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EXTENDED ABSTRACT 

Repeated sequences of digitised and geo-
referenced historical aerial photography provide a 
powerful means of understanding landscape 
change over time scales beyond conventional 
ecological monitoring, especially in remote areas. 
We use this method to develop spatially explicit 
models of vegetation change at five sites in the 
Australian monsoon tropics, and assess the 
goodness-of-fit of the model to observed change. 
Models were derived by (i) converting the 
landscape into cells using a grid-overlay method 
and classifying vegetation as either closed forest 
(CF) or savanna (SV); (ii) examining repeat 
sequences of aerial photographs (taken in 1947, 
1972 and 1997) to determine the temporal 
sequence of vegetation change in each cell (i.e., 
stasis versus change to different vegetation class); 
(iii) using thematic layers to derive cell-based 
measures of elevation, slope angle and drainage 
distance; (iv)  counting the number of like-habitat 
points in the area surrounding each cell, with the 
fractal dimension of this area also calculated; and 
(v) using a bootstrapped generalised linear 
modelling approach (which controls for potential 
spatial autocorrelation) to derive a cell-based 
probability map of change based on the landscape 
features from (iii) and (iv) fitted to (ii) (an example 
is given in Figure 1).  

 
Figure 1. Landscape habitat attributes at the 
McDermott’s Spring site in the Gulf of Carpentaria 
region of the Northern Territory, Australia, 

showing topographic elevation, slope gradient and 
distance from drainage lines (top row), and a map 
of closed forest distribution in 1972 and the 
calculated proportion of like-habitat verus non-like 
(edge) and fractal dimension of closed forest, 
based on point-wise assessment of the two 
surrounding layers of 20 x 20 m grid cells. 

Overall, the closed forest expanded by an average 
of 42 % total coverage over the fifty-year period, 
although the rate of change varied across sites. The 
dynamics of the closed forest-savanna system were 
predicted with reasonable reliability based on a 
comparison of observed and predicted CF  
coverage and the ratio of cells correctly versus 
incorrectly predicted to change from CF to SV, or 
vice versa. Mean per cent discrepancy between 
observed and predicted coverage of CF among 
sites was only 1.03 % (range: 0 to 2.3 %), and the 
overall spatial agreement between observed and 
predicted maps was 88.9 % (range: 78.9 to 94.1 
%). Model fit based on the average of two 25-year 
couplets (1947-1972 and 1972-1997) was 
consistently superior to those based on a single 50-
year couplet (1947-1997). Single-couplet fits had a 
mean deviance from the observed CF coverage of 
6.2 % (range: 0.4 to 23.2 %), compared to only 0.9 
% (range: 0.2 to 2.1 %) for the average of two 
couplets. Spatially explicit fits were also superior 
for two vs. one time couplet (87.1 vs. 85.0 %, 
respectively).  

CF expansion occurred most frequently in fire-
protected sites along forest edges and regression in 
the more fire-prone areas. Possible drivers for this 
expansion may include changed fire regimes 
associated with the cessation of traditional 
Aboriginal fire management or the ‘fertilizer’ 
effect caused by the continued increase in global 
atmospheric CO2 over the course of the 20th 
century. This effect may be changing the 
competitive balance between C3 trees of the CF the 
largely C4 tropical grasses of the SV. Our results 
also demonstrate quantitatively the benefit of the 
additional information contained in repeat 
sequences of imagery over ‘snapshots’ taken only 
at the beginning and end of an observation period. 
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1. INTRODUCTION 

The landscapes of northern Australia are 
characterised by vast stretches of tropical wooded 
savannas, with a scattering of small patches of 
closed forest (usually wet-dry rainforest) that 
persist in fire-protected refuges with sources of 
permanent water (such as sandstone gorges; 
Bowman 1998). Recent research has provided 
evidence for a strong link between global 
vegetation patterns and fire activity (Bond et al. 
2005), and there is considerable interest in the 
pattern and rate of biogeographic change of 
vegetation types associated with anthropogenically 
mediated global environmental change (Bowman 
2000, Bond et al. 2003) such as global warming 
and enrichment of atmospheric CO2 linked to 
ongoing industrial pollution (Keeling and Whorf 
2004). Recent research has indicated a dramatic 
expansion of the closed-canopy forest systems of 
northern Australia despite an apparent increase in 
the frequency, intensity and coverage of landscape 
fire (Bowman et al. 2001, Russell-Smith et al. 
2004). A natural question that arises from these 
findings is: are the observed changes in vegetation 
distribution in the tropical savannas explicable on 
the basis of localised landscape-scale features or 
are any such signals swamped by regional and 
global environmental controls, making localised 
spatial predictions impossible beyond a general 
forecast of rate of change? 

The historical analysis and spatial modelling of 
decadal-scale vegetation change is a rapidly 
developing field (Guisan and Zimmermann 2000). 
This modelling commonly employs digitised 
temporal sequences of aerial photography to 
discern long-term landscape-scale patterns in 
vegetation structure (Augustin et al. 2001). For 
example, Bowman et al. (2001) used this approach 
to document an expansion of closed forest in the 
Northern Territory between 1941 and 1994 over a 
30 km2 area. Implicit in this analysis was that a 
single couplet of images spanning 50 years was 
able to meaningfully capture the vegetation 
dynamics. This underscores a serious limitation of 
aerial photography – the infrequent acquisition of 
data in the temporal stream makes predictive 
modelling of dynamic systems difficult. While it is 
obvious that the inclusion of additional time 
sequences adds information on trajectories of 
vegetation change, its integration poses some 
methodological challenges. The purpose of this 
paper is to develop the most-robust models 
describing vegetation change and to quantify the 
contribution of additional temporal information to 
model goodness-of-fit. 

 

2. STUDY LOCATION 

We assessed and modelled five sites within a 
radius of 37 km (the closest of the four sites are 10 
km apart) on the Wollogorang pastoral property in 
the southwest of the Gulf of Carpentaria, Northern 
Territory, Australia (17º 11’ S,137º 46’ E; Figure 
2). The region is in the southern arid limit of the 
monsoon tropics, with an average annual rainfall 
of 850 mm (falling largely between December and 
March), and an average daily temperature of 33 ºC 
(Northern Territory Bureau of Meteorology: 
http://www.bom.gov.au/weather/nt/). 

 

Figure 2. Location of the study area at continental, 
regional and local geographic scales. At the local 
scale, areas greater than 400 m elevation are 
shaded and major drainage lines marked. Also 
indicated are the positions of the five sandstone 
gorge sites. 

3. AERIAL PHOTOGRAPHIC ANALYSIS 

Historical aerial photography was acquired for 
three time-slices (1947 [1:50000 black and white], 
1972 [1:25000, colour] and 1997 [1:25000, 
colour]) for four sites (Aquarium Springs = AQ, 
Banyan Gorge = BA, McDermott Springs = MD 
and Moonlight Gorge = MO), and two time slices 
(1952 [black and white] and 1995 [colour]) for a 
fifth, slightly more northerly and isolated site 
(Camel Creek [CC]). Figure 3 provides an example 
photographic sequence for the MD site. 

All sites contain gorge-protected closed canopy 
forest embedded in a wooded savanna matrix. The 
imagery was scanned to a pixel resolution of 1 m2 
and ortho-rectified using ERDAS Imagine v8.4 to 
1:50000 topographic map sheets. Using ArcView 
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v3.2, a lattice of points spaced 20 x 20 m was then 
overlain on each scanned and rectified aerial 
photograph, and assigned to either wooded 
savanna (SV: tree crowns spaced > 20 m apart) or 
closed forest (CF: ≤ 20 m apart) habitat types. 

 

Figure 3. Repeat sequence of geo-referenced 
aerial photography at the McDermott’s Spring site 
in 1947, 1972 and 1997. 

Ground-truthing for our binary classification of 
canopy cover was made at 63 point locations were 
made independently using a densiometer at BA in 

the wet season (February) 2002, and showed a 
clear difference in canopy cover between those 
sites mapped using the 1997 imagery as CF (mean 
± standard error = 84.4 % ± 1.9, n = 36) compared 
to SV (28.3 % ± 3.7, n = 27). An example of the 
lattice grid maps are provided in Figure 4. 

Arcview was used to derive from the thematic 
layers the following attributes for each lattice 
point: distance (m) to drainage line (DR), 
topographic elevation (m) above sea level (EL), 
and slope (average gradient between a given point 
and all surrounding points, SL). The lattice was 
then converted to a 20 m raster grid of dots and 
exported to the R-package v2.1.1 (http://r-
project.org/) for all further analyses. The 
vegetation mapping from the aerial photography 
was used to count the number of like-habitat points 
(LH) in the surrounding area (A) at each of 1 to 4 
encircling layers of cells, with the fractal 
dimension (FR) also calculated as 
2loge(0.25P)/loge(A), where P = total perimeter 
(Hargis et al. 1998). An example of the spatial 
configuration of the physical and vegetation 
variables is provided in Figure 1. The temporal 
change in the vegetation type of each point 
between both 1947-1972 and 1972-1997 was then 
assessed, with the possible transitions being no 
change (CF-CF or SV-SV), closed-forest 
regression (CF-SV) or closed-forest expansion 
(SV-CF), a method akin to that used by Augustin 
et al. (2001). 

4. MODELLING 

4.1. Statistical framework: generalised linear 
models (GLM) of landscape change 

Using the lattice points of vegetation and thematic 
data extracted, we developed two statistical 
probability relationships to underpin our predictive 
models: (i) a closed-forest change model, where 
the dependent variable of a binomial GLM (logit-
link) was whether a CF point changed to SV in 
either the periods 1947-1972 or 1972-1997 (coded 
as a 1), or remained CF throughout (coded as a 0). 
The independent predictor variables were the 
physical attributes of the landscape (EL, SL, and 
DR) and the measures of the amount and 
patchiness of proximate vegetation of the same 
type (LH and FR); (ii) a savanna change model 
which had the same structure as (i) except that the 
dependent variable was the change (or not) from 
SV points to CF. Spatial autocorrelation that can 
result in statistically non-independent data was 
accounted for by sub-sampling (with replacement) 
from the full suite of lattice points and repeatedly 
refitting the GLMs (1000 bootstrap iterations per 
model). 
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Figure 4. Digitised maps of closed-forest coverage 
at the five study sites in 1947 (1952 for Camel 
Creek), including a split of the large Moonlight 
Gorge into northerly and southerly sections. 

4.2. Probability-based spatial model fits 

The two GLMs described in 4.1 were used to 
develop a map of change probability for each site 
via a back-transformation of the logit fits for CF 
and SV at each lattice point. We then searched 
iteratively for the optimal probability threshold 
above which a change in vegetation state was 
predicted to occur, and the optimum buffer size for 
calculating LH and FR. This optimum was decided 
by evaluating simultaneously three measures of 
goodness-of-fit across the site map: (i) the 
difference between the observed and model-
predicted per cent coverage of CF, the percentage 
of lattice points in which the predicted vegetation 
type agreed with the observed type, and the ratio of 
cells correctly versus incorrectly predicted to 
change from CF to SV, or vice versa (e.g. a ratio of 
1.0 = 50% right, 50% wrong; 2.0 = 67% right, 
33% wrong; 0.5 = 33% right, 67% wrong). This 
was repeated for each site (except CC) and each 
time couplet (1947-1972 and 1972-1997). 

4.3. Slicing the past: Is more better? 

We examined whether the inclusion of 
intermediary vegetation data between time slices 
influenced the predictive capacity of the models. 
We constructed GLMs to describe the transition of 
CF to SV and SV to CF from 1947-1997 (i.e., 
excluding the 1972 data) to reconstruct a predicted 
map of the 1997 distribution of forest types for the 
sites AS, BA, MD, MN and MS. All probability-
based spatial fits were derived in an identical 
manner to those described previously. These 
model fits were compared to a predicted 1997 map 
constructed by taking the average of the GLM 
coefficients derived from the 1947-1972 and the 
1972-1997 transitions. The means of these 
coefficients for each predictor were used to 
construct an average transition probability for each 
lattice point, and then these transition probabilities 
were squared to provide a full-interval (i.e., 50 
years) fit for 1997. We compared these two fits 
(one vs. two time couplets) to the observed 1997 
distribution maps by examining the percentage 
coverage of CF and the percentage of lattice points 
that agreed with the observed map. 

5. RESULTS 

5.1. Closed forest expansion 

When taken over all five sites over the 50-year 
study there was a substantial increase (mean 
weighted by area of site = 42 %; see Tables 1 and 
2 for individual sites) in the coverage of closed 
forest in the landscape, although this change was 
variable across sites (e.g., the areas of closed forest 
at the MD site more than doubled whereas the 
increase at Moonlight Gorge site [MN and MS 
combined] was only 11 %). Examination of 
vegetation change maps (Figures 5 and 6, left 
columns) reinforces the notion that the process of 
closed forest expansion is neither uniform in space 
or time at any of the sites. Although the basic 
spatial configuration of SV and CF does not 
change greatly over time, the CF expansion clearly 
occurs most readily through growth out from 
existing core areas (with some establishment of 
isolated nuclei), whereas regression of closed 
forest to savanna tends to be restricted to edges of 
closed forest in particular landscape settings.  

Table 1. Observed vs. predicted change between 
1947-1972. Shown are the observed % changes in 
CF area (negative values indicate an overall 
contraction of forest), observed and model-
predicted % coverage of CF in 1972, % of lattice 
grid cells in which the predicted vegetation type 
agreed with reality, ratio of cells correctly versus 
incorrectly predicted to change from CF to SV, or 
vice versa, the optimal buffer size for calculating 
LH and FR, and the optimal probability threshold 
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(as predicted for each cell) above which a change 
in vegetation state would be predicted to occur. 

 

5.2. Agreement between model fit and data 

There is a clear visual (Figures 5 and 6) and 
quantitative (Tables 1 and 2) agreement between 
the spatial distribution of prime closed-forest 
habitat identified by the model and the observed 
expansion of the closed forest between 1952 and 
1995. This suggests that the model provides a 
reasonable description of reality. The probability 
models for predicting vegetation change seem to 
fail most frequently along the borders of CF 
regressions, possibly because the temporal 
processes involved in SV expansion are 
continuous and cumulative, whereas the 
destruction of CF would be more episodic 
(associated with disturbance events) and the coarse 
temporal resolution of the sampling may capture 
inadequately all such regressive events. Some error 
is also likely to result from imperfections in the 
digitizing and georeferencing process. 

Table 2. Observed vs. predicted change between 
1972-1997. Attributes as per Table 1. 

 

In all sites except MN there was a better agreement 
between the per cent CF coverage in the observed 
data to the predicted map based on two time 
couplets (Table 3). Therefore, the inclusion of an 
intermediary time slice generally improves 
predictive capacity. The % agreement between the 
observed and predicted maps were generally 
similar for the one- and two-slice model fits; 
however, this index was weighted heavily towards 
the dominate SV lattice points. 

6. DISCUSSION 

6.1. Modelling vegetation change 

Repeat sequences of historical aerial photography 
enabled the description of vegetation change over 

long time periods with precise time control and a 
high degree of spatial resolution across entire 
landscapes (Bowman et al. 2001, Russell-Smith et 
al. 2004).  

 

Figure 5. Agreement between the observed 
distribution of CF in 1972 and that predicted by 
the vegetation-specific GLMs (estimated using 
bootstrapped median coefficients) based on the 
distribution of CF in 1947. 
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Nevertheless, it is prone to irregular data 
acquisition and technical issues of standardisation 
that affect the quality of the data (e.g. differing 
film/camera types or photographic scales). The 
approach developed here maximises the use of the 
information contained in this environmental 
archive and differs from that of Augustin et al. 
(2001), who calculated transition probabilities that 
were de-coupled from environmental gradients. It 
is self-evident that such geospatial models that fail 
to consider the importance of physical and 
environmental attributes of landscape that mediate 
vegetation dynamics will have reduced predictive 
capacity. For instance, the probability components 
in Markov-chain cellular automata models (Balzter 
et al. 1998) should vary in response to habitat 
suitability. We have demonstrated that local effects 
strongly constrain vegetation change at the 
landscape scale, despite a regional tendency for 
closed forest expansion.  

Not only have we demonstrated geophysical 
constraints to vegetation change, the subsequent 
trajectories are also sensitive to the spatial 
arrangement of vegetation types at each time step 
(characterised by the fractal dimension). This 
creates difficulties for parameterisation of growth 
models because there is a mismatch between the 
biological processes (continuous) and the observed 
‘snapshots’ of change (discrete). For instance, the 
growth of woody vegetation (conversion of SV to 
CF) occurs continuously at the annual time-scale 
due to assimilation of carbon and dispersal of 
propagules, with disturbance leading to regression 
operates more stochastically (e.g., destruction of 
many trees by wildfires). The fact that there was 
such a substantial improvement in model fit using 
two rather than one time couplet of time couplets 
provides hope that a greater number of images will 
permit a closer approximation of the behaviour of 
the biological system. 

Table 3. Relative goodness of fit of one versus 
two time couplets in predicting vegetation change 
over the period 1947-1997 at all sites except CC. 

 

6.2. Environmental determinants of change 

The landscape-wide expansion of CF observed in 
the semi-arid Gulf of Carpentaria region matches 

Figure 6. Agreement between the observed 
distribution of CF in 1997 (1995 for Camel Creek) 
and that predicted by the vegetation-specific 
GLMs (estimated using bootstrapped median 
coefficients) based on the distribution of CF in 
1972 (1952 for Camel Creek). 
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the pattern observed at the other mesic extreme of 
the closed-forest distribution in the Northern 
Territory (e.g., Bowman et al. 2001). Although our 
modelling is not mechanistic and cannot be used to 
identify the specific contribution of various drivers 
of landscape change, it can be used to identify 
plausible controls. For instance, we infer that 
landscape fire has played a role in constraining the 
expansion of closed forests because SV-CF 
conversion occurred preferentially on sites that had 
topographic features conducive to fire protection 
(e.g., steep slopes or proximity to drainage lines; 
Bowman 2000). For example, at BA the forest 
expanded from a core area mainly along a gorge 
floor, MD expanded into a rocky amphitheatre and 
at CC, a sheltered drainage fan was converted into 
closed forest. Furthermore, it is plausible that the 
ultimate driver of this expansion of woody 
vegetation is global increases in CO2 (Keeling and 
Whorf 2004) which favour C3 woody plants over 
C4 tropical grasses (Bond et al. 2003). 

7. CONCLUSIONS 

The closed-forest patches that are embedded 
within the vast tropical savanna matrix of the 
northern Australian biome provide unique and 
irreplaceable habitats to a broad array of endemic 
flora and fauna (Bowman 2000). The present work 
illustrates the utility of historical aerial 
photography in identifying the landscape factors 
associated with vegetation change in these systems 
over many decades. Specifically, we have 
developed robust correlative models that show the 
relative contribution of local site factors in 
controlling the rate and spatial configuration of 
forest expansion. Our goodness-of-fit validation of 
these probability models of change is an important 
precursor to the development of dynamic, spatially 
explicit predictive models, such as cellular 
automata. However, an important component of 
developing such predictive models is validation 
against independent data sets (e.g., van 
Groenendael et al. 1996), such as recent aerial 
photography not used in model construction or 
targeted ground surveys. A final step is to move 
from descriptions of processes at the local patch 
scale to models that are sufficiently robust to be 
applied reliably to the variety of landscape settings 
to understand the consequences of global 
environmental change and different land 
management practices. 
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