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EXTENDED ABSTRACT 
 

The selection of an appropriate subset of variables 
from a set of measured potential input variables 
for inclusion as inputs to model the system under 
investigation is a vital step in model development. 
This is particularly important in data driven 
techniques, such as artificial neural networks 
(ANNs) and fuzzy systems, as the performance of 
the final model is heavily dependent on the input 
variables used to develop the model. Selection of 
the best set of input variables is essential to being 
able to model the system under consideration 
reliably. When the available data set is high 
dimensional, it is necessary to select a subset of 
the potential input variables to reduce the number 
of free parameters in the model in order to obtain 
good generalization with finite data. The correct 
choice of model inputs is also important for 
improving computational efficiency. However, 
the topic of input selection is a difficult one. Real 
systems are generally complex and mostly 
associated with nonlinear processes. 
Consequently, the dependencies between output 
and input variables, as well as conditional 
dependencies between variables, are difficult to 
measure. 

Mutual information (MI) has been used 
successfully to measure the dependence between 
output and input variables. In contrast to the 
linear correlation coefficient, which often forms 
the basis of empirical input variable selection 
approaches, mutual information is capable of 
measuring dependencies based on both linear and 
nonlinear relationships, making it well suited for 
use with complex nonlinear systems. Partial 
mutual information (PMI) has been proposed in 
recent years as a means of measuring conditional 
dependencies between output and input variables 
(Sharma, 2000). It is a robust technique for 
selecting input variables for multivariate, 
nonlinear, complex natural systems, such as 
hydrological processes. The PMI approach is a 
stepwise input variable selection algorithm. 
Consequently, it is necessary to have a reliable 
technique to indicate whether a selected candidate 

variable is significant or not. The original 
algorithm proposed by Sharma (2000) used the 
bootstrap method with 100 bootstraps to obtain 
the 95th percentile confidence limit for the PMI. 
However, as pointed out by Chernick (1999), 
about 5,000 bootstraps are needed for simple 
problems and about 10,000 bootstraps for more 
complicated problems in order to estimate the 
required confidence intervals reliably. Use of 
such a large number of bootstraps as the stopping 
criterion for the PMI algorithm would decrease 
the computational efficiency of the algorithm 
significantly, probably to the point of 
impracticality for most realistic problems. 

The focus of this study is to introduce an 
alternative stopping criterion for PMI algorithm 
implementation, which is both robust and 
computationally efficient. As part of the proposed 
method, significant PMI scores are treated as 
outliers in the computed PMI scores. A robust 
outlier detection technique, the Hampel identifier 
(Davies and Gather, 1993), is used to evaluate the 
significance of selected candidate inputs. The 
reliability of the new technique is first 
investigated using two nonlinear data series where 
dependencies of attributes were known a priori. 
The new technique consistently selects the correct 
inputs, while being computationally efficient.  

The modified PMI algorithm is then applied to 
select inputs to forecast salinity in the River 
Murray at Murray Bridge, South Australia, which 
are used to develop an ANN model. The results 
obtained in this study are compared with those 
obtained in three previous studies which 
developed ANN models for the same case study. 
The proposed PMI algorithm identifies only 11 
inputs as significant from 1323 candidate inputs. 
The resulting ANN model has the smallest 
number of inputs when compared with the models 
developed in previous studies for this case study, 
with no loss in predictive performance. 
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1. INTRODUCTION 

In recent years, there has been a significant 
amount of research on measuring the dependence 
between two random variables. In contrast, there 
has been very little work on multivariate or 
conditional measures of dependence among sets 
of random variables. The coefficient of linear 
correlation is the most widely used measure for 
computing dependence between bivariate data, 
whereas the partial linear correlation coefficient 
can be used to measure the conditional 
dependence between sets of variables. 
Autocorrelation is widely used to determine the 
number of lagged variables in modeling time 
series data. A shortcoming of all of the above 
measures is that they are based on covariance and 
therefore only account for linear dependence. 
However, most real world systems are governed 
by complex, nonlinear processes and as a result, 
the dependencies between variables are nonlinear. 
Mutual information possesses properties that 
make it well suited to measuring statistical 
dependence for both linear and nonlinear data.  

1.1. Mutual Information 

For a set of N bivariate measurements, zi = (xi, yi), 
i = 1,...,N which are assumed to be independent, 
identically distributed realizations of a random 
variable Z = (X,Y), with joint probability density 
fx,y(x,y), mutual information is defined as  
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where fx(x) and fy(y) are the marginal probability 
density functions of X and Y, respectively and 
fx,y(x,y) is the joint probability density function of 
X and Y.  

1.2. Estimation of Mutual Information 

Calculation of mutual information is not always 
easy, as it requires estimation of the marginal 
probability density functions (pdfs) of x and y and 
estimation of the joint pdf of x and y. The most 
widely used approach for estimating MI is based 
on histograms. However, this approach can be 
unreliable, which has resulted in the use of kernel 
based MI estimators (Moon et al., 1995). 

When using kernel based methods, the mutual 
information score in (1) can be approximated as 
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where fx(xi), fy(yi) and fx,y(xi, yi) are the respective 
univariate and joint densities estimated at the 
sample data point (Sharma, 2000). This simplifies 
the integral in (1) to a summation and can be used 
to obtain kernel density based mutual information 
efficiently. The Gaussian kernel function (Scott, 
1992), together with the Gaussian reference 
bandwidth (Scott, 1992, Silverman, 1986), are 
adopted in this study to estimate MI using (2). 

1.3. Partial Mutual Information 

The MI criterion can be used to identify 
dependence between bivariate data. However, as 
is the case with the linear correlation coefficient, 
it cannot be used to compute the dependence for 
multivariate data. To avoid this problem, Sharma 
(2000) proposed a new stepwise input selection 
algorithm, the partial mutual information (PMI). 
PMI provides a measure of the conditional 
dependence between a new candidate input and 
already selected inputs and the output. The PMI 
between the output y and the input x, for a set of 
already selected inputs z, is given by 
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where 
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where [ ]⋅E denotes the expectation operation. The 

variables 'x  and 'y only contain the residual 
information in variables x  and y  after 
considering the effect of the already selected 
inputs z . 

The discrete version of (3) can be used to 
approximate the sample PMI and is given as: 
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where ix '  and iy ' are the ith  residuals in the 

sample data set of size N and )(),( ''
'' iyix

yfxf  

and ),( ''
, '' iiyx

yxf  are the respective marginal 

and joint probability densities. 

In this study, the general regression neural 
network (Specht, 1991) is used to estimate the 
conditional expectations in (4), as they are non-
linear and only require estimation of a single 
parameter. This is in agreement with the approach 
taken by Bowden et al. (2005). 
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Implementation of the PMI algorithm requires a 
criterion to decide when to stop the addition of 
new candidate inputs to the already selected 
inputs. Sharma (2000) suggested the 95th 
percentile confidence limit of the sample PMI for 
this purpose. Sharma’s original algorithm used 
the bootstrap method with 100 bootstraps to 
obtain the 95th percentile confidence limit. 
However, as pointed out by Chernick (1999), 
approximately 5,000 bootstraps are needed for 
simple problems and about 10,000 bootstraps for 
more complicated problems in order to estimate 
the required confidence intervals reliably. Use of 
such a large number of bootstraps as the stopping 
criterion for the PMI algorithm would decrease 
the computational efficiency of the algorithm 
significantly, probably to the point of 
impracticality for most realistic problems. 
Consequently, the focus of this study is on the 
development of a reliable and efficient alternative 
technique to the bootstrap method. 

2. PROPOSED METHOD 

The proposed approach is to treat significant PMI 
scores as outliers in the computed PMI scores. If 
the highest PMI score is found to be an outlier 
among the computed PMI scores for a particular 
step, then the input corresponding to the highest 
PMI score is a significant input. The rationale 
behind this approach is that if there are no outliers 
in the PMI scores, then all PMI scores would have 
the same level of significance (or in this case, no 
significance). This would only occur after all 
significant variables have been selected. 
Consequently, the presence of outliers indicates 
the presence of significant PMI scores. It should 
be noted that this approach does not work if the 
candidate inputs do not contain non-significant 
inputs. However, this scenario is unlikely to occur 
in practice, particularly when dealing with time 
series applications, where a number of lagged 
values are considered. 

As part of the proposed approach, the presence of 
outliers in the PMI scores is detected using a 
robust outlier detection technique, the Hampel 
identifier (Davies and Gather, 1993). This is an 
improved, robust version of the commonly used 
“3σ edit rule” or “Z score” approach to outlier 
detection. For a normally distributed data set, the 
probability that Z score > 3 is only about 0.3% 
and is used to detect the outliers in the data set. 
However, this rule fails in the presence of 
multiple outliers due to an effect called 
“masking”. The Hampel identifier replaces the 
outlier sensitive mean and standard deviation 
estimates with the outlier resistant median and 
median absolute deviation from the median 

(MAD), respectively. The Hampel distance, or 
modified Z score (MAD), for a data set {xi } is 
defined as: 

Hampel distance= (xi – x0.50 ) / S (6) 

where x0.50 = median and S is the MAD scale 
estimate defined as (Pearson, 2001) 

S=1.4826 median {| xi – x0.50 |}                    (7) 

The factor 1.4826 was chosen so that the expected 
value of S is equal to the standard deviation σ for 
normally distributed data.  

2.1. Modified PMI Algorithm 

The basic steps in the modified PMI input 
selection algorithm are as follows: 

1. Identify the set of potential inputs that could 
be useful in modelling the system under 
investigation. Denote this input set as zin. 
Denote the vector that will store the selected 
inputs as z. 

2. Estimate the PMI between the output and each 
of the potential new inputs in zin, conditional 
on the pre-existing input set z by using 
Equation (5). 

3. Calculate the Hampel distance corresponding 
to the highest PMI score in step 2. 

4. If the Hampel distance for the highest PMI 
value > 3, add the input variable 
corresponding to the highest PMI score to 
selected input set z and remove it from zin. If 
the highest PMI is not an outlier, go to step 6. 

5. Repeat steps 2 – 4 as many times as needed. 

6. This step will be reached only when all 
significant inputs have been selected. 

3. APPLICATION TO DATA SETS WITH 
KNOWN ATTRIBUTES 

Two data sets with known dependence attributes 
were used to evaluate the reliability of the 
modified PMI algorithm. The two data series 
were the nonlinear threshold autoregressive 
models used by Sharma (2000), including: 

TAR1 – Threshold Autoregressive order 1 
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TAR2 – Threshold Autoregressive order 2 
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where et was Gaussian random noise with zero 
mean and unit standard deviation for both models. 
One thousand and forty data points were 
generated for each of the models. The first 25 
points were discarded and the first 15 lags were 
chosen as potential inputs. In addition to the 
modified Z score (MAD), the 95th percentile 
randomised sample PMI was also computed with 
1000 bootstraps. The results obtained using the 
modified PMI algorithm applied to these data sets 
are shown in Table 1. It can be seen that the 
modified Z score (MAD) was able to correctly 
identify the inputs for both nonlinear threshold 
data sets. In addition, computation of the 
modified Z score (MAD) was also relatively 
computationally efficient. In contrast, even with 
1000 bootstrap iterations, the 95th percentile 
randomized sample PMI did not correctly identify 
the inputs for the TAR2 model. The results 
obtained indicate that use of the modified Z score 
(MAD) shows promise as an efficient alternative 
stopping criterion for PMI algorithm 
implementation. 

Table 1. PMI input selection algorithm results for 
TAR1 and TAR2 

 

4. CASE STUDY 

The case study used to further test the 
effectiveness of the modified PMI algorithm was 
the forecasting of salinity in the River Murray at 
Murray Bridge, South Australia, with a lead time 
of 14 days. Maier and Dandy (1996) have 
previously developed ANN models for this case 
study. Bowden et al. (2002, 2005) further 
investigated different aspects of ANN model 
development using the same case study and tested 
the performance of the ANN models in a real-
time forecasting simulation on an independent 
data set. Hence the River Murray salinity data 
provided a good benchmark for testing the 
performance of the modified PMI algorithm. 

Maier and Dandy (1996) considered a total of 16 
variables, including daily salinity, flow and river 
level data at different locations in the lower 
Murray River (Table 2) for the period 01-12-1986 
to 30-06-1992 as potential model inputs. The 
same data set was used in this study to select 
model inputs using the modified PMI algorithm. 
In addition, more recent data for the period 01-07-
1992 to 01-04-1998 were used to verify the real 
time forecasting capabilities of the developed 
model. This second validation data set was same 
as that used by Bowden et al. (2002, 2005). 

Table 2. Available data and selected maximum 
lag for each variables 

 

5. INPUT VARIABLE SELECTION 

The data set for the period 01-12-1986 to 30-06-
1992 was used to obtain the input variables for 
the ANN model. Maier and Dandy (1996) used a 
priori knowledge of the system to select the initial 
time lags for each variable, whereas Bowden at al. 
(2005) used the first 60 lags of each variable as 
potential inputs. Fraser and Swinney (1986) 
proposed that the time lag corresponding to the 
first minimum of mutual information should be a 
better choice for the maximum time lag 
considered. This MI based criterion has since 
been used in various hydrological studies (e.g. 
Phoon et al., 2002). A slightly modified version 
of the same approach was used in this study to 
obtain the maximum number of lagged variables 
to consider as potential inputs. The MI between 
salinity at Murray Bridge with a 14 day lead time 
and each variable with different lags was 
computed and the optimal lag for each variable 
was selected, depending on the occurrence of first 

Model Selected 
input PMI

95th 

percentile 
randomised 
sample PMI

TAR1 Xt-3 0.0662 0.0336 12.6

Xt-13 0.0318 0.0331 0.9

TAR2 Xt-10 0.5104 0.0301 64.0

Xt-6 0.0718 0.0335 22.5

X t-14 0.0330 0.0324 1.7

Z Score 
(MAD)

Murray Bridge Salinity MBS 74
Mannum Salinity MAS 81
Morgan Salinity MOS 104
Waikerie Salinity WAS 102
Loxton Salinity LOS 102
Lock 1 Lower Flow L1LF 116
Overland Corner Flow OCF 100
Downstream of  

Lock 7 Flow L7F 103

Murray Bridge Level MBL 21
Mannum Level MAL 18
Lock 1 Lower Level L1LL 116
Lock 1 Upper Level L1UL 15
Morgan Level MOL 99
Waikerie Level WAL 69
Overland Corner Level OCL 101
Loxton Level LOL 102

Location       Data type Abbreviation Maximum 
lag (days)
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minimum in MI values. The selected potential 
lags for each variable are given in Table 2. This 
results in total of 1323 potential initial inputs with 
2023 samples. 

The results of the PMI algorithm applied to this 
data set are shown in Table 3. As can be seen, 
only 11 inputs were found to be significant. The 
95th percentile confidence limits for the sample 
PMI obtained using 1000 bootstrap iterations 
were also calculated and it was found that the 
computed PMI values were greater than the 95th 
percentile confidence limit even after selecting 
more than 20 variables. 

Table 3.  PMI input selection algorithm results on 
the Murray River salinity data 
 

Variable MI/PMI Zscore (MAD) 
MAS (t-1) 1.170 4.204 
WAS (t-1) 0.504 14.696 
LOS (t-1) 0.147 4.629 
MAS (t-2) 0.137 4.950 

WAS (t-28) 0.115 3.171 
L7F (t-1) 0.100 4.072 
L7F (t-11) 0.139 7.027 
L7F (t-2) 0.102 4.196 
L7F (t-15) 0.104 3.761 
MAS (t-3) 0.104 3.004 
L7F (t-12) 0.098 3.116 
MOS (t-9) 0.099 2.836 

6. ARTIFICIAL NEURAL NETOWRK 
MODEL FORMULATION 

A MLP neural network with a single hidden layer, 
trained with the backpropagation algorithm with a 
momentum term, was used in this study to model 
and predict salinity in the River Murray at Murray 
Bridge, South Australia, with a 14 day lead time 
and the input variables selected using the PMI 
algorithm. 

The arbitrary data division method used by Maier 
and Dandy (1996) was adopted in this study, as 
this will yield a direct comparison of the results 
obtained with those obtained in previous studies. 
The data set consists of 1996 samples, after 
considering the lags for the selected inputs 
variables. The first 1597 samples (about 80% of 
the data) were used for calibration and 399 
samples (about 20% of the data) were used for 
model validation. The calibration data set was 
further divided into 1278 training samples and 
319 testing samples. 

The hyperbolic tangent function was used as the 
activation function for both hidden and output 
layers. The input variables, as well as the target 

values, were scaled to lie in the range -0.8 to 0.8. 

The number of nodes in the hidden layer affects 
the performance of the trained network and 
therefore should be optimised. In general, 
networks with fewer hidden nodes are preferable, 
as they usually have better generalisation 
capabilities, fewer over-fitting problems and are 
more computationally efficient. However, if the 
number of nodes is not large enough to capture 
the underlying behaviour of the data, the 
performance of the network might be impaired. In 
most cases, selection of the optimal number of 
nodes in the hidden layer is a trial and error 
procedure, with the help of some guidelines. A 
rule of thumb is that the number of samples in the 
training set should at least be greater than the 
number of synaptic weights. This gives the upper 
limit on the number of nodes. However, it is 
better to use fewer nodes in the hidden layer to 
avoid overfitting. In this study, a trial and error 
procedure for hidden node selection was used by 
gradually varying the number of nodes in the 
hidden layer from 10 to 60. The network with 20 
hidden nodes gave the best results for the testing 
data set and was therefore selected for forecasting 
purposes. 

The combination of a learning rate of 0.01 and a 
momentum term of 0.5 resulted in a smooth error 
reduction curve and was therefore used in this 
study. The synaptic weights of the networks were 
initialised with normally distributed random 
numbers in the range –1 to 1. The order in which 
the training samples were presented to the 
network was also randomised from iteration to 
iteration. The cross validation technique was used 
as the stopping criterion. 

6.1. Comparison with Previous Studies 

Maier and Dandy (1996) found that an ANN 
model with 51 inputs performed best for this case 
study. The optimal network obtained with 51 
inputs had 30 hidden nodes. Bowden et al. (2002) 
used the same network structure with the same 
input variables, but further tested the 
generalisation ability of the model on a second 
validation set during a real-time forecasting 
simulation. Bowden et al. (2005) used the PMI 
algorithm, as well as a hybrid algorithm utilising 
a self organising map and a genetic algorithm 
coupled with a general regression neural network, 
(SOM-GAGRNN) to select the input variables for 
this case study. The PMI algorithm identified 13 
inputs as significant and was implemented in two 
stages in that study. The SOM-GAGRNN 
identified 23 inputs as significant. 
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6.2. Results and Discussion 

Time series plots of observed and predicted 
values of salinity at Murray Bridge with a lead 
time of 14-days obtained using the ANN with the 
11 inputs selected using the modified PMI 
algorithm introduced in this paper are shown in 
Figures 1 and 2. It can be seen that the model 
performs extremely well for the training, testing 
and validation periods (Figure 1). Performance 
for the real-time forecasting simulation period 
was also very good, with the exception of the 
periods of uncharacteristic data identified by 
Bowden et al. (2002) (Figure 2). 

The performance of the model developed in this 
study, as well as that of the models developed in 
previous studies, is shown in Table 4 in terms of 
root mean square error (RMSE). It should be 
noted that Bowden et al. (2005) used different 
techniques for data division, and hence direct 
comparison between the results for calibration 
and validation could not be conducted for the 
models with 13 and 21 inputs. It can be seen that 
the model with the 11 inputs identified using the 
modified PMI algorithm introduced in this study 
performs best overall, while also being the most 
parsimonious. 

Table 4.  Performance of ANN models with 
different inputs 

 RMSE (EC units) 
ANN Train Test Valid Real-Time 
51-30-1 38 52 59 86 
13-32-1 - - - 95 
21-33-1 - - - 113 
11-20-1 36 35 50 87 

 

7. SUMMARY AND CONCLUSIONS 

In this paper, a modified version of the PMI 
algorithm for input identification introduced by 
Sharma (2000) and modified by Bowden et al. 
(2005) is introduced. In the proposed algorithm, 
use of the 95th percentile confidence level as the 
stopping criterion for input selection, which is 
generally obtained by bootstrapping, is replaced 
with an outlier detection statistic, the Hampel 
distance. The proposed stopping criterion is 
considered to be more robust and computationally 
efficient than bootstrapping. This is confirmed by 
the results obtained from two non-linear test 
functions, as well as a real-life application. 
However, the utility of the proposed approach 
requires further testing. 
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Figure 1.  Observed and predicted values of salinity at Murray Bridge with 14 days lead time for calibration 
and validation data 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Observed and predicted values of salinity at Murray Bridge with 14 days lead time for real-time 
simulation data 
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