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EXTENDED ABSTRACT 

Facility location problems form an important class 
of industrial optimization problems. These 
problems typically involve the optimal location of 
facilities. For our purposes, a facility is just a 
physical entity that assists with the provision of a 
service or the production of a product. Examples 
include: schools, ambulance depots, emergency 
care centers, firestations, workstations, libraries 
etc. The objective may involve factors such as 
cost, distance or service utilization. The 
optimization problems are complicated by the need 
to meet a number of specified constraints. These 
constraints may relate to safety, available 
resources, level of service, time, etc.   

The optimization problems are usually grouped 
into two categories, namely service and 
manufacturing industries. In the service industries, 
the location of emergency facilities (ambulance, 
fire station, emergency centers) affects 
significantly on the safety and well-being of the 
community. The safety and well-being of the 
community depends directly or indirectly on the 
response time of the emergency facilities. The 
objective is to locate the facility where the average 
response time (time between the receipt of a call 
and the arrival of emergency vehicle) is 
minimized. The minimization of the response time 
measures the performance of emergency facilities. 
The performance of these facilities can be 
improved by either moving the existing locations 
of the emergency facilities or increasing the 
number of facilities. However, increasing the 
number of facilities is generally limited or 
impossible due to capital constraints. It is, 
therefore, important to locate emergency facilities 
effectively and efficiently. 

One way to measure the efficiency and 
effectiveness of emergency facilities is by 
evaluating the average distance between the 
customers and the facilities. When the average 
distance decreases, the accessibility of the facilities 
increase and average response times decrease. This 
is known as the p-median problem, which was 
introduces by Hakimi (1964). It is defined as: 
determine the location of p facilities to minimize 

the average (total) distance between demands and 
their closest facility. 

The p-median problem is computationally difficult 
to solve by exact methods because it is NP-hard on 
general networks (Kariv and Hakimi 1979). 
However, solutions from the p-median model are 
considered efficient since they bring the facility 
locations into closer proximity of the users. The 
difficulty of solving the p-median problem using 
exact methods has led researchers to consider sub 
optimal solutions generated by heuristic 
approaches. Heuristics for solving the p-median 
problem have been discussed in Daskin (1995), 
Maranzana (1964), Teitz and Bart (1968) and 
Densham and Rushton (1992). 

This paper discusses three new heuristic methods 
for solving the p-median problem. These methods 
are motivated by the desire to eliminate outliers 
from having strong influence over the final 
solution given by the heuristics. These heuristics 
will also improve the delivery of emergency 
medical care by properly locating emergency 
facilities in an area.  

In these heuristics, the facility location problem is 
formulated as a network optimization problem as 
follows. The geographical region is partitioned 
into a number of subregions and a corresponding 
graph is constructed. Each node of this graph 
represents a subregion and each link of the graph 
represents the fact that the corresponding regions 
share a boundary. This gives us a structural model. 
Non-structural information is added as weights on 
the nodes (reflect expected demand in region) and 
the links (reflect travel time). Usually the nodes of 
the network represent possible locations of 
facilities.  An efficient reduction method is then 
used to address the problem of outliers. 

Computational results, based on 400 random 
uniformly generated problems, show that the 
heuristics perform well in terms of quality of 
solution and computational time. Our best heuristic 
is compared with the well known existing p-
median heuristics. Better solutions are achieved in 
most cases.  
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1. INTRODUCTION 

The provision and utilization of effective and 
efficient emergency services is an important 
optimization problem encountered in all parts of 
the world. Integer programming problems and, 
specifically, facility location models have real 
application in the service and manufacturing 
industries. Facility location models are used 
extensively in solving optimization problems, 
which attempt to choose the ‘best’ location for 
facilities such as warehouses, schools, hospitals, 
ambulance stations, fire stations etc. In this paper, 
we develop a number of new heuristic algorithms 
and test them on simulated data and data from the 
literature.  

2. THE P-MEDIAN MODEL AND 
EMERGENCY FACILITIES 

The criterion for finding a good location for 
emergency facilities requires the improvement of 
the response times. The response time depends on 
the distance between the emergency facilities and 
the emergency sites. The aim is to locate these 
facilities such that the average (total) distance 
traveled by those who visit or use these facilities is 
minimized. This measures the effectiveness and 
efficiency of the emergency facilities. It is clear 
that people tend to travel to the closest facility 
regardless of the distance or time travelled.  A 
good way to achieve this is by solving the p-
median problem.    

The p-median problem consists of determining the 
location of p emergency facilities to minimize the 
weighted distance between emergency (demand) 
points and their closest new emergency facility. A 
number of authors, such as Berlin et a (19760, 
Mirchandani (1980), Carson and Batta (1990), 
Serra and Marinov (1998), Paluzzi (2004), use the 
p-median problem solution to locate emergency 
facilities.  

We now present the model for the p-median 
problem. We start with some notation: 

{ }m,....,I 1=  is the set of demand locations, 
{ }n,...,J 1=  is the candidate sites for facilities, 

ijd  is the shortest distance between location i and 

location j, =ijx  1 if the customer at location i is 
allocated to the facility at location j and 0 
otherwise, =jy  1 if a facility is established at 
location j and 0 otherwise, p  is the number of 

facilities to be established, and ia  is the 
population at the demand node i. The 
mathematical formulation is 

Min∑∑
= =

m

i

n

j
ijiji Xda

1 1
,    (1)  

subject to  

 ∑
∈

=
Jj

ijx 1 , Ii ∈∀  (2)  

 ∑
∈

=
Jj

j py     (3)  

 jij yx ≤    Jj,Ii ∈∀∈∀    (4)  
 { }10,y j ∈  , { }10,xij ∈   (5)  
The objective (1) is to minimize the total distance 
from customers or clients to their nearest facility. 
Constraint (2) shows that the demand of each 
customer or client must be met. Constraint (3) 
shows the number of facilities to be located is p. 
Constraint (4) shows that customers must be 
supplied from an open facility, and constraint (5) 
restricts the variables to 0, 1 values. 

Several extensions have been proposed for the p-
median model, which improves its efficiency 
(Daskin et al., 1988).  Extensions to the p-median 
problem that account for its stochastic nature have 
been given by Fitzsimmons (1973), Weaver and 
Church (1985) and Swoveland et al. (1973).   

3. SOLUTION METHODS FOR THE P-
MEDIAN PROBLEM 

The p-median problem is a computationally 
difficult problem to solve (the problem is NP-hard 
on general networks). Most solution methods are 
heuristic based because of the large number of 
variables and constraints that arise for a medium 
sized network. The heuristics are based on:  
genetic algorithms, simulated annealing, tabu 
search, node partitioning, node insertion, node 
substitution and various hybrids (Hosage and 
Goodchild (1986), Golden and Skiscism (1986), 
Glover (1990)). Some of these heuristics, together 
with Lagrangian relaxation, which is one of the 
most successful exact methods, are briefly 
discussed below.    

3.1 Lagrangian Relaxation  

Lagrangian relaxation is based on the principle that 
removing constraints from a problem makes the 
problem easier to solve. Generally, Lagrangian 
relaxation removes a constraint and solves the 
revised problem, which introduces a penalty for 
violating the removed constraint. The solution 
procedure for solving the problem is stated below. 

The Lagrangian relaxation for the p-median is 
given as  
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subject to constraints (3)-(5).  
The expression  
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is used to minimize the objective function (6) for 
the fixed values of the Lagrange multipliers. We 
then set 
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The lower and upper bounds of the objective 
function are determined by using the variables of 
modified and unmodified problems respectively. 
The next step involves the use of subgradient 
optimization to update the value of the Lagrange 
multipliers by using the equation below (Daskin 
1995): 
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Where mA  is a constant on the mth iteration, mt  is 
the stepsize at the mth iteration of the Lagrangian 
procedure, UB  is the best (smallest) upper bound 
on the P-median objective function, mL  is the 
value of the objective function using the solution 
obtained from the relaxed problem and m

ijx  is the 
optimal value of the allocation variable at the mth 
iteration. 

An optimal solution is found if the lower bound is 
equal to the upper bound. Narula et al. (1977) and 
Galvao (1980) and Beasley (1993) have 
successfully applied the subgradient optimization 
to solve a number of problems.  However, for the 
larger problems tested, the computational time is 
excessively large.  

3.2 Heuristics 

In this section, we start our discussion by 
observing that it is an easy task to assign a set of m 
clients to p facilities J′ with fixed locations. We 
just determine { } miijd

iij
d ≤≤= 1,min* , j∈J′   (11)  

and assign customer i to facility *
ij . This gives us 

a tool for generating possible solutions. The 
procedure is also useful for determining alternative 

solutions through exchange of facility locations. 
We now use the idea above to describe three 
simple heuristics, which are competitive with other 
methods.  

3.2.1 Myopic Algorithm (MA) 

The myopic heuristic is a greedy type, which 
works in the following way. First, a facility is 
located in such a way as to minimize the total cost 
for all customers. Facilities are then added one by 
one until p is reached. For this heuristic, the 
location that gives the minimum cost is selected. 
The main problem with this approach is that once a 
facility is selected it stays in all subsequent 
solutions. Consequently, the final solution attained 
may be far from optimal. 

3.2.2 Neighborhood Search Heuristic (NS) 

Maranzana (1964) proposed this heuristic, which is 
described as follows. We begin with any set of p 
facility nodes. The demand nodes are then divided 
into p subsets and, for each subset, a demand node 
is allocated to the nearest facility node. The node 
giving the optimal for each subset is found, which 
results in a new pattern of facility nodes. This 
process is repeated until the facility nodes pattern 
remains the same as that in the previous step.  

3.2.3 Exchange Heuristic (EH) 

This is one of the early heuristics developed by 
Teitz and Bart (1968) for the p-median problem. 
The heuristic starts by choosing an initial set of p 
number of nodes as the solution, and then a node, 
which is not in the current solution, is selected to 
substitute for each of the p nodes in turn. We find 
the objective value in each case and compare the 
changes in the objective function. The substitution 
leading to the biggest decrease in the objective 
function is selected and is exchanged for a node in 
the current solution. This exchange of nodes 
results in a new solution configuration and this 
process continues until there is no further 
improvement in the objective value.  

4. NEW P-MEDIAN HEURISTICS FOR 
LOCATING EMERGENCY FACILITIES 

4.1. Reduction Heuristics (RH1, RH2, RRH) 

In the previous section, the discussion of some of 
the heuristics (myopic in particular) for the p-
median problem uses all the values of the distance 
matrix without any modification to solve the 
problem of extreme values (outliers). In this 
section, we tried to eliminate the problem of 
outliers by using a reduction technique. Outliers 
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can have a strong influence over the final solution. 
We also eliminate the uncertainty of choosing a 
good initial solution in the case of the 
Neighborhood search and Exchange heuristics by 
using a specific and efficient way of selecting the 
initial solution for the three new heuristics. 

We obtained the initial solution set for the 
heuristics by first eliminating the outliers and then 
sum the columns. We then choose the nodes 
corresponding to the first p nodes of the totals 
arrange in ascending order. The initial set is the 
first p nodes corresponding to the first p total, 
which is arranged in ascending order.  The aim of 
the heuristics is to eliminate the outliers before 
using the data. This will enhance a facility to be 
located at nodes that are not far away from all 
customers, so the cost of using these facilities is 
minimized.  

We use the initial solution to reduce the distance 
matrix by setting the nodes that corresponding to 
the initial set for both rows and columns to zero. 
This is done with the assumption that customers at 
those nodes are not charged to uses the facilities. 
For RH1, the columns of the resulting distance 
matrix are added and the minimum value is chosen 
for substituting into the initial solution. We finally 
choose the set with the minimum objective value. 
In the case of RH2, all the nodes not in the initial 
solution are exchanged one-by-one for the nodes in 
the initial solution. We then choose the facility set 
with the minimum objective value as the final 
solution. However, for both heuristics, we choose 
the initial set as the final solution if there is no 
improvement in the objective value after the 
swapping procedure.  

Motivated by the performance of the two new 
heuristics (RH1 and RH2), we extend RH2 and 
propose a new heuristic, which we call Repeated 
Reduction Heuristic (RRH). The process of 
reducing the matrix is similar to RH2 but, in this 
case, the reduction is done repeatedly until there is 
no improvement in the final solution.  

We describe the three new reduction heuristics for 
the p-median problem below. 

4.2 Reduction Heuristic One (RH1) 

Step 1: Set the number of nodes and facilities to 
be equal to n and p respectively. 

Step 2: Arrange the n values for each column in 
ascending order and delete the last α number of 
values from each column. Next, let the resulting 
number of nodes be equal to n′  (i.e. n′  = n – α 
where α is p for less than twenty nodes, 2p for less 
than thirty nodes, 3p for less than forty nodes etc. )  

Step 3: Sum the first n′  values for each column, 
arrange the values in ascending order, and choose 
the first p nodes as the initial set. 

Step 4: Set the columns and rows corresponding to 
the initial set to zero and sum the columns of the 
resulting distance matrix. 

Step 5: Choose the node or nodes corresponding 
to the minimum value and substitute for the nodes 
in the initial set.  

Step 6: Choose the set corresponding to the 
minimum objective value after the substitution 
procedure reaches the final solution. Otherwise, go 
to step 3 and choose the initial set as the final 
solution if that value is lower. 

4.3 Reduction Heuristic Two (RH2) 

For RH2, Steps 1 to 4 is the same as RH1 and the 
remaining steps are outlined below.  

Step 5: Substitute all the nodes not in the initial set 
with the nodes in the initial set. 

Step 6: Choose the set corresponding to the 
minimum value as the final solution. Otherwise, 
we choose the initial set as the final solution if that 
is lower 

We note that the different swapping procedure lead 
to an improved final solution as compared with 
RH1 (Section 5). 

4.4 Repeated Reduction Heuristic (RRH) 

In this heuristic, we repeatedly use the final 
solution of RH2 as the initial set and use step 4 of 
RH1, and steps 5 and 6 of RH2. We continue this 
until there is no improvement in the final solution. 
We note that the repeated reduction incorporated 
in RRH has increased its performance as compared 
with RH2. 

The proposed heuristics are unique in three 
different ways. First, the methodology is simple 
and tractable. Second, the elimination of outliers 
gives a good initial solution. Third, the 
determination of swapping a node or nodes and the 
swapping procedure gives a good final solution. 
We also note that an improvement procedure can 
be further introduced to reduce the response time.  

4.5 Illustrative Example 

0 82 37 51 100 
67 0 78 93 97 
74 18 0 20 49 
20 87 27 0 66 
62 37 51 87 0 
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We use the data above to illustrate the three new 
heuristics. To locate two facilities, we eliminate 
the two greatest values in each column. Hence, we 
eliminate 67 and 74 in column 1, 82 and 87 in 
column 2, 51 and 78 in column 3, 87 and 93 in 
column 4 and 97 and 100 in column 5. Summing 
the remaining values and arranging them in 
ascending order gives the following: 2 (55), 3 (64), 
4 (71), 1 (82) and 5 (115). We choose nodes 2 and 
3 as the initial solution for RH1, RH2 and RRH. 
We, therefore, set rows and columns 2 and 3 of the 
data to zero and we have the following table. 

0 0 0 51 100 
0 0 0 0 0 
0 0 0 0 0 
20 0 0 0 66 
62 0 0 87 0 

The resulting totals for the non-zero columns give 
node 1 with the minimum value, so, for RH1, we 
substitute nodes 2 and 3 with node 1, which results 
in the possible solution sets of {1,3} and {1,2}. 
We choose {1,2} since that gives an optimal value 
of 75.    

In the case of RH2 and RRH, we use all the nodes 
not in the initial solution for substituting for nodes 
in the initial solution. This gives the possible 
solution set as follows: {1,2}, {1,3}, {2,4}, {3,4}, 
{2,5} and {3,5}. We choose {1,2} as the final 
solution since it gives an optimal value of 75. We 
continue the same process repeatedly for RRH and 
now use {1,2} as its initial solution, which finally 
yield {1,2} as the final solution. 

We use the same data to locate three facilities. In 
this case, we eliminate the three greatest values in 
each column and sum the values of the remaining 
columns. This gives the initial solution of 1, 2 and 
4. Going through the same process, and setting the 
rows and columns 1, 2 and 4 to zero, we have the 
following table.  

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 49 
0 0 0 0 0 
0 0 51 0 0 

For RH1, node 5 has the minimum value, so we 
substitute node 5 for nodes 1, 2 and 4. Thus, we 
have the possible sets of {2,4,5}; {1,4,5} and 
{1,2,5}. We choose {1,2,5} as the final solution, 
which has an optimal value of 38. In the case of 
RH2 and RRH, we use nodes 3 and 5, which are 
not in the initial solution for substituting into 
nodes 1, 2 and 4. This gives the possible solution 
of {2,3,4}, {1,3,4}, {1,2,3}, {2,4,5}, {1,4,5} and 
{1,2,5}. We finally choose {1,2,5} as the final 

solution, which has an optimal value of 38. For 
RRH, we again use {1,2,5} as the initial solution 
and continue the process repeatedly. The final 
solution is {1,2,5}. 

For the Myopic heuristic, we eliminate any 
extreme values, which gives the following table. 

0 82 37 51 100 
67 0 78 93 97 
74 18 0 20 49 
20 87 27 0 66 
62 37 51 87 0 

When we sum all the columns, node 3 has the 
minimum value of 193. Therefore, one facility is 
located at node 3. We note that, for the p-median 
problem, a demand is allocated to the nearest 
facility. We, therefore, adjust the distance matrix, 
which gives the following table.  

0 37 37 37 37 
67 0 78 78 37 
0 0 0 0 0 
20 27 27 0 27 
51 37 51 51 0 

Node 2 has the minimum value of 101 when the 
columns of the above matrix are added, so, for two 
facilities, we have nodes 2 and 3 with an objective 
value of 101. 

Similarly, we have adjusted the above matrix after 
the two facilities were located, as shown below.  

0 37 37 37 37 
0 0 0 0 0 
0 0 0 0 0 
20 27 27 0 27 
37 37 51 37 0 

Node 1 has the minimum value when all the 
columns are added, so, for three facilities, we have 
nodes 1, 2 and 3 with an objective value of 57. We 
present, in Table 1, the results of the example of 
the three heuristics and Myopic Algorithm. The 
three heuristics give better results than myopic 
algorithm. 

Table 1: Results for RH1, RH2, RRH and 
Myopic  

Solution 
RH1, RH2, RRH Myopic 

P 

Fac. Obj. Fac. Obj. 
2 {1,2} 75 {1,3} 101 
3 {1,2,5} 38 {1,2,3} 57 

5. COMPUTATIONAL RESULTS 

The three new heuristics are implemented in C++ 
and tested on sets of 20 randomly generated data 
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for a [10, 100] matrix with n ranging from 10 to 50 
in steps of 10 and p ranging from 2 to 5. The 
statistic used to measure the quality of the solution 

is given as 100×−
O

OH
 where H is the value 

given by the implementation of the heuristic and O 
is the optimal value determined by the 
enumeration method. The value of 0% is 
considered to be optimal. A small deviation results 
in a better solution than a large deviation. 

Table 1 gives the performance of the three new 
heuristics for locating 2, 3, 4 and 5 facilities. In 
Table 2 below, we have the average values for 
using ten, twenty, thirty, forty and fifty nodes.  

Table 2: Average Values for the New Heuristics 

Average Values (%) Number of 
Nodes (n) RH1 RH2 RRH 
10 2.22 0.79 0.32 
20 4.87 1.96 0.72 
30 4.38 1.65 0.66 
40 4.60 2.27 0.87 
50 3.04 1.00 0.49 

From Table 2, the average values for RH1 ranges 
from 2.22% to 4.87%, RH2 ranges from 0.79% to 
2.27% and RRH ranges from 0.32% to 0.87%. The 
values of RRH are almost optimal, which is good 
for locating emergency facilities and might give 
rise to acceptable response times. 

5.1 Comparison of the Repeated Reduction 
Heuristic (RRH) and some P-Median Heuristics  

Motivated by the performance of RRH, we 
compare the heuristic using data from the 
literature. We compare this heuristic using the 55-
node network data (Swain 1971). The data are 
given in Colome et al. (2003). The data has been 
used by authors such as Daskin (1982, 1983), 
Colome et al. (2003) and Church and Gerrard 
(2003) for testing location problems. The 55-node 
data set represents 55 communities in the 
Washington D.C (USA) area. Demands for each 
node were generated in pseudo-random manner 
with most large demands at the center of the region 
and most small demands at the outer region.   

We compare RRH with the Myopic algorithm 
(MA), Exchange heuristic (EH) and Neighborhood 
search (NS) heuristic. We coded the Repeated 
Reduction Heuristic (RRH) in C++ while the 
results of the other heuristics were obtained using 
the SITATION software (Daskin, 1995). The 
solutions of the heuristics were compared with the 
optimal solutions, which were determined using 
Lagrangian Relaxation (Daskin, 1995). 

Table 3: Comparison Performance of RRH and 
Existing Heuristic using 55-node Data 

MA NS EH RRH Number of 
Facilities (p) 

100×−
O

OH
 

1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 2.3 
4 4.0 0 0 0 
5 3.5 3.5 0 0 
6 5.3 5.3 2.4 2.4 
7 6.9 3.1 0 0 
8 7.7 0.2 1.4 0 
9 7.0 0.6 0.4 0 
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Figure 1: Comparison Performance of Heuristic 
using 55-node Data  

Table 3 and Figure 1 show the performance of the 
new heuristics and the existing ones for the 55-
node literature test problem. From Table 2 and 
Figure 1, the performance measured in terms of the 
number of optimal solutions gives the rank (from 
the best to the worst) of RRH, Exchange heuristic, 
Neighborhood Search heuristic and Myopic 
heuristic. The new heuristic RRH performs better 
in the location of all facilities with the exception of 
the location three and six facilities.    

6. CONCLUSION 

In this paper, we introduced three new heuristic 
methods to locate emergency facilities. These 
heuristics are based on the p-median problem and 
were tested using about 400 random data. The 
performance of our new heuristics compared with 
the optimal solution and existing heuristics is 
encouraging. The best heuristic among the three is 
within 1% of the optimal, and, when compared 
with other heuristics, it performs better.    
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