing how an 
approximation to the shortest job first discipline 
can be implemented and that this approximation 
achieves a significant proportion of the benefits of 
the SJF discipline. 

First of all, observe that almost all the benefits of 
the SJF queueing discipline can be obtained so 
long as the queueing discipline we adopt is close, 
in some appropriate sense, to SJF. For example, a 
queueing discipline which is identical to SJF when 
buffers are heavily loaded and not identical when 
they are not, will still achieve most of the benefits 
of SJF, since it is only when buffers are nearly full 
that the queueing discipline is important. 

Secondly, observe that congestion occurs in the 
Internet primarily in the access networks. At a 
rough guess, assuming the core part of the Internet 

is well designed, congestion is most likely to occur 
in the 3-4 hops closest to the source or the 
destination of a flow. 

We need to distinguish two forms of congestion in 
an access network – congestion occurring at or 
near the source and congestion occurring at or near 
the destination. We restrict our attention to the 
more important of these, namely congestion at or 
near the destination (See Figure 1). The same 
techniques that apply here probably apply to the 
other case as well. In some respects the case of 
congestion near the source appears to be somewhat 
easier since the necessary congestion management 
actions can be taken in the premises where the 
traffic is emerging. However, we shall restrict our 
attention to the case which is of wider interest, 
namely the one where congestion is occurring at or 
near the entrance to an access network. 

So, given this, let us propose a simple scheme for 
achieving close to the SJF discipline, which can be 
achieved by means not greatly different from that 
used in an AQM such as RED or ARED. Packets 
at a congested router should be marked using the 
Explicit Congestion Notification mechanism in 
basically the same manner as in the RED or ARED 
AQM. Instead of relying on this mechanism to 
achieve benefits such as better link utilization and 
lower queueing delay all by itself, by interacting 
with the TCP congestion avoidance algorithm at 
the source, packets with ECN bits set will be 
treated in a special manner at subsequent routers 
on the way to their destination. Packets will be 
differentiated on the basis of the size of their 
containing flow. Packets in short flows with ECN 
bits set will have these bits reset, whereas packets 
in long flows will be dropped. 

It is clear that this mechanism will disadvantage 
flows which show up as unusually long or high in 
rate according to the token buckets in routers in the 
access network. It is not obvious that this should 
result in a discipline similar to SJF for serving the 
virtual queue of flows sharing access through a 
bottleneck link. We shall present an argument that 
this should be the case in Section 4.3. 

3. A  SIMPLE QUEUE MODEL 
For a theoretical model of Internet performance we 
consider a conventional M/G/1 queue, with 
unlimited storage, and where the service-time 
distribution is given by a Pareto distribution of the 
form: 
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parameter.  We will take 1 < �  ≤ 2, thus ensuring 
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heavy-tailed behaviour, and select the scale 
parameter so that the mean service time is one.  

In general the mean and variance of the service 
time are 

�
/(� -1) and  

�
 � 2/((� -1)2(� -2)), for �  > 1 

and 2 respectively.  For �  ≤ 2 the variance, and all 
higher moments, are infinite. We take the traffic 
intensity to be 0.9.  While this may seem 
unrealistic, it is worth considering because real 
systems stray into high occupancy rates for long 
periods, due to the long-range-dependent rather 
than Poisson nature of internet traffic. 

We apply this queueing model to the virtual queue 
which exists among the sources competing for the 
resources of a bottleneck link which lies nearby, in 
the local access network. 

3.1. Service Disciplines 

We consider three service disciplines, FIFO (first-
in first-out), PS (processor sharing) and SJF 
(shortest-job first.)  We consider the expected 
response time (sojourn time) T(x) of a job with a 
service requirement of x (Of course it is well 
known (Schrage (1968)) that the shortest-
remaining-processing-time is optimal for M/G/1 
with respect to average response time, but this 
appears impractical for Internet applications, 
although Harchol-Balter, Crovella and Park (1998) 
make a persuasive argument for it).  

FIFO: Because the variance of the service time is 
infinite it immediately follows from the Pollaczek-
Khinchine formula (Gross and Harris (1998) 
p.212) that T(x) will be infinite regardless of the 
service requirement.  Even if the service-time 
distribution is truncated at, say, 100, then  T(x)  = 
6.68 + x for a traffic intensity of ½ and  �  = 1.5. 
This is in spite of the fact that the mean service 
time is one, and that 50% of the jobs are not 
delayed. Thus FIFO is a very unsatisfactory and 
unfair discipline.  

PS: A well-known, but still surprising result is that 
T(x) = x/(1-� )  where �  is the traffic intensity. That 
is, processor sharing gives linear discrimination in 
response time regardless of the service time 
distribution. Processor-sharing type disciplines 
have long been proposed as suitable “fair” models 
for Internet traffic (see, for example Parekh and 
Gallager, (1993)). Generalized Processor Sharing, 
where the rate for each job is a function of the 
number in the system, has been shown to 
accurately describe the flow-level characteristics 
of traffic on Internet access lines (Beckers, 
Hendrawan, Kooij and van der Mei, (2001))  

SJF: We consider a preemptive-resume discipline. 
That is, when a job with shorter processing time 
arrives it interrupts the job in process. After the 
higher priority job is finished the interrupted job 

needs only to complete the balance of its service 
time.  

3.2. Comparing SJF and PS for the queue 
model 

Our objective here is to show that SJF is very hard 
to beat, and in fact is uniformly superior to PS for 
very heavy-tailed traffic. Taking the  limit of the 
expressions given in Takagi (p.346) for the 

preemptive-resume M/G/1 priority queue gives:  
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A similar but more complicated expression follows 
for the variance of the response times 

With the assistance of Maple we can plot the mean 
response times for a particular service requirement. 
In Figure 2 these are compared with the mean 
response times for processor sharing   for shape 
parameters  �  = 2, 1.5, and 1.1.  

The basic conclusion is that the smaller the shape 
parameter (i.e. the more heavy-tailed the job 
distribution) the greater the advantage of shortest 
job first over processor sharing. For values of the 
shape parameter below 1.687 the expected 
response times for SJF are uniformly smaller than 
those for PS. 

So SJF offers a substantial advantage over PS for 
almost all jobs, with the advantage increasing with 
the degree of heavy-tailedness of job lengths.  In 
fact for �  = 1.1 the expected wait for the SJF 
discipline is lower than that for PS even when a 
“design margin” of two standard deviations is 
included in the SJF values. This is graphed in 
Figure 2 as the dotted line labelled “1.1+2 s.d.’s”. 
The advantage of SJF over PS also increases with 
traffic intensity. 
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An interesting feature of the DiffServ proposal 
(Blake et al (1998)) is the ability to give 
preferential service to one class over all others, for 
example to delay-sensitive traffic.  We have 
investigated the M/G/1 model under a variety of  
other priority disciplines. These all suggest that 
any discipline other than SJF results in serious 
deterioration of service for the short jobs, which 
constitute the majority of Internet traffic. The gain 
in performance for longer jobs cannot compensate 
for this. 

4. IMPLEMENTATION 
We would like to demonstrate that mechanisms for 
implementing an approximation to the shortest-
job-first (SJF) queueing discipline are feasible. 
Since we will not attempt to implement SJF 
exactly, we need to argue that the protocol we 
implement is sufficiently close to SJF that it gains 
a significant proportion of the benefits of SJF. 
Simulation, using Network Simulator Version 2 
(Fall and Varadhan (1997), McCanne and Floyd. 
(2005)), will be used to demonstrate this. 

Since the objective of this work is to develop a 
strategy which achieves as much or more than a 
change of Internet architecture, like DiffServ, by 
means of relatively minor adjustments to the 
behaviour of routers, we have attempted to 
implement an approximation to SJF in a purely 
local manner. This protocol will be referred to as 
ECN with Dropping (ECND). The other variation 
relies on hosts implementing a protocol stack 
which responds to ECN. It is known as ECN with 
Censorship (ECNC). 

4.1. ECN with Censorship (ECNC) 

The ECNC protocol works as follows. Consider 
the network depicted in Figure 1. The hosts in the 
premises on the left suffer poor performance 

because the link between the premises and the 
Internet is congested. This congestion is caused by 
communication between one process, P4, at host 
H2. The fact that this particular flow is causing 
congestion can be identified at the gateway (GW), 
but action needs to be take at the Edge Router 
(ER). We assume ER has implemented RED with 
random marking of packets by ECN bits whenever 
the buffer level exceeds a certain level. These ECN 
bits are then reset at GW if they are not in the 
problem flow. Thus, in the end, the task of 
marking packets to indicated congestion to sending 
hosts is carried out jointly by ER and GW. 

4.2. ECN with Dropping (ECND) 

ECN with dropping is not necessarily better than 
ECNC, but it does not rely on sources responding 
to congestion indication bits, and it is safer than 
ECNC in that packets in problem flows are 
dropped by one of the routers in the path of the 
flow and near the congestion. The desired effect of 
ECNC can be bypassed by hosts which fail to 
implement an appropriate TCP/IP stack, but 
ECND cannot be bypassed because packets in the 
problem flow are dropped.  

Instead of packets being dropped at ER, which is 
what would happen with today’s Internet 
protocols, we assume that ER implements RED 
with ECN marking and the packets which are 
marked in this way are dropped at GW. The 
dropping at GW occurs only for packets in the 
problem flow. In this way, the two locations where 
the existence of the problem and the identity of the 
problem flow can be identified join forces to take 
action. Two locations might not be sufficient to 
identify the problem flow(s). However, the idea of 
resetting ECN bits in non-problem flows, or 
dropping them in problem flows, is still valid if a 
larger number of routers are involved. 

Figure 3. The experimental setup. 
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4.3. Why ECNC and ECND are similar to 
SJF 

If these protocols are able to maintain a short 
buffer at ER and ensure that hosts generating short 
flows receive no packets with congestion 
indicated, and no packets are dropped at ER or 
GW, then the total delay experienced by packets in 
these flows will be close to the minimum possible 
by any strategy only effected at these nodes. The 
fact that no packet losses are generated ensures 
that the flow is achieving the greatest rate 
sustainable, given all other network conditions. 
The fact that the buffer at ER is kept at a low level 
ensures that competition for resources with other 
flows does not impact significantly on this flow. 

It is to be expected that the boundary between 
short and long flows will fluctuate over time, 
depending upon the total level of traffic, and the 
traffic mix. Precisely how to distinguish between 
long flows and short flows has not yet been 
established. 

5. A SIMULATION EXPERIMENT 
A series of experiments have been carried out with 
the objective of testing the feasibility of the 
hypothesis that a satisfactory approximation to SJF 
can be achieved by means of Local Queue 
Management. 

5.1. A Simulation Experiment 

In the simulations, the task of distinguishing 
between short and long flows was achieved by 
foreknowledge – cheating. The experimental setup 

is shown in Figure 3 (which is a snapshot from an 
NS2 simulation).  

Congestion is occurring in the middle link. This 
can be addressed in a variety of ways – by 
dropping packets at the node at the head of this 
link, by marking packets so that they can be 
dropped later, and so on. Instead of dealing with 
this problem purely at Node 3, we intend to deal 
with it at Node 3 and Node 4 – a local subnetwork. 

 

This has been achieved in this test network by 
using RED with marking at Node 3 and at Node 4, 
we take one of three actions: (i) leave the packet as 
is (which will cause a congestion indication flag to 
be sent to the source) (ii) drop the packet (which 
will cause TCP to back off from what it perceives 
as congestion); or (iii) reset the marking on the 
packet (allowing the source to continue at full 
rate). 

5.2. Results 

The simulations were monitored in a variety of 
ways. The statistic of most importance in the 
present case is response time, i.e. the delay 
between a flow starting, at the host, and being fully 
received, at the destination. A plot of response 
times using various different approaches is shown 
in Figure 4. It is clear that the proposed approach, 
in its two forms, ECNC and ECND, is able to 
deliver better response times than RED with or 
without the use of Explicit Congestion Notification 
(ECN) bits.  

Figure 4. Mean Response Time for Droptail (DT), RED, RED with ECN (REDE), 
ECNC and ECND. 
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In this experiment, a subset of flows sufficient to 
load the link to 50% of its capacity was selected 
for favourable treatment. These flows were of 
length from 1 to 2000 packets. When the ECNC 
protocol was in use, any packets in the favoured 
flows tagged with an ECN flag were un-flagged. 
Other ECN packets were allowed to pass in the 
usual way. When ECND was in use, the favoured 
flows were treated in the same way, but packets in 
the other flows would be dropped at the GW node 
(node 4). 

In a “proper” implementation of ECNC or ECND 
it would be necessary to identify which flows 
should be favoured dynamically. The desired 
proportion of favoured flows might need to change 
dynamically, and also the scheme by means of 
which flows are distinguished (the flow rate and 
depth of a leaky bucket). In the present instance, 
the purpose of the experiment is to identify if it is 
feasible to achieve the gains potentially offered by 
SJF order of service. 

The simulations required to obtain the results 
shown in Figure 4 required a considerable amount 
of computation time on a high performance 
computer, even though we have not attempted to 
generate confidence intervals at this stage. The 
improvement in response time shown in Figure 4 
is significant, but not as dramatic as predicted from 
the queueing theory. Before further simulations are 
undertaken it is necessary to develop a theory 
which can predict more precisely how much 
response time can be improved, under a variety of 
circumstances, a which can provide guidance 
concerning how to set the parameters for the queue 
management method. 

6. CONCLUSIONS 
We have demonstrated on the basis of both 
simulation and queueing models that the Shortest 
Job First queueing discipline among competing 
flows offers considerable advantages over simple 
Processor Sharing for the kinds of traffic that can 
be expected to be encountered in the Internet and 
that if traffic continues to become even more 
heavy-tailed, this advantage will increase. We 
have, furthermore, investigated how something 
approximating SJF can be implemented. 

On the other hand it appears that priority queue 
strategies are risky, in that the marginal advantages 
gained by those jobs that benefit from the priority 
scheme are very small, and the majority of jobs 
can expect to receive worse service. This suggests 
that not only is it the case that a more global 
architecture for differential service is difficult, but 
also there is a significant risk that the cost in 
reduced performance for subsets of traffic is not 
warranted. 

 

7. REFERENCES 
Beckers, J.,I.  Hendrawan, R. Kooij, R. van der 

Mei, (2001) Generalized processor sharing 
models for Internet access lines, 9th IFIP 
Conference on Performance Modelling and 
Evaluation of ATM and IP Networks, 
Budapest. 

Blake, S, D. Black, M. Carlson, E. Davies, Z. 
Wang and W. Weiss, (1998) An architecture 
for differentiated services, IETF, RFC 2475. 

Crovella, M., M, Taqqu and A. Bestavros (1998). 
Heavy-tailed probability distributions in the 
World Wide Web. Robert J. Adler, Raisa E. 
Feldman, Murad S. Taqqu (eds.), A Practical 
Guide To Heavy Tails. 1, 3--26. Chapman and 
Hall, New York. 

Fall, K. and Varadhan, K. (1997) ns Notes and 
Documentation. Technical report, UC 
Berkeley, LBL, USC/ISI, and Xerox PARC. 

Gross, D. and C.  Harris (1998) Fundamentals of 
Queueing Theory, 3rd ed. John Wiley, New 
York. 

Harchol-Balter, M., M. Crovella and S. Park 
(1998) The case for SRPT scheduling in web 
servers. Technical Report No.. MIT-LCS-TR-
767,  MIT Lab for Computer Science. 

S. McCanne and S. Floyd. (2005) ns Network 
Simulator. [Online]. Available: 
http://www.isi.edu/nsnam/ns/. 

McNickle, D. and Addie, R. G. (2005) Comparing 
Protocols for Differential Service in the 
Internet, IEEE TENCON, Melbourne. 

Parekh, A. and G. Gallager (1993) A generalized 
processor sharing approach to flow control in 
integrated services networks: the single node 
case. IEEE/ACM Trans. on Networking, 2, 
137-150. 

Schrage, L (1968) A proof of the optimality of the 
shortest remaining processing time discipline 
Operations Research, 16, 678-690. 

Takagi, H. (1991) Queueing Analysis: A 
Foundation of Performance Evaluation, Vol 1, 
Vacation and Priority Systems Part 1, North 
Holland. 

2844


