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EXTENDED ABSTRACT 
 

Surface layer landscapes are described by spatial 
distributions of canopy type and roughness, 
surface slopes and topography. Agricultural 
landscapes also include distributions of pests and 
pest management systems. Insect populations 
together with pheromone traps or dispensers 
constitute a system that depends on the airborne 
chemical ‘landscape’ shaped by the emissions and 
wind dispersal. Effective operation of such 
complex systems needs integrative tools 
comprised of Geographic Information System 
platforms coupled with dynamic component 
modelling. 

We describe a linked modelling system which 
reduces uncertainty in monitoring for pest 
management. The spatial information from 
surface-layer landscapes and winds is integrated 
over multiple length and time scales. Larger scale 
meteorological flows (~ 5 km) disperse 
pheromones from sources embedded in the 
surface layer canopy. Smaller scale plume 
properties (~ 100 m), are downscaled even further 
to internal plume-fluctuation properties within the 
plumes (~ 1 cm). Finally, the distributed plume 
properties are coupled with insect tracking models 
for pest distribution prediction. 

The nature of these linked models is illustrated in 
the flow chart of Fig. 1: 

 
Figure 1.  Schematic design of linked models for 
agent tracking. 

 

The model hierarchy is simple, with the key being 
the parameters that are passed from one model level 
to the next. 

Meteorological models, like the commercially 
available TAPM system, can model the weather, 
i.e. the broad scale mean flow over the terrain and 
determine the local stability over each surface type 
in the landscape. The complex chemical landscape 
within the wind fields in the surface layer can then 
be predicted with Lagrangian particle models of the 
dispersion of pheromone plumes from canopy 
releases. Such sources can be from either attracting 
females or synthetic disruption systems like traps. 
The dispersion models employed can effectively 
use outputs from the weather models or routine 
weather measurements.   

The internal structure within the plumes, generated 
by surface layer turbulence, is also explicitly linked 
with surface layer characteristics of the fine scale 
turbulence but at even smaller scales because of the 
tiny dimensions of the source. We adapt classic 
Monin-Obukhov similarity theory (Stull 1988) for 
modelling plume fluctuations and develop 
instantaneous random concentration field properties 
based on inertial range scaling of turbulent 
processes.  

The final component is an agent-based insect 
tracking model that couples directly to the local 
instantaneous chemical landscape. The intelligent 
agent makes navigation decisions based on 
chemical signals to home onto the target source. 

The coupled system provides an insect mating 
prediction that accounts for trap catch counts and 
the influence of weather and cropping systems on 
these processes. Studies with this model will 
ultimately allow for a more accurate inference from 
trap monitoring and for the better management of 
pests. 
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1. INTRODUCTION 
 

Insect pests cause substantial damage to 
agriculture worldwide by attacking the crops in 
fields and in storage. For example, helicoverpa 
spp. cause an estimated $225M damage to 
Australian agriculture per annum (QLD DPI).  

Traditional management strategies rely on the use 
of pesticides. This approach has proved widely 
effective for controlling pests but has costs due to: 

• Expensive chemicals and applications; 

• Waste in poor meteorology; and 

• Emergence of pesticide resistance in 
insect pests requiring new formulations. 

Environmental costs include: 

• Hazardous exposure to poisonous 
chemicals; 

• Possible off-target and downwind drift of 
the insecticide; 

• Pollution of underground water bodies 
and soils; and 

• Loss of beneficial insect biodiversity.  

In general, the use of pesticides needs to be 
minimized for sustainable agriculture. 

1.1. Integrated Pest Management  

Starting in the 1970s alternative forms of pest 
management have emerged. The term Integrated 
Pest Management (IPM) refers to the adoption of a 
linked set of strategies, ranging from monitoring 
and the limited strategic use of pesticides, to the 
adoption of modified crops with refuges for 
beneficial insects. Included is the interaction with 
natural pheromone attractants, either for 
monitoring with traps, or for mating disruption 
(Cardé and Minks 1995).  

Unfortunately, the adoption of IPM programs has 
been patchy and in most cases limited to an 
optimization of the use of pesticides (Fitt et al. 
2004). This is partly due to the complexity of the 
interactions, environmental uncertainty and poor 
knowledge about the state of the system. 

The constant monitoring of crop fields is critical to 
the success of an IPM strategy. One of the key 
indicators is the pest number density. The critical 
number of insects per area which “can eat or 
destroy more dollars' worth of grain than the cost 
of spraying” is important (QLD DPI). This critical 
number is also referred to as the economic 
threshold above which a control action is 
economically justified and desirable. Being able to 

predict this critical threshold, or simply be alerted 
quickly when it has been reached, is an important 
part of managing the system.  

Estimating pest number density is a non trivial task 
that is often performed indirectly by assessing 
damage in the field or by using traps for 
monitoring the number of individuals. Traps baited 
with an attractive sex-pheromone mixture are 
extensively employed for this purpose. However, 
reliably linking pheromone trap counts to pest 
number density is a challenge.  

Many insect pests are highly mobile species 
capable of both inter-field and migratory travel. In 
order to successfully track mating partners, insects 
have developed remarkable abilities to detect 
vanishingly small concentrations of pheromones. 
Because of the high insect mobility, the key to 
interpreting trap catches is the evaluation of the 
area of attraction (footprint) of the trap. This 
footprint is strongly dependent on the searching 
strategy used by the insect to locate the source of 
the pheromone plume. It is also controlled by the 
turbulent dispersion of the pheromone in the air 
(Murlis et al. 1992).  

The important factors for plume-tracking by 
insects, and models to characterize trap footprints, 
are the topics of this paper. The key elements are 
the interaction of:  

• An intelligent agent (the insect);   

• Random environmental stimulus (the 
pheromone signal); and the 

• Influence and control of the weather. 

Each element can be modelled and, importantly, 
linked with the others to reduce the large 
uncertainties in the trap footprint problem. 

1.2. Physical Models 

The nature of the chemical signature (filamentary 
structure) is determined by the turbulent mixing 
process that takes place in the natural environment. 
Insects have evolved to exploit these small scale 
structures to guide their way to their mating 
partners (Murlis et al. 1992).  

Turbulent mixing in the surface layer of the 
atmosphere is strongly affected by local 
meteorological conditions and surface properties. 
For a particular example, moths tend to track at 
night, thus the role of atmospheric stability on 
pheromone dispersion is crucial. Meteorological 
conditions are also important because of their 
direct influence on insect behaviour. For example, 
temperature regulates both the onset of female 
calling and male responsiveness (Bell et al. 1995). 
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The searching algorithm used by an insect “agent”, 
has been observed to consist of a combination of 
upwind flight if the pheromone is detected, and 
cross-stream zigzag counterturns in clean air. The 
upwind motion is used to get closer to the target 
when the pheromone is sensed, while the casting 
flight is adopted when no signal is sensed in order 
to maximize the chances of filament interception. 
This is a simplified description of the searcher 
behaviour (Bell et al. 1995), nevertheless, it 
represents a successful strategy to robustly guide 
the insect to the source of the pheromone. 

While the detection and tracking behaviour of 
insects have been extensively studied by 
entomologists, pheromone dispersion is still poorly 
understood and represents a significant source of 
uncertainty (Murlis et al. 1992). While there have 
been attempts in the literature to model the fine-
scale structure of the concentration field (Farrell et 
al. 2002), what is still missing is a general tool for 
predicting pheromone plume properties in the 
natural environment. 

1.3. Outline for a Linked Model System 

The schematic shown in Fig. 1 illustrates the 
proposed integrated system. More detail is outlined 
below. The agent tracking process is affected by 
the meteorological conditions (e.g. temperature) 
and by properties of the chemical signal and is 
discussed briefly in §2. The characterization of the 
broad scale flow and its influence on the surface 
layer properties are discussed in §3. §4 describes 
how the dispersion in the surface layer affects the 
turbulent mixing and the filamentary structure of 
the chemical signal. Some simple results from the 
integrated model are presented in §5 and the 
conclusions in §6.  The principal results presented 
here are number density estimates for a simple trap 
in light-wind neutral conditions and in stable 
conditions. We solve for insect tracking in a large 
domain downwind of the trap for a calling/tracking 
period of two hours. The key results for inferences 
from trap catches as relevant for pest management 
are discussed.  

2. PLUME TRACKING MODELLING 

Plume tracking refers to the process of an insect 
following an attractant chemical plume. This basic 
process controls the pest dynamics in complex 
interacting populations in spatially varying crops 
and surface vegetation.  Trapping pests to estimate 
numbers often involves a baited scent trap to 
attract male pests from downwind. This is 
characterized by a footprint of attraction which 
depends on: 

• The dispersion by wind and turbulence 
downwind of the trap; 

• The likelihood of encountering females 
before reaching the trap; 

• The effectiveness of tracking in the given 
conditions; as well as 

• The number of individuals on average in 
the system. 

The system is complex and not conveniently 
modelled by traditional systems like diffusion 
models or simple random walks. However, the use 
of agent based systems (Łomnicki 1992) is a 
natural framework and permits a direct link 
between the modelled catch numbers and number 
density. Simulation also allows for statistical 
uncertainty of the system to be determined.  

2.1. Individual Agent Tracking 

An individual insect agent tracking a single plume 
(either from a calling female or a baited trap) is 
itself a complex process. This is mainly due to the 
variability of the plume in the atmosphere as 
controlled by winds. However, insects have 
adapted to this reality. Their behaviour can be 
represented by a rule-based agent which is 
assumed to make flying decisions based on the 
detected pheromone concentration. The rules are: 

• Fly upwind above detection thresholds of 
the chemical signal (called surging); and 

• Fly cross wind (back and forth) when not 
detecting a chemical signal (called 
casting). 

The parameters for the agents (flying speeds, 
meteorological conditions for calling and tracking, 
detection thresholds for various pheromone 
signals) are reasonably well known and some are 
listed below. 

Even in a simple two agent system (caller and 
tracker) the process is a random walk because the 
signal detection is an instantaneous sample of a 
random (stochastic) and highly variable chemical 
signal due to atmospheric turbulence. It is unlikely 
that insects have processing power and memory to 
form averages and complex spatial-pattern 
recognition for plume properties. Indeed they have 
no need for sophistication because the casting and 
surging tracking rules almost always guarantee 
success given sufficient time. 

Insects are capable of remarkable tracking feats 
following minute calling emissions, even over 
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distances of several kilometres. Some of the 
typical characteristics of insect agent tracking are: 

• Cycle time for decisions:  150-500 ms 

• Flying speed:  1 m/s 

• Detection thresholds:  103 mol./cm3 

(integration time: 1s) 

• Calling period:   2 hours 

• Calling emissions:  1 ng/min (1010 
molecules/s) 

• Calling temperature: 20-25 deg. C 

2.2. Multiple Agents 

In a multi-agent system (including the crop 
manager with his or her trap), the basic tracking 
rules for a tracking agent are the same, but the 
chemical field now consists of a multitude of 
plumes dispersing and mixing simultaneously. The 
tracking can randomly follow any plume, simply 
biased by the probability of the detection being 
from one plume or another. From the point of view 
of the tracker, or an individual caller, this is really 
no more complex than the basic two agent system. 

2.3. Chemical Signal Structure 

The key feature of a model system is the 
atmospheric variability of the chemical signals. In 
the most complex situation we have: 

• Many stationary point sources emitting 
downwind; 

• Highly variable signals in time and space; 

• Strong dependence on meteorology and 
surface layer processes; and 

• Complex modelling of the basic physical 
state of the system. 

The basic chemical state is familiar from classical 
boundary layer dispersion for air quality 
assessment, particularly odour problems (Borgas 
2000). Here the emphasis is on the near surface 
conditions and smaller scales of interest, both for 
source configurations and sampling scales. 

Despite the complexity there is a clear strategy for 
constructing an integrated model linking trap catch 
with the key system variables: 

• The number density of pests; 

• The variability due to meteorology; 

• The statistical variability of  the inherent 
stochastic process; and 

• Alternative agent strategies (lure and kill, 
mating disruption, smart tracking). 

Calling and tracking are strongly controlled by 
meteorology. Calling commences at dusk with 
slackening winds and turbulence. Sufficient 
meteorological modelling to reflect the influence 
of stable surface layer dispersion is needed in the 
model. This ultimately reduces the overall 
uncertainty in the pest-catch estimates by allowing 
systematic analysis of the role of weather 
variability in the modelled pest response.  

3. SURFACE LAYER MODELLING 

The generic surface layer problem we consider is 
the calling emission at a height H in the vegetation 
canopy. We assume sparse vegetation of some 
relatively homogeneous crop, at heights of one to 
two metres.  

The calling plume is advected by a mean wind, 
imposed by broader scale weather patterns. 
However, most of the processes in the near surface 
layer that control the calling plume and the insect 
tracking can be understood in terms of local 
variables. This framework, known as Monin-
Obukhov similarity theory (Stull 1988) is a 
powerful representation of the surface layer 
activity and here we utilise extensions for plume 
modelling for tracking purposes. 

3.1. Integrating Weather Information 

Monin-Obukhov similarity theory is a basic 
component of weather-prediction model 
parameterization. Conversely, weather prediction 
or assessment can be used to infer similarity 
parameters (NSW EPA 2001). The link is provided 
by relating the mean wind properties and classical 
Pasquill-Gifford stability estimates to *u (friction 
velocity) and L (Monin-Obukhov length), and then 
further linking fine scale turbulent fluctuations of 
plumes to models based on parameterization by *u  
and L. This allows for relatively widespread 
application, as practiced in air pollution 
assessment (NSW EPA 2001) models, including 
relevant parameters for specific crops, weather 
conditions, pest types and trap distributions, which 
can be modelled as an integrated system. More 
certainty can be obtained by directly assimilating 
local micro-meteorological measurements.  
Increasingly crop management will integrate such 
measurements to manage fluxes of carbon, 
nitrogen and water with additional benefits for pest 
management applications. 

2050



3.2. Monin-Obukhov Similarity Theory 

The basic theory for the dynamics of the model 
includes expressions for the: 

• Mean wind, ( )zU , as a function of height; 

• Turbulent fluctuations as a function of 
stability; and 

• The dissipation rate of turbulent kinetic 
energy as a function of height. 

The properties depend on two key parameters, the 
friction velocity *u  (typical of fluctuating winds 
near the surface) and the Monin-Obukhov length L 
which reflects a length scale over which stability 
effects control vertical motions (it is smaller in 
strong stability when vertical motions are confined 
closer to the surface).  Stable layers are the focus 
of modelling for plume tracking because calling is 
often initiated at evening when cooling layers of 
air near the surface become denser and less prone 
to vertical motion. 

However, even in stable layers the horizontal 
motion of the wind induces frictional turbulent 
motions requiring an extra roughness length 
parameter, 0z , to be included in the representation. 
The combination of the two parameters, *u  and L, 
describe much of the behaviour in well established 
functional forms for the dynamic variables. For 
given weather conditions, either measured at a 
micro-meteorological station or inferred from 
larger scale weather, the state of the surface layer 
can be prescribed. As an example, the key dynamic 
variable for linking the model hierarchies is the 
dissipation rate of turbulent kinetic energy, ( )zε , 
which describes the local activity of the 
turbulence. The empirical form is: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<⎟
⎠
⎞

⎜
⎝
⎛ +

≥⎟
⎠
⎞

⎜
⎝
⎛ +

=

0
0

0

3
*

0

3
*

3.44.1

3.44.1

zz
L
z

z
u

zz
L
z

z
u

κ

κε     (1) 

which includes both frictional and stability effects 
(Han et al. 2000). The von Karman constant κ is 
0.4. 

3.3. Plume Properties 

A surface-layer plume also satisfies similarity 
properties of its own. For many purposes, in air 
quality applications for example, the plume 
concentration is modelled only as an ensemble 
mean (an average over a large number of 
independent realizations of an emitted plume). 
This is not adequate for plume tracking which 

requires a stochastic representation of the 
instantaneous concentrations at the tracking agent 
receptor. Nevertheless, the mean concentration, 
C , is a crucial aspect of the plume concentrations, 
and it is straightforward to model. 

Plume tracking can be integrated into the Monin-
Obukhov framework, over scales of several 
hundreds of metres horizontally, and within 
several metres of the surface. The mean 
concentration component of the model has the 
following features: 

• Gaussian plume profiles; 

• Dispersion parameters based on similarity 
parameters; and 

• Stable to neutral layer mixing. 

We also choose our parameterizations based on 
Lagrangian concepts of mixing (Sawford 2001), 
with a simple exponential auto-correlation of 
velocity for the lateral dispersion (across the plume 
horizontally) and a vertical auto-correlation with a 
negative loop for large lags reflecting stability 
effects, chosen to restrict the vertical mixing. 

4. CONCENTRATION FLUCTUATIONS 

Modelling fluctuating plume concentrations 
depends on (Borgas 2000): 

• Plume fluctuations from Lagrangian pair 
modelling; 

• An assumed probability density function 
for instantaneous concentrations; 

• Clean air intermittency fractions within 
the plume; and 

• Time series of jumps for spatial and 
temporal variability. 

All depend on fine scale turbulence structure with 
meteorological control through the dependence of 
the pair dispersion on Monin-Obukhov scaling. 
This is achieved by modelling the pair separation 
probability density function, ( )trP , , for all pairs at 
given downwind plume cross sections in the 
emitted chemical plume (Borgas et al. 2005; 
Borgas and Yeung 2004). This is most simply 
modelled as a diffusion process where the 
diffusivity, for some number α, is given by the 
mean-concentration weighted average:  

3/13/4

0

3/13/4
CrdzdyCrD εαεα == ∫ ∫

∞

∞−

∞

   (2) 

which incorporates the link to Monin-Obukhov 
similarity parameters through equation (1) and the 
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mean concentration dependence. The diffusivity D 
is a function of separation r (so the pair separation 
is a non-Gaussian process). It is also time 
dependent which reflects the changing vertical 
sampling by the plume downwind. 

The solution of the diffusion process gives the 
spatial correlations and intensity of the chemical 
concentration fluctuations. For zero separation the 
concentration variance is given by: 

 ( ) ( ) ( ) ( ) tUxrPtrPCxC rr == == 00
22 0,,0 .  (3) 

A broad variety of source distributions can be 
modelled with this framework. The fluctuation 

intensity, 1
222 −= CCCσ , reflects internal plume 

variability. Large fluctuations mean that insects 
can detect threshold concentrations even when the 
mean decays to undetectable levels. For the small 
sources considered here it is easy to dilute the 
mean plume by seven orders of magnitude as 
suggested by the parameters §2.1. The spatial pair 
correlation of concentrations in the plume 
describes both the intensity of plume fluctuations 
and the spatial scale over which correlations occur 
thus determining the persistence of fluctuations. 

4.1. Concentration Jumps 

As an agent tracks a plume it senses concentrations 
that persist for very short times because of 
turbulent mixing. The change occurs as a sharp 
jump (Borgas et al. 2004). Even if the agent 
remains stationary at a fixed point, the chemical 
field sensed is punctuated by jumps along a time 
axis. The correlation in time of the jumps, and the 
concentration level in the span between jumps, can 
be simply fixed with the modelled statistics of the 
instantaneous plume concentrations and by using 
the two-time correlation in the plume, which is 
proportional to ( ) τUrtrP =,  for time lag τ. 

Taken together we can prescribe the character of 
instantaneous concentrations and the stochastic 
nature of how they change in time from the 
perspective of a tracking agent.  This behaviour is 
directly linked to the meteorological parameters 
and the controlling influence of the weather. Thus 
we have a model capable of producing tracking 
responses sensitive to changing weather 
parameters and able to assess the relative tracking 
processes in varying weather conditions. 

5. PLUME TRACKING RESULTS 

The integrated system can now be solved for 
tracking behaviour. These will clearly be 
stochastic random walks tracking from downwind 
to the calling source. For example, starting an 
agent 100 metres downwind just beyond the 

threshold detection at mean concentration levels 
gives a typical path as shown in the schematic 
diagram (Fig. 2). 

 
Figure 2. Snapshot from an example animation. 

The random path (shown in pink) in Fig. 2 casts 
side to side, but systematically progresses upwind 
(wind comes out of the page) to a calling female. 

Animations of plume tracking are a useful way to 
present the model output and the figure above is a 
sample shot of plume tracking animations 
generated by our system. 

In general, for pest management we require 
statistics of tracking times. We use the agent 
model embedded in the surface layer landscape to 
evolve an ensemble of trajectories, i.e. a large 
number of independent tracking events are 
modelled. Neutral and stable conditions (L=50 m), 
are examined. Other conditions are fixed to be the 
same: *u =0.2 m/s, 0z =10 cm. The starting 
positions uniformly cover space downwind of the 
source, with unit number density (one agent per 
square metre). The trap source is strong with the 
mean concentration above the detection threshold 
up to 50 m downwind. Tracking is allowed for a 
maximum of two hours and the agent parameters 
are as listed in §2.1. We also choose larger lateral 
diffusion for the neutral case.  

5.1. Stability Effects for Tracking 

For general number density, n, the two cases 
modelled here give trap-catch numbers 

nNtrap 2400~ , for the neutral case, which is  33% 

larger than the stable case nNtrap 1800~ . If the 
traps are used as indicators, then a single detection, 
on average, is associated with a number density of 
about one insect in each area of 2000 square 
metres. However, this number will depend on the 
threshold limit of detection for a particular trap 
emission, which would require more information. 

The distributions we show below are the tracking 
time histograms, conditional on successful 
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tracking. These are biased to large tracking times 
because the source is at one edge of the domain.  

Figure 3. Tracking times frequency. 

The results in Fig. 3 show a greater proportion of 
stable-layer paths tracked for longer times, but the 
enhanced plume spreading (in this example) in the 
neutral case mean that more tracking occurs from 
offset lateral agents.  

6. CONCLUSIONS 

Plume tracking models coupled with weather 
information (or models), dispersion and turbulence 
models, allow new estimates to be made for 
system inference in Integrated Pest Management.  
In particular, we have determined for the first time 
trap footprint estimates, and are developing a 
framework to calculate the link between trap catch 
and population number density in realistic 
meteorological conditions. The results show 
significant dependence on the meteorological 
stability parameters, and so these new models offer 
a way to reduce the current large uncertainty from 
monitoring inference from trap counts. 
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