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EXTENDED ABSTRACT 

In this paper, we describe a new agent-based 
simulation system for studying the impact of 
network topology on military combat 
performance. Since the timescales of message 
transfer and agent movement can differ 
significantly, the simulation is event-based rather 
than time-step. Figure (i) shows a snapshot of the 
simulation in operation. 

 
Figure (i). Snapshot of Combat Simulation 

The networks we explore in this paper are 
generated using the process introduced by 
Kawachi et al (2004), which alters the topology of 
a network without altering the number of links. 
By varying the parameter p, the Kawachi process 
can generate regular (p = 0), “Small-World”  
(0.02 ≤ p ≤ 0.1), random (0.5 ≤ p ≤ 1), and “Scale-
Free” (p ≥ 2) networks. Figure (ii) shows the 
values of four network metrics as p is varied: the 
average distance D between nodes, the clustering 
coefficient C, the node connectivity K (a measure 
of robustness), and the symmetry ratio r. 

The “Small-World” and random networks 
correspond to phase transitions where network 
metrics change slowly with respect to p. In 
particular, random networks are characterised by 
the clustering coefficient C reaching a minimum 
and the symmetry ratio r reaching a maximum, 
with the average distance D between nodes low, 
and the node connectivity K close to the minimum 
value of one. 
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Figure (ii). Values of Average Distance (D), 

Clustering Coefficient (C), Node Connectivity (K), 
Symmetry Ratio (r), and Performance Score (S) for 
different values of the Kawachi Process parameter 

In the experiment reported here, and shown in 
Figure (i), a simulated networked friendly force of 
30 agents was engaged in combat with a hostile 
force of 60 non-networked (but otherwise identical) 
agents. Figure (ii) shows the combat performance 
scores S, defined to be the logarithm of the 
Adjusted Loss Exchange Ratio (averaged over 2000 
combats for each network). Performance was best 
for the “Scale-Free” (p = 2) case. 

Network performance was best explained as a 
function of 1/D. This is consistent with past work 
(Dekker 2002a, 2002b, 2003, 2004) in which the 
intelligence coefficient was the best predictor, since 
the intelligence coefficient is proportional to 1/D in 
this case. The dependence on D was confirmed by 
using a simple star network, with 29 nodes 
connected to one central hub (D = 1.93). The star 
network had an average score of 1.002 over 2000 
runs, an improvement of 8% on the p = 2 case. 

Unlike past studies (Dekker 2004), the node 
connectivity K had no effect on performance. This 
is because the networked force in the present 
experiment possessed tactical agility: the 
combination of near-perfect sensor information, 
rapid reliable communications, and the ability to 
evade and retaliate against threats. 
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1. INTRODUCTION 

In previous work (Dekker 2003, 2004) we have 
used modelling and simulation to explore the 
impact of communications network topology on 
the performance of a military force. In doing so, 
we extended the data farming (Horne 1997) 
approach of Project Albert (Horne et al 2000), 
which uses simple agent-based combat simulations 
operating with discrete time-steps in a grid-based 
world. In our extension, which we call network 
farming (Dekker 2005), we add networking 
between agents, and study the relationship between 
network characteristics and combat performance. 

Since combat performance is easily quantified, and 
dependent on information transmitted across the 
network, such studies are a useful way of studying 
network effectiveness. 

However, message-passing across a network 
potentially operates on very different timescales 
from agent movement, and in this paper, we 
present an improved event-based simulation 
which allows such a range of different timescales. 

We use the simulation to study the effect of 
different network topologies generated by the 
process of Kawachi et al (2004). This process can, 
by varying one parameter, generate regular, 
“Small-World,” random, and “Scale-Free” 
networks. 

2. THE KAWACHI PROCESS 

In the 1990s, Duncan Watts introduced the concept 
of “Small-World” networks, which have small 
average distance between nodes (Watts 2003). He 
also described a generation process which begins 
with a regular network of large diameter, and 
“rewires” links (to a random pair of nodes) with 
probability p.  For small values of p, this produces 
a “Small-World” network, while with p = 1 it 

produces an Erdős-Rényi random network 
(Bollobás 2001). 

Kawachi et al (2004) introduced an extension to 
this process, where the rewiring is biased so as to 
preferentially move links to be adjacent to highly 
linked nodes (nodes of high degree). In particular, 
the link a—b (where a has higher degree) is 
replaced by a—c, where c is chosen with 
probability proportional to its degree plus one. 

The rewiring is done with probability p/3, and the 
rewiring is repeated three times, so that the 
probability of an edge being rewired is 1 – (1 – p/3)3. 
If the resulting network is disconnected, the entire 
process is repeated from the beginning. 

For low values of p, the Kawachi process has 
almost exactly the same behaviour as the Watts 
process, and produces “Small-World” networks, 
but for higher values of p (p ≥ 2), a “Scale-Free” 
network (Barabási and Albert 1999, Barabási 
2002, Albert and Barabási 2002) is produced. 

The Kawachi process is thus an important 
breakthrough in network theory: it provides a 
uniform way of generating four important families 
of network: Regular, “Small-World,” Random, and 
“Scale-Free.” This is the process which we use to 
generate networks for our simulations. 

Table 1 and Figure 1 show our experimental 
results for the Kawachi process with a 30-node 
antiprism (a double ring of degree 4) as an initial 
network (30 was the largest network size our 
simulator could handle efficiently). Results are 
averaged over 200 repeats of the process. Figure 4 
illustrates an example rewired network, and Table 
1 provides values for four network metrics: 

• The average distance D between nodes. 

• The clustering coefficient C (Watts 2003). 
Changes in C with the Kawachi process 
are discussed in Kawachi et al (2004). 

Table 1. Average Values (over 200 runs) of Network Metrics and Performance Scores for varying p 

Value of Kawachi Process Parameter p  
0 0.02 0.05 0.1 0.2 0.5 1 2 

Average Distance (D) 4.14 3.67 3.42 3.17 2.84 2.61 2.55 2.44 
Clustering Coefficient (C) 0.50 0.47 0.44 0.40 0.32 0.20 0.17 0.23 
Node Connectivity (K) 4.00 2.99 2.78 2.50 1.93 1.20 1.01 1.00 
Symmetry Ratio (r) 1.56 3.32 3.70 4.06 4.56 4.74 4.65 4.48 
Performance Score (S) 0.842 0.850 0.863 0.882 0.903 0.897 0.904 0.924 
Number of Hubs 0 0 0 0 0.01 0.14 1.33 3.39 
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• The node connectivity K, which is a 
measure of network robustness (Gibbons 
1985, Dekker and Colbert 2004). 

• The symmetry ratio r (Dekker and 
Colbert 2005), which is the number of 
eigenvalues of a network divided by its 
diameter plus one.  This provides a better 
measure of network symmetry than other 
alternatives.  Low values of r indicate 
symmetrical networks. 

Figure 2 and Figure 3 show X-Y plots for these 
four metrics (for comparison, values for Erdős-
Rényi random networks are also shown). Table 1 
and Figure 1 also show performance scores (as 
discussed in Section 5). Table 1 also shows the 
number of “hubs,” as discussed below. 
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Figure 1. Values of D, C, K, r, and S for varying p 

Initially, the average distance D drops sharply as 
rewired edges are added, and the node connectivity 
K drops from 4 to an average of about 3. The 
symmetry ratio r rises sharply as much of the 
initial symmetry is lost, but the clustering 
coefficient C changes very little. At 0.02 ≤ p ≤ 0.1 
there is a phase transition, where all four metrics 
change slowly. The networks in this transitional 
region are “Small-World” networks. 

Figure 4 shows an example (with p = 0.05), where 
the original antiprism links are coloured red, and 
the new rewired links are coloured blue. This 
example has average distance D = 3.10, clustering 
coefficient C = 0.43, node connectivity K = 3, and 
symmetry ratio r = 4.29. 

At 0.5 ≤ p ≤ 1 there is another phase transition, 
corresponding approximately to Erdős-Rényi 
random networks (Kawachi et al 2004). Here 
average distance D and node connectivity K are 
low, the clustering coefficient C reaches a 
minimum, and the symmetry ratio r reaches a 
maximum. 

 
 

Figure 2. X-Y plot for D and C, for varying p 

 
 

Figure 3. X-Y plot for K and r, for varying p 

 

 
Figure 4. Example “Small-World” rewired 

network with p = 0.05 

Finally, at p = 2, the networks produced are “Scale-
Free” (Kawachi et al 2004). Figure 5 shows an 
example, and Figure 6 shows the log-log plot of 
degree against rank, which confirms the “Scale-
Free” property. For “Scale-Free” networks, the 
clustering coefficient C actually rises slightly on 
average (statistically extremely significant at the 
10–29 level), as observed by Kawachi et al (2004). 
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The symmetry ratio r drops slightly on average 
(statistically very significant at the 10–4 level), due 
to the presence of local “tree-like” symmetry in 
parts of the network. 

Nodes with degree more than twice the average 
(i.e. more than 8) were called “hubs.” Table 1 
shows the average number of “hubs,” which is 
initially 0, begins to increase at p = 0.2, and 
reaches 3.39 for “Scale-Free” networks (p = 2). 

 
Figure 5. Example “Scale-Free” rewired network 

with p = 2, showing node degrees 

 
Figure 6. Log-Log plot of degree against rank for 

“Scale-Free” rewired network with p = 2 

3. THE SIMULATION SYSTEM 

The agent-based simulation which we have 
developed involves combat between agents in a 
grid-based world, such as that shown in Figure 7.  
Each agent is equipped with a sensor and a 
weapon. When agents are networked, they 
broadcast their sensor information across network 
links to every reachable agent. 

The simulation is written in Java, and integrated 
within the CAVALIER tool for analysing 
networks (Dekker 2002a, 2002b, 2003, 2004, 
2005). Network topologies can be edited using 

CAVALIER’s graphical editing capabilities. The 
editor can also be used to modify agent properties 
such as speed or sensor range, and to specify the 
name of the dynamically loaded Java class which 
controls the agent’s behaviour. 

Time within the simulation is (approximately) 
continuous, and an event queue (Graybeal and 
Pooch 1980) is used to schedule simulation events 
such as movements or firing. 

4. EXPERIMENTAL SETUP 

In the experiment reported here, a simulated 
networked friendly force of 30 agents was engaged 
in combat with a hostile force of 60 non-networked 
(but otherwise identical) agents. Having twice as 
many enemy as friendly agents provided a good 
test for the benefit of networking. The combat took 
place on a 30×30 discrete grid, and continued until 
all the agents on one or the other side were 
annihilated. Figure 7 shows a snapshot of the 
simulation in progress, with the networked friendly 
agents shown in blue, and the hostiles in red. Table 
2 describes the values of simulation parameters. 

 
Figure 7. Snapshot of Combat Simulation 

Simulations were performed using networks 
generated by the Kawachi Process, as described in 
Section 2. Each agent was programmed to move 
using a combination of attractive and repulsive 
forces to friendly and enemy agents, as in 
Reynolds (1987). In the absence of any 
information about enemies, agents were 
programmed to move towards the middle of the 
grid. In the event that “hubs” (agents with more 
than 8 network links) existed, these were 
programmed to avoid conflict, while remaining 
close to the agents they were connected to. The 
simulation snapshot in Figure 7 includes a “hub.” 
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Table 2. Simulation Parameter Settings 

Time to transmit a  
message across a link: 5 time units 

Average time between 
sensor scans: 80 time units 

Average time between 
shooting: 80 time units 

Maximum agent  
movement speed: 

0.005 grid squares 
per time unit 

Sensor range: 4 grid squares 
Sensor accuracy: 100% 
Weapon range: 8 grid squares 
Weapon accuracy: 33% 

As a measure of performance for the friendly 
force, we used the natural logarithm of the 
Adjusted Loss Exchange Ratio (ALER). To be 
precise, if Ch are hostile casualties (ranging from 0 
to 60), and Cf are friendly casualties (ranging from 
0 to 30), our performance score S is given by: 

 S = ln ALER = ln ((1 + Ch) / (1 + Cf)) (1) 

This measure of effectiveness has the advantage of 
being symmetric (inverting the ratio merely 
changes the sign of the result), and we have used it 
with success in previous studies (Dekker 2002b, 
2003, 2004). It avoids division by zero, and has 
better statistical properties than the more 
commonly used loss exchange ratio (Ch / Cf). 
Specifically, it has the advantage of being almost 
exactly normally distributed (values of skew and 
kurtosis are very small: 0.07 and 0.1 respectively). 
This allows us to use regression analysis to study 
variation in scores. 

To reduce random noise, the score for each 
randomly generated network was averaged over 10 
simulated combat sessions. These averages (for 
200 networks for each p value) are shown in 
Figure 9. The total of 18,000 simulated combats 
took 27 hours to run on a 2.2 GHz Pentium 4. 

5. EXPERIMENTAL RESULTS 

For unmodified antiprism networks (p = 0), the 
average performance score was 0.842, 
corresponding to an Adjusted Loss-Exchange 
Ratio of 2.3:1. This is because networking 
provides sensor information about targets to nodes 
which are in firing range, but can themselves not 
see the target. 

Figure 8 shows an example, where three 
networked friendly agents (black dots) can engage 
the hostile agent (red X), which is in firing range 
of all three friendly agents (large open circles), 

even though it is in sensor range (blue circles) for 
only one agent. The hostile agent, meanwhile, can 
only retaliate against the one agent it can see. 

 

X

Figure 8. The Network Advantage 

The more rapidly this information about targets 
can be disseminated, the less likely it is that the 
target will move before it is hit. Performance thus 
increases with the Kawachi Process parameter p, 
as shown in Table 1. The average increase in score 
from 0.842 to 0.924 (corresponding to Adjusted 
Loss-Exchange Ratios of 2.3:1 to 2.5:1) is modest, 
since we are merely changing the topology of an 
already fast network. However, this experiment 
demonstrates that our simulation software is 
capable of studying such subtle improvements. 

The best predictor of the performance score S was 
in fact not the Kawachi Process parameter p, but 
the reciprocal of the average distance D, with the 
line of best fit being: 

 S ≈ 0.73 + 0.47 /D (2) 

This equation explains 7% of the variance in 
performance scores (a correlation 0.26). The 
correlation is very weak because of the highly 
random nature of combat outcomes in the 
simulation. However, the correlation is statistically 
extremely significant (at the 10–25 level). A 
network with low average distance does not 
guarantee success, but it does improve the odds. 

For comparison, we also tried a simple star 
network, with 29 nodes connected to one central 
hub, so that average distance was D = 1.93 (even 
smaller than the 2.44 for p = 2). The star network 
had an average performance score of 1.002 over 
2000 runs. The improvement of 0.078 over the 
“Scale-Free” network (p = 2) is statistically 
extremely significant (at the 10–12 level). Including 
this data gave a new best-fit line of: 

 S ≈ 0.70 + 0.56 /D (3) 

This new equation explains 16% of the variance in 
performance scores (a correlation of 0.40). Figure 
9 shows the best-fit line of Equation 3 overlaid on 
a scatter plot of the 1800 data points.  
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Tactical agility is best illustrated by the operation 
of US Air Force fighters controlled by an Airborne 
Warning and Control System (AWACS) aircraft 
(Clancy 1995). The AWACS provides near-perfect 
sensor information, since its radar has line-of-sight 
over a wide range, and few US opponents possess 
stealth technology. Communications is rapid, with 
the AWACS acting as a central hub. There is 
limited human processing of information, which is 
conducted efficiently on the AWACS itself, and 
facilitated by computer equipment. Finally, 
superior US fighters can (when given superior 
information) engage most threats, while at the 
same time protecting the AWACS.  

Figure 9. Plot of Performance Score (S) as a 
Function of 1/D 

In contrast, the same level of tactical agility is 
impossible in the land environment, since both the 
terrain and the civilian population can hide 
enemies. Large land forces make communications 
inevitably multi-hop, therefore slower. In addition, 
threats can appear unexpectedly—for example 
suicide bombers, or attacks by Special Forces on 
the communications network. 

In previous work (Dekker 2002a, 2002b, 2003, 
2004), we identified a metric which we called the 
intelligence coefficient as the best predictor of 
military network performance.  For this 
experimental setup, the intelligence coefficient 
would be proportional to 1/D, and so the results 
presented here are completely consistent with that 
work. 

6. CONCLUSIONS 

In this paper, we have described a new agent-based 
simulation system for studying the impact of 
network topology on military combat performance. 
Since the timescales of message transfer and agent 
movement differ significantly, the simulation is 
event-based. 

The other network metrics (C, K, and r) did not 
explain any more of the variation in performance. 
In particular, in contrast to a previous combat 
simulation study (Dekker 2004), the node 
connectivity K did not have any impact on the 
results. Indeed, the simple star network (with node 
connectivity K = 1) outperformed all the other 
networks. The networks we have explored in this paper were 

generated by the process introduced by Kawachi et 
al (2004), which alters the topology of a network 
without altering the number of links. By varying 
the parameter p, the Kawachi process can generate 
regular, “Small-World,” random, and “Scale-Free” 
networks. 

What is the explanation of this apparent conflict? 
The previous study used a time-step Project-Albert 
style agent-based simulation with networking 
added, but where the speed of information transfer 
was of the same magnitude as the speed of agent 
movement. Combined with less than 100% 
accurate sensor information, this made it possible 
for hostile agents to locate and attack hubs before 
they were themselves destroyed. In contrast, the 
present experimental setup has information 
transfer an order of magnitude faster than agent 
movement, thus allowing hostile agents to be 
located and destroyed before getting within sensor 
range of a hub. The networked force in the present 
experiment thus possesses tactical agility: the 
combination of near-perfect sensor information, 
rapid reliable communications, and the ability to 
evade and retaliate against threats (including 
threats to the communications network). In such 
circumstances, node connectivity is not an 
important contributor to performance. 

By further investigating the properties of the 
Kawachi process, we have shown that the “Small-
World” and random networks correspond to phase 
transitions where network metrics change slowly 
with respect to p. In particular, the random 
networks are characterised by the clustering 
coefficient C reaching a minimum and the 
symmetry ratio r reaching a maximum, with the 
average distance D between nodes low, and node 
connectivity K ≈ 1. 

Utilising the networks produced by the Kawachi 
process in our simulation system, our experimental 
results showed that performance (measured by the 
logarithm of the Adjusted Loss Exchange Ratio) 
was best explained by a linear function of 1/D, 
where D is the average distance between nodes. 
This is consistent with past work (Dekker 2002a, 
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2002b, 2003, 2004) in which the intelligence 
coefficient was the best predictor, since the 
intelligence coefficient is proportional to 1/D in 
this case. Our results also emphasise the 
importance of minimising the average distance D 
in real-world military networks. 
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