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EXTENDED ABSTRACT 

Temporal analysis of ecological monitoring data is 
of critical importance in order to demonstrate 
whether management actions are having the 
desired effects, and whether there are changes in 
environmental condition. Over recent years in 
Australia, temporal trend analyses of water quality 
data by techniques such as Generalised Additive 
Modelling have become commonplace. In contrast, 
analyses of temporal trends in biological 
monitoring data are rare. We believe this is at least 
partly explained by the fact that biological data 
time series generally have far fewer points than 
abiotic time series data, invalidating the use of 
common trend analysis techniques.  

We explore the use of Bayesian hierarchical 
models for the analysis of biological monitoring 
data, using stream macroinvertebrate monitoring 
data from the Dandenong catchment in the eastern 
Melbourne region.  We consider temporal 
sequences of the SIGNAL score biotic index that 
have been collected from 1994–2004 at ten sites on 
two independent streams. 

As previous research has indicated that edge-
habitat SIGNAL scores appeared to have declined 
over the period of record, the main parameter of 
interest was the yearly change in SIGNAL score. 
We modelled this as a linear function of time and 
employed a hierarchical model structure, so that 
the estimate of yearly change for any one sampling 
site “borrows strength” from the data at the other 
sites, thereby providing more robust estimates at 
the site level than would be possible by treating the 
sites independently. This is particularly relevant 
for this research, given that no sites have a large 
number of data points. As initial investigations 
also found that declines in edge SIGNAL scores 
appeared greater at sites lower down in the 
catchment, the hierarchical model treated the 
yearly change in scores as a linear function of the 
square root of catchment area.  

The arrangement of sites within the catchment, and 
the fact that samples are taken over time at each 
site means that both spatial and temporal 

autocorrelation of the data are possible. We 
accounted for both effects by applying a first order 
autocorrelation model to the residuals of the linear 
models. Due to the short data series available for 
estimating autocorrelation, we employed a latent 
data approach, by modelling a latent point to 
condition the model before the first true data point 
of each series.  

The results provide strong evidence of declines in 
edge SIGNAL scores across the Dandenong 
catchment, with a mean of 9.3 out of 10 sites 
having suffered a decline in stream health. Site-
level probabilities of decline ranged between 0.72 
and >0.99. There was strong evidence (probability 
= 0.945) that sites lower in the catchment had 
experienced greater declines than those higher up. 

The pattern of decline in SIGNAL scores may be 
explained by changes in catchment urbanisation 
over time: i.e. sites at the top of the catchment are 
likely to have experienced less development. 
Alternatively, the long running drought in 
Melbourne may have led to loss of ecological 
condition, with the more degraded sites lower in 
the catchment less being resilient to the effects of 
drought than those in better condition. 

Amongst these results there was very little 
evidence for autocorrelation, either temporal or 
spatial. This may be partly data-based: i.e. the 
small sample sizes do not allow accurate 
calculation of autocorrelation parameters. 
However, there are sound biological reasons to 
explain the lack of autocorrelation, such as the 
short lifecycle and tolerance to disturbance of 
many urban macroinvertebrates, as well as their 
high dispersal capabilities and mobility between 
sites as both larvae and adults. 

Despite the small sample size and limited spatio-
temporal resolution of these data, these results 
highlight the utility of using Bayesian hierarchical 
models for the analysis of stream monitoring data.   
Further research is directed at developing posterior 
predictive model checks and the use of informative 
priors to better quantify the uncertainty associated 
with a single sampling value. 
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1. INTRODUCTION 

In order to understand and eventually predict 
complicated ecological processes, we need to 
make use of scientific insight, theory and data, and 
importantly, be explicit in our uncertainty in each 
(Wikle 2003).  The Bayesian statistical framework 
is being increasingly used in conservation biology 
and environmental science, as  it is able to deal 
formally with ecosystem uncertainty and offers 
great flexibility when constructing and fitting 
complex models. In this approach, uncertainty 
about parameter values, given the observed data 
and background information, is expressed in terms 
of the probabilities of various parameter values 
being found (Gelman et al. 1995). A particular 
advantage of the Bayesian framework lies in the 
subjective interpretation of these probabilities.  

The model described in this paper attempts to take 
advantage of these features in the analysis of 
temporal changes in aquatic macroinvertebrate 
assemblages. This type of monitoring data is used 
to characterise in-stream health. Detecting  
changes in stream condition has important 
implications for urban stream restoration and 
management.  However, heretofore there have 
been no attempts to systematically analyse such 
data over time. We believe this is most likely due 
to the fact that temporal sequences of data points 
are short (generally < 10 points), which often 
precludes a robust analysis on a site-by-site level.  

1.1 Urban freshwater ecosystems 

Urban populations worldwide have increased 
exponentially and approximately 85% of the 
Australian population lives in urban areas 
(Australian State of the Environment Committee 
2001).  The term urbanisation describes an 
increase in human habitation linked with increased 
per capita energy and resource consumption, and 
extensive landscape modification (McDonnell and 
Pickett 1990).  As ecological theory has previously 
made limited reference to the massive and 
pervasive effects of human beings (Grimm and 
Redman 2004), the study of human-dominated 
ecosystems is still very much lagging behind non-
urban research. A wider appreciation of the role of 
humans in ecological processes is one of the many 
research challenges being addressed in the 
development of urban ecological theory.  Given 
the increasing population pressures and resulting 
expansion of urbanisation in the landscape, there is 
an increasing need to ecologically understand 
cities, and more importantly find solutions to 
environmental problems where they are most 
severe.  

Previous research on urban freshwater systems has 
found that urbanisation has a strong degrading 
influence on the macroinvertebrate communities in 

stream ecosystems (e.g. Walsh et al. 2001).  In 
particular, polluted stormwater runoff is a source 
of multiple confounded stressors to stream 
ecosystems (Walsh 2004). The flushing effects of 
sewage and industrial effluents, as well as storm 
water running off from impervious surface areas in 
a catchment, result in an increase in flow-related 
disturbance, and in the frequency and intensity of 
floods (Walsh et al. 2005).  These conditions 
favour macroinvertebrates that are tolerant to 
pollutants and have life history characteristics that 
permit them to re-establish after frequent but 
irregular disturbance (Walsh et al. 2001).  

Further research has also found that urban stream 
sampling sites characterised by high levels of 
stormwater drainage connection (the proportion of 
a catchment’s impervious surfaces directly 
connected to stream by pipes) and urban density 
(Walsh in press) have depauperate 
macroinvertebrate communities.   

SIGNAL (Stream Invertebrate Grade Number-
Average Level) is a family-level water pollution 
index based on the known tolerances of aquatic 
macroinvertebrate families to various pollutants. 
The index has a gradient from 1 to 10 (ranging 
from a pollution tolerant to a pollution sensitive 
community). Different habitats from the same 
sampling location are considered separately as they 
contain different microhabitat characteristics, and 
thus distinct macroinvertebrate communities.  The 
SIGNAL score for each habitat is the average of 
the scores for each macroinvertebrate family found 
in that sample (Chessman 2003). Streams in the 
Melbourne area that are considered to be in 
excellent condition have a SIGNAL score greater 
than 6, while a score of less than 4.5 indicates a 
severely degraded stream (EPA 2003).   

This investigation makes use of this index, as 
previous research has shown SIGNAL to be 
sensitive to a gradient of urban disturbance in the 
Melbourne region (Walsh in press) and because 
family level identifications offers numerous 
practical advantages (see e.g. Hewlett  2000).  

Previous graphical investigations of changes in 
macroinvertebrate stream health in the Melbourne 
Water management area have identified a general 
trend of decreasing biological condition across 
many sites (Walsh et al. 2005). It was further 
noted that sites initially in better ecological 
condition have tended to show less or no decrease 
in condition when compared to more degraded 
sites (Walsh in press).  We hypothesised that 
overall declines may have also been attributable to 
the effects of drought, and that the differences 
among sites could be due to the degraded sites 
being more susceptible to further disturbance. 
Although such hypotheses could only be tested by 
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longer term data sets, these analyses represent an 
initial step in understanding changes in stream 
health over time. 

In recent years, trend analyses of water quality 
data have become a common way of determining 
whether development/management actions are 
having an impact on water quality.  As water 
quality variables are often taken at monthly or 
finer time scales, relatively large data sets can be 
analysed.  As a result, trends can be fitted using 
techniques such as Generalised Additive 
Modelling, and such analyses have become very 
common.  In contrast, as outlined above, there 
have been few attempts to subject biological 
monitoring data to similar trend analyses. 

We attempt to overcome or account for the 
limitations of biological monitoring data by 
making use of Bayesian hierarchical modelling 
techniques. The main aim of this research is to 
determine whether Bayesian techniques can be 
used to statistically assess the changes in stream 
condition as measured by the SIGNAL index.   
 

2. METHODS   

2.1         Data availability and study area 

The model described in this paper was developed 
using monitoring data from the Dandenong 
Catchment, Victoria, Australia (Figure 1), which 
lies in the eastern Melbourne region. Single season 
SIGNAL scores for edge habitat, catchment area 
and other site location details were extracted from 
the CRCFE Urban Macroinvertebrate Database 
(Walsh, 2005).  As we were primarily interested in 
changes in stream condition over time, we 
excluded from consideration sites with few data 
points. We set an arbitrary “cut off” of less than 
four samples. This criterion resulted in ten sites for 
consideration, seven of which lie on Dandenong 
Creek, and three of which are on Eumemmering 
Creek. The two streams are independent of one 
another in that there are no sampling sites included 
that are below the confluence of the two 
waterways (Figure 1). The total data set contained 
84 SIGNAL scores, with between four and ten 
samples available for each site between 1994 and 
2004.  

2.2 Bayesian model 

As our main aim was to determine whether the 
data provided evidence for a change in SIGNAL 
score over time, we considered that at the site level 
the basic model could be represented by a simple 
linear regression. Thus we consider the data as: 

 
( ),ij ij j

ij j j i

y N

t

μ σ

μ α β= +

:
 (1) 

where ij represents the ith data point at site j. α and 
β are normally distributed with vague priors, 1/σ2 
is gamma distributed with vague prior, and t is the 
time index for point i. The parameter of main 
interest is the slope (β), the yearly change in edge 
SIGNAL score, and the majority of effort is 
expended in modelling this parameter 
appropriately. 

Accounting for autocorrelation 
The data structure suggests that autocorrelation 
may be an issue in space and/or time; we cannot 
assume that each data point is a random sample 
and that there is independence of errors between 
readings. Temporally, the data are collected at six 
monthly intervals, but there were sometimes 
longer time gaps in the series where some years 
were not sampled. The macroinvertebrate 
community present for one sample could be partly 
dependent on the biota present from the previous 
sample.  Spatially, most of the sites lie 
downstream of other sites, with varying distances 
separating the site pairs. The SIGNAL score 
obtained at one site could be partly dependent on 
values observed upstream due to shared influences 
higher in the catchment.   

Figure 1. Map of study area.  Sampling sites are 
represented using a three letter abbreviations 
(DNG=Dandenong Creek, EUM=Eumemmering 
Creek) and the approximate area of the catchment 
above the monitoring site in km2 (4 numerical 
digits).  Thus sites with smaller numbers lie higher 
in the catchment. 
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Due to the fact that the minimum temporal and 
spatial gaps are relatively large, we hypothesise 
that autocorrelation, if present, is likely to be quite 
small, and can probably be adequately modelled by 
a first order regressive (AR1) process applied to 
the regression residuals. 

We deal with both forms of autocorrelation in the 
same way, employing the latent data approach to 
AR1 autocorrelation of Congdon (2001), where a 
latent point is modelled at the start of each data 
sequence. This avoids the “loss” of the first point 
from the regression, which would otherwise solely 
be used to condition the model for the second 
point. Because we had few data points in each 
sequence (4 to 10 in the temporal sequences, 7 and 
3 in the spatial sequences), avoiding such a loss of 
data was considered to be of great importance. 

Thus for the temporal sequences, we modelled a 
latent data point immediately preceding the first 
data point in the sequence as follows (subscript j 
denoting site has been omitted for clarity). 

 
( )

( )
min min

min

1 1

1 min

~ ,

1
i i

i

y N

t

μ σ

μ α β
− −

− = + −
 (2) 

The data in each sequence were then modelled 
using the AR1 model described by Congdon 
(2001) with an adjustment to allow for the 
possibility of different time gaps between readings. 

 ( ) ( )1
1 1

i it t
i i i it y t e θμ α β ρ α β −− −

− −= + + − −  (3) 

Here, ρ is the standard first order autocorrelation 
parameter defined with a uniform [-1,1] prior, and 
θ controls the exponential decay of autocorrelation 
with increasing temporal separation, and was 
assigned a uniform [0,1] prior (B. Johnson pers. 
comm.). 

Hierarchical structure 
We attempted to model the sites hierarchically 
because we had few data points at any given site. 
A feature of Bayesian hierarchical models is that 
the result at one site “borrows strength” from the 
data at the other sites (Gelman et al. 1995), thereby 
providing more robust estimates at the site level, 
when few data are available. 

As noted above, previous investigations noted that 
in the Dandenong catchment the more downstream 
sites appeared to show a greater decline in 
SIGNAL scores (Walsh in press). We hypothesise 
that such a difference may be due to higher levels 
of effective catchment imperviousness (ECI) 
occurring in downstream areas. However, as 
obtaining these values requires detailed GIS 
calculations, only selected sampling sites and time 
periods in the database currently have estimates of 
ECI. For this initial investigation, we chose to use 

catchment area (km2) as a surrogate for measuring 
urbanisation in the Dandenong catchment.  The 
streams at the top of this catchment occur in 
forested areas (e.g. DNG0002 & 0003) and have 
relatively little impervious area, whilst waterways 
closer to the base are highly urbanised (e.g. 
DNG0246) and/or industrial (e.g. EUM0050). 

We modelled the site-level β values as a linear 
function of the square root of catchment size. Thus 
the β estimates are initially envisaged as: 

 
( )j j

j j

N
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:
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where δ and ϕ are normally distributed 
hyperparameters with vague priors, and aj is the 
area of catchment j. 

Conceptually, the approach taken to deal with 
spatial autocorrelation among the sites is identical 
to that for temporal autocorrelation within sites. 
Thus, for each of the two independent river 
systems we modelled a latent data point 
“upstream” of the uppermost site, conceptually 
identical to a site with zero catchment area. The 
values of β for each site were then modelled using 
the variant on the Congdon (2001) AR1 model. 
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where dj is the approximate river distance (km) 
between sites j and j-1, and γ and φ are 
hyperparameters describing first order 
autocorrelation and autocorrelation decay, as 
described for temporal autocorrelation above and 
with the same prior distributions. 

In addition to β, we also modelled the temporal 
autocorrelation parameters ρ and θ hierarchically, 
so as to gain better overall estimates of these 
parameters than were possible with the relatively 
few data points available at each site. We 
considered that these parameters could be 
modelled without the need for any model structure. 
Thus we have 

 
( )
( )

~

~
j

j

ρ σ

θ σ
Ρ

Θ

Ρ,

Θ,
 (6) 

The hyperparameters had vague normal prior 
distributions for the means and vague gamma 
distributions for the precisions. 

Implementation 
The model was coded in WinBUGS 1.4 (Bayesian 
inference Using Gibbs Sampling; Spiegelhalter et 
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al. 2003). In addition to the model itself, we used 
the step function in WinBUGS to calculate the 
probability for each of the ten sites that SIGNAL 
scores were declining. The step results were also 
used to calculate an interval on the number of sites 
showing a decline in SIGNAL score. We also 
calculated the probability that the parameter ϕ was 
negative – i.e. the probability that rate of decline in 
SIGNAL score was inversely related to sqrt 
(catchment area). We ran the model with a single 
Markov Chain with a burn in of 10,000 iterations 
followed by a further 100,000 iterations for 
parameter estimation. In addition to the parameters 
described immediately above, we monitored the 
values of the yearly slope for each catchment and 
those of the catchment scale estimates of temporal 
autocorrelation parameters and the spatial 
autocorrelation parameters. 

 
3. RESULTS 

Examination of residual plots revealed a normally 
distributed error structure, supporting the choice of 
model structure. The predictions (i.e. the modelled 
individual SIGNAL scores) showed variable 
precision, with 95% credible intervals ranging 
from 0.35 to 2.1 (median = 0.68). 

At the site level, the model found fair to 
overwhelming evidence of declines in SIGNAL 
scores (Table 1). The probability of SIGNAL 
decline was generally higher with increasing 
catchment size.  The histogram for the estimate of 
the number of sites with a negative slope is shown 
in Figure 2.  The 95% credible interval states that 
between 7 and 10 out of the 10 sites show a 
decline in edge SIGNAL score, with a mean value 
of 9.3.   These results, together with the site-level 
results provide very strong evidence for a 
catchment-wide decline in edge SIGNAL scores 

over the period of record.   The uncertainty of 
these yearly changes was greater in sites towards 
the top of the catchment.   Overall, the hierarchical 
model chosen did a reasonable job of explaining 
and modelling the changes in SIGNAL score. 
There was strong evidence that SIGNAL scores 
declined faster for areas with larger catchments (Pr 
(ϕ < 0) = 0.945. However, there was little evidence 
of autocorrelation, either spatially or temporally, 
and thus little need for the four autocorrelation-
related parameters (Table 2). 

4. DISCUSSION 

The importance of long term monitoring data is 
widely recognised for assessing the variation in  
natural systems and the extent of anthropogenic 
disturbance.  Unfortunately, for most biotic 
systems, including this one, there is a direct lack of 
observational data of sufficient accuracy for the 
actual state to be defined.  Bayesian hierarchical 
treatment of the data has provided considerable 
improvement in helping determine and 
characterise changes in urban stream systems using 
a sparse data set. The characteristic of borrowing 
strength has led to more robust site-level estimates 
than would be possible if sites were analysed 
individually. The flexibility of model structure 
afforded by the Bayesian approach allowed us to 
account for the spatial and temporal limitations of 
the data.  The Bayesian framework has also 
allowed us to establish strong inference from the 
site-level, to patterns at the catchment scale, and to 
quantify the uncertainty of these relationships.  

Table 2. 95% credible intervals for the 
autocorrelation and autocorrelation decay 
parameters. 

Parameter 2.5% Median 97.5% 
Ρ -0.87   -0.12 0.69 Temporal 
Θ 0.08 0.71 0.99 
γ -0.93 0.01 0.94 Spatial φ 0.02 0.49 0.97 

Table 1. Site level estimates of yearly change in 
SIGNAL score. Table shows site code as indicated 
in Figure 1, the sample size for each site (n), the 
95% credible interval for the parameter β (the 
yearly change in score) and the probability that β 
is negative (i.e. that SIGNAL score has declined).  

       β (yearly change)  Site n 2.5% Median 97.5% P(β< 0) 
DNG0002 4 -0.20 -0.03 0.10 0.720 
DNG0003 6 -0.13 -0.03 0.07 0.738 
DNG0079 10 -0.17 -0.10 -0.04 0.998 
DNG0090 10 -0.17 -0.10 -0.02 0.990 
DNG0103 4 -0.17 -0.11 -0.03 0.994 
DNG0246 10 -0.24 -0.15 -0.05 0.996 
DNG0325 10 -0.27 -0.17 -0.08 0.999 
EUM0016 6 -0.12 -0.05 -0.03 0.915 
EUM0050 4 -0.15 -0.07 -0.02 0.954 
EUM0121 10 -0.17 -0.10 -0.02 0.989 

Number of Sites with SIGNAL Decline
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Figure 2. Probability distribution of estimates of 
the number of sites in Dandenong catchment with 
declining edge SIGNAL scores. 

Table 1. Site level estimates of yearly change in 
SIGNAL score. Table shows site code as indicated 
in Figure 1, the sample size for each site (n), the 
95% credible interval for the parameter β (the 
yearly change in score) and the probability that β 
is negative (i.e. that SIGNAL score has declined).  

       β (yearly change)  Site n 2.5% Median 97.5% P(β< 0) 
DNG0002 4 -0.20 -0.03 0.10 0.720 
DNG0003 6 -0.13 -0.03 0.07 0.738 
DNG0079 10 -0.17 -0.10 -0.04 0.998 
DNG0090 10 -0.17 -0.10 -0.02 0.990 
DNG0103 4 -0.17 -0.11 -0.03 0.994 
DNG0246 10 -0.24 -0.15 -0.05 0.996 
DNG0325 10 -0.27 -0.17 -0.08 0.999 
EUM0016 6 -0.12 -0.05 -0.03 0.915 
EUM0050 4 -0.15 -0.07 -0.02 0.954 
EUM0121 10 -0.17 -0.10 -0.02 0.989 

418



 

This initial investigation of changes in edge 
SIGNAL score over time has showed strong 
overall evidence of declines across the Dandenong 
catchment. Moreover, sampling sites lower in the 
catchment (which we take as being a surrogate of 
increasing urbanisation) declined at a faster rate 
over the period of record.  Two immediate 
hypotheses consistent with these observations 
suggest themselves. Firstly, it is probable that sites 
lower in the catchment have undergone greater 
development over the period of record, leading to 
greater declines in stream condition. Temporal 
records of ECI would be needed to confirm this 
hypothesis. Second, it is possible that the drought 
that Melbourne has experienced since 
approximately 1997 has led to degradation of 
stream assemblages, with the already degraded 
assemblages lower in the catchment less resilient 
to the effects of drought, and suffering greater 
degradation accordingly. Such relationships 
between low flows and depauperate 
macroinvertebrate communities have previously 
been found in the Melbourne region (e.g. Papas et 
al. 2000 and reference therein). We would only be 
able to attribute drought as the sole explanatory 
factor if we were able to show that urbanisation 
has not changed. Clearly, this is difficult to justify 
without data that that show changes in ECI.  
However, the two sites in the forested headwaters 
showed less evidence of declines than the more 
downstream sites. Whether these patterns can also 
be found across other catchments, and for riffle 
SIGNAL scores in the Melbourne, region warrants 
further investigation. Future efforts in trying to 
quantify catchment influences on 
macroinvertebrate assemblages in urban streams 
should be based on ECI, rather than catchment 
size.  

Although there was no evidence of autocorrelation 
in our study, it was important to establish if there 
was any effect on the non-independent spatial and 
temporal sampling regimes, and avoid making the 
equivalent of Type 1 errors, before alternative 
hypotheses could be proposed.  There are a 
number of possible explanations for the lack of 
autocorrelation found.  Firstly, the small data 
series mean that it is difficult to calculate reliable 
estimates of autocorrelation; a larger sample size 
may be better able answer whether autocorrelation 
is a necessary consideration for the model.  
Biologically, the relatively large temporal and 
spatial distances between samples may lead to 
statistical independence for the stream 
macroinvertebrate communities.  Many urban 
aquatic macroinvertebrates are common, hardy 
taxa well adapted to harsh, frequent hydraulic 
scour and pollutants (Walsh et al. 2001).  Even the 
most frequent six-monthly sampling interval found 
in this data set may be sufficient for new 

communities, with short lifecycles to re-establish 
following disturbance.   

The lack of spatial autocorrelation between 
sampling sites on the same stream may indicate 
that there is limited interaction between up and 
down stream communities.  Recent studies 
examining distance measures of spatial 
autocorrelation of urban macroinvertebrates found 
spatial effects occurred over short distances 
(<200m) (Sanderson et al. 2005).  Other spatial 
hierarchical analyses of stream macroinvertebrates 
have found that there is more variation within 
sample units than at larger reach, segment or river 
scales (e.g. Downes et al. 1993). The greater level 
of variation present at these smaller spatial scales 
can be attributed to the highly mobile nature of 
many stream macroinvertebrates. They are able to 
easily move within the stream if they are faced 
with changes in habitat and fluctuating resources, 
through drifting and crawling (e.g. Miyake et al. 
2005).  Furthermore, the aerial adult stage of many 
taxa and their high dispersal capabilities combined 
with the shifting stream habitat mosaic means that 
there is perhaps little consistency in spatial and 
temporal community dynamics.   

Given that there is possibly high variation among 
sample units (each score is based on a single 
monitoring event), an important consideration for 
future analyses includes the incorporation of prior 
error estimates of an individual SIGNAL score. 
The measurement error of a SIGNAL score is 
believed to be approximately 0.5 for a site in good 
condition (C. Walsh pers. comm.), which is more 
precise than the posterior estimate generated here 
with the vague prior (median=0.68). Considering 
this uncertainty, it is difficult to determine whether 
a substantial result is actually biologically relevant. 
The variation will be quantified by making use of a 
rare data set with multiple replicates (L. Metzeling 
pers. comm.) to generate informative prior 
distributions on the sample precision of the data 
(1/σ2

j). Being able to factor out the sampling 
technique and small-scale variation may improve 
the explanatory power of our model and better 
answer the question as to whether the changes seen 
over time are biologically relevant.  

Current modelling efforts are also focused on the 
development of posterior predictive error checks to 
establish how well our model represents the data. 
This may be particularly important if the use of 
informative priors may call into the question the 
linear models currently employed.  

|In order to be able to better answer questions 
about changes in stream ecological condition, 
further data collation efforts should be focused on 
increasing the temporal extent of the existing 
series of monitoring data, and quantifying changes 
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in temporal ECI.  Future designs of monitoring 
programs in the Melbourne region should include 
sampling sites located in areas yet to undergo 
urbanisation. Monitoring stream health as well as 
ECI in such growth corridors areas could allow us 
to better quantify this relationship within a short 
space of time. Importantly, larger and more 
complete data sets will give us greater confidence 
to make wider generalistions about changes in 
urban stream condition, and assist in the 
implementation of urban conservation and 
restoration efforts, such as water sensitive urban 
design. 

5. CONCLUSIONS 

Bayesian hierarchical modelling is an effective 
method for examining temporal changes in stream 
macroinvertebrate communities. The ability to 
“borrow strength” reduces the effect of small 
sample sizes and helps overcome such data 
limitations. The Bayesian hierarchical framework 
offers considerable potential for the future analyses 
of monitoring data that have previously been 
deemed to be too sparse, or too poorly ‘designed’ 
to yield robust results. 
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