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EXTENDED ABSTRACT 

Rainfall estimation is an integral component of 
hydrologic modelling for reliable flood forecasting 
and for assessing the impact of precipitation and 
runoff on water quality and ecosystem health in 
urbanised areas.  

Spatial variability of rainfall adds to the 
complexity of estimating rainfall at the catchment 
scale and is a key factor that must be incorporated 
into estimations of rain fields. Rainfall 
interpolation from point measurements is one 
approach that hydrologists use to account for 
spatial variation in rainfall.  

This study focuses on evaluating the suitability of 
three interpolation methods in terms of their 
accuracy, for small urban catchments. The 
Bridgewater Creek catchment in south Brisbane is 
the region of study. Thirteen storm events 
measured over 24-hours are interpolated using an 
inverse-distance weighted average method, thin 
plate smoothing spline, and an ordinary kriging 
technique. The delete-one validation method is 
used for comparing the 3 interpolation techniques. 

The interpolation methods were applied using 3 
different software packages. The inverse-distance 
weighted method (IDW) was implemented using 
Microsoft Excel. The spline interpolations were 
carried out with the ANUSPLIN software while 
the kriging method was completed using 
Geostatistical Analyst in ArcGIS. Since 
ANUSPLIN and Geostatistical Analyst both 
require a minimum number of data points for 
computation, it was necessary to consider a 
reduced  set of storms for interpolation by the thin 
plate spline and kriging methods. 

The thin plate spline and ordinary kriging 
interpolation techniques were found to have 
comparable estimation accuracy when individual 
storm events were considered. When compared to 
gauge-based rainfall measurements, the estimation 
error for these methods was approximately 23 mm, 
which corresponds to 30% of the observed mean 
rainfall. The IDW method was observed to display 

more frequent occurrence of extreme estimation 
error up to 98% for individual storms. 

However, an analysis of an aggregated set of storm 
events for which all 3 methods could be applied 
showed that the IDW had the lowest estimation 
error and highest model efficiency of the three 
interpolation techniques for the storms selected. 
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1. INTRODUCTION 

‘The entire circulation of water in a catchment 
basin is governed by the spatial and temporal 
distribution of rainfall’ (Bacchi and Kottegoda 
1995). Rainfall data are required to determine the 
rate of accumulation of surface and groundwater, 
the infiltration dynamics of the soil surface of a 
catchment and the rate of evapotranspiration.  

Hydrological modelling utilises rainfall data to 
predict flood events and determine ecosystem 
health of an area. Urban water quality models also 
rely on well-estimated rainfall data to accurately 
simulate pollutant release and subsequent transport 
mechanisms in catchments (Chaubey et al 1999). 
Rainfall is a key variable for all these types of 
modelling and thus it is important to have accurate 
estimations of rainfall. Without accurate rainfall 
estimation, hydrologic models will produce 
inaccurate results (Obled and Wendling 1991; 
Chaubey et al 1999; Berne et al 2004; Donohue et 
al 2005; Merritt et al 2005; Moore et al 2005; 
Pardo-Iguzquiza and Dowd 2005).  

‘Estimating the spatial distribution of rainfall from 
point estimates depends on the existing spatial 
relationships of the measured point values’ (Bacchi 
and Kottegoda 1995). These are often statistical 
relationships, as physical knowledge is hard to 
obtain. For example, it is often found that two 
stations within a few kilometres of each other 
experience similar storm events. This suggests that 
areas in close proximity of each other have similar 
rainfall characteristics, which can be supported 
experimentally (Bacchi and Kottegoda 1995). 
Conversely, it has been noted that in some 
instances, a rain event may effect one gauge 
station and entirely by-pass a station within a few 
kilometres.  

Spatial variability of rainfall adds to the 
complexity of estimating rainfall and is a key 
factor that must be incorporated into estimations. 
There are a number of approaches that 
hydrologists use to account for spatial variation in 
rainfall estimates.  

Meteorological radars are one method used to 
measure spatially distributed rainfall. Radars give 
a large-scale vision of precipitation fields 
compared to scattered point estimates from rainfall 
gauges (Bacchi and Kottegoda 1995). However, 
radar technologies are not available in all 
catchment areas due to the sophisticated and costly 
equipment that is involved. In addition, resolution 
of radar data is often too coarse for small urban 
catchments. 

A second and more viable approach for 
hydrologists and meteorologists to determine mean 
areal rainfall is to interpolate data from irregularly 
spaced rain gauges within a catchment (Dirks et al 
1998). There are many interpolation methods that 
can be used, each of which varies in their degree of 
complexity and predictive accuracy. 

Furthermore, the accuracy of rainfall computed 
from spatially averaged rainfall using point sources 
compared to rainfall fields using radars, varies 
depending on the scale of the basin in question and 
the rainfall variability (Arnaud et al 2002).  

The focus of this study is to evaluate interpolation 
methods for determining rainfall in a small 
subtropical urban catchment with a relatively 
dense rain gauge network. Brisbane is serviced by 
a dense network of gauges similar to that in many 
Australian capital cities. Hence, it is appropriate 
that interpolation techniques rather than estimation 
using meteorological weather radars be used to 
estimate rainfall for an area surrounding the 
Bridgewater Creek catchment, Brisbane. A 
network of 11 rainfall gauges in a region bounded 
by the Gateway Arterial road, South-East freeway 
and the Brisbane River was used for interpolation. 
The specific locations are as illustrated in Figure 1. 
The code names used by Brisbane City Council are 
indicated in Figure 1 for each site. 
 

 

 
Figure 1: Map showing locations of rain gauges in 
Southeast Brisbane used for interpolation. 

The objective of the study was to identify the most 
accurate method for interpolation for the small 
urban catchment in Brisbane. Three interpolation 
methods will be investigated using the ‘delete-one’ 
validation technique. These include an inverse-
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distance weighting method, thin plate smoothing 
splines and an ordinary kriging technique.  

2. METHODOLOGY 

2.1. Data and Storm Selection 

Rainfall data were collated for 11 gauges in the 
Brisbane area. The rain data obtained were 
recorded with tipping-bucket rain gauges having a 
1-mm resolution. Processed rainfall data were 
supplied by the City Design department of 
Brisbane City Council for this study. 

Thirteen storm events since 1995 were selected for 
interpolation. The storms selected had recorded the 
13 highest maximum 1-hour rainfall at the Norman 
Creek (East Brisbane) rain gauge (NMR554). 
NMR554 is located in the Bridgewater creek 
catchment. The response time of small catchments 
such as Bridgewater creek is assumed to be 
approximately 1 hour due to their small area 
(Morris 2005). Storm events prior to 1995 were 
not considered, as the rain gauge network in 
Brisbane before 1995 was not extensive.  

The ‘cleaned’ raw rainfall data consisted of rainfall 
measurements for every 1 minute interval over 24-
hours (midnight to midnight). These were summed 
for each storm to give the total rainfall depths 
recorded at each gauge location in a 24-hour 
period surrounding the storm event.  The 24-hour 
rainfall varied from 9mm to 222 mm among the 11 
x 13 site-events. 

2.2. Delete-one Cross Validation 

The delete-one method is a cross-validation 
process that eliminates bias in interpolation 
methods which generally exists when all data 
points (i=1,2… n) are used to predict a value at a 
point i (Wang and Zidek 2004). The delete-one 
method involves removing one observation point 
(j) at a time from the whole data set to estimate a 
value of rainfall at j from the remaining (n-1) data 
points (Tomczak 1998).  

2.3. Qualitative Measures of Estimation 
Accuracy 

Four statistics are used to characterize the 
performance of interpolation methods in this study. 
They are: RMSE, RMSE as a percentage of the 
mean observed rainfall, bias and model efficiency. 
These statistics are described in equations (1.1), 
(1.2), (1.3) and (1.4). 
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Where: 
M = no. storm events 
Oi = Observed rain at i 

Ei = Estimated rain at i 
O  = Mean observed 
rainfall for (i=1,2…M) 

Root mean square error (RMSE) in millimetres: 

21 ( i i )RMSE O E
M

= −∑   (1.2) 

Root mean square error as percentage of the mean: 

100%RMSE
O

×   (1.3) 

Bias: 

EBias
O

=    (1.4) 

Standard error of interpolated surfaces are often 
expressed as a percentage of the mean, due to the 
nature of the distribution of precipitation 
(Hutchinson 2004). The RMSE of estimated 
rainfall is based on the size of the storm and hence 
it is useful to quote the RMSE as a percentage of 
the average rainfall. 

Exact interpolation methods are indicated by 
RMSE and RMSE/ O  values of zero. Accordingly, 
the most accurate interpolation methods are 
indicated by RMSE and RMSE/O  values closest 
to zero. It should be noted that for interpolation of 
precipitation data, estimation error is unlikely to be 
zero. Hutchinson (2004) states that standard errors 
of fitted surfaces should be approximately 10% for 
monthly mean precipitation data when adequate 
gauge networks are available. 

Model efficiency (E) equals 1 when observations 
and estimations are in prefect agreement. Model 
efficiency can be less than zero when the model 
estimations are worse than using the average of 
observed rainfall as an estimator.  For high model 
efficiency, the mean squared error (MSE) of the 
rainfall estimations will need to be small relative to 
the standard deviation of the observed rainfall. 
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Interpolation results that indicate no bias have a 
bias statistic value of 1. That is, the average 
rainfall estimate is equal to the average observed 
rainfall. Bias values greater than one indicate that 
the estimated rainfall is generally overestimated, 
while values less than one suggest that the 
interpolation method resulted in underestimation.  
 

2.4. Inverse Distance Weighted Average 

The inverse distance weighted average method 
(IDW) assumes that rainfall at a gauged point 
compared to an ungauged point is inversely 
proportional to the distance between the two points 
(Chow et al 1988). An exponent of one was used 
for the inverse distance relationship.  

The IDW method was executed in MS Excel 
spreadsheets for each of the 13 storm events. The 
interpolation method was carried out manually.  

2.5. Thin Plate Smoothing Splines 

After evaluation of a number of options, the 
program chosen for fitting thin plate smoothing 
splines was ANUSPLIN 4.3 developed by M.F. 
Hutchinson (Hutchinson 2004). ANUSPLIN 4.3 is 
a set of FORTRAN programs developed at 
Australian National University that calculates and 
optimises thin plate smoothing splines to data sets 
of unlimited size and distribution (Price et al 
2000). ANUSPLIN is widely used and has been 
applied in a number regions including Australia, 
New Zealand, Europe, South America, Africa and 
China (Hutchinson 1991). ANUSPLIN has been 
used to interpolate daily rainfall and other weather 
variables to create and update climate databases at 
a 0.05o resolution for Australia (Jeffrey et al 2001). 
Other available programs include ArcGIS, which 
was used for the kriging method, but it was 
considered desirable to use ANUSPLIN as an 
alternative methodology, with runtime advantages 
since it runs under DOS rather than Windows. 

SPLINA is one of the FORTRAN programs and is 
suitable for fitting thin plate smoothing spline 
functions to data sets with up to 2000 points. 
LAPPNT calculates the values and error estimates 
of the fitted spline at specified points. 

Hutchinson (2004) describes the method as a 
‘generalised multivariate linear regression in 
which the parametric model is replaced by a 
suitably smooth non-parametric function’. 
ANUSPLIN is based on smoothing splines as 
described by Wahba (1990), Hutchinson (1984) 
and Wahba and Wendelberger (1980). 

2.6. Ordinary Kriging 

ArcGIS Geostatistical Analyst was chosen as the 
tool to implement the kriging interpolation 
method. Geostatistical Analyst is an extension of 
ArcMap used to generate surfaces from point data. 
The software is a powerful, user-friendly package 
and is flexible for implementation. 

Surface fitting using Geostatistical Analyst 
involves exploratory spatial data analysis, 
calculation and modelling surface properties of 
nearby locations, and surface estimation and 
assessment of results (Johnston et al 2003). The 
ordinary kriging interpolation method does not 
rely on data being normally distributed.  

2.7. Reduced data set 

Both the thin plate spline and kriging methods 
resulted in predicting rainfall for a reduced set of 
storm events due to the computational 
requirements of the ANUSPLIN and ArcGIS 
programs. Thus, an additional approach for the 
comparison of the three interpolation methods was 
introduced to analyse model performance. A set of 
4 storm events, which could be investigated using 
all of the interpolation methods, was considered. 
The 4 storm events were plotted together to give a 
representation of the overall model performance. It 
is anticipated that the findings from combining the 
points of all storm events to estimate model 
efficiency may vary from the results obtained by 
examining the model efficiency associated with 
individual storm events. 

3. RESULTS AND DISCUSSION 

Table 1 shows the average error statistics for each 
of the three interpolation methods based on the all 
storm data available. The numbers of individual 
storm events on which these statistics are based are 
indicated for each interpolation method. 

Table 1: Error statistics for 3 methods using all 
data available. 

Method RMSE 
(mm) 

RMSE
/O (%) 

Bias E No. 
Storms 

IDW 21.5 42.4 0.941 -0.51 13 

Spline 22.5 31.4 1.004 -0.26 8 

Kriging 25.5 29.3 1.017 0.18 4 

Table 2 shows the quantitative measures of errors 
for the three interpolation methods based on a 
consistent set of 4 storms. The errors are 
aggregated for the four storm events. 
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Table 2: Error statistics for 3 methods using 
consistent data set for 4 storm events for 
comparison 

Method RMSE 
(mm) 

RMSE
/O (%) 

Bias E 

IDW 25.0 30.7 0.996 0.40 

Spline 28.8 35.4 1.001 0.20 

Kriging 25.5 29.3 1.017 0.18 

Figures 2, 3 and 4 are comparisons of estimated 
and observed rainfall for 4 storms events and all 
gauge estimations. The figures represent the IDW, 
thin plate spline and kriging methods respectively. 

 
Figure 2: Comparison of estimated and observed 
rainfall for 4 storms events and all gauge 
estimations using the IDW method. 

 

 
Figure 3: Comparison of estimated and observed 
rainfall for 4 storms events and all gauge 
estimations using the thin plate spline method. 

 

 
Figure 4: Comparison of estimated and observed 
rainfall for 4 storms events and all gauge 
estimations using the ordinary kriging method. 

Estimation errors of individual storm events were 
considerably different from errors calculated using 
a set of 4 aggregated storms as indicated in tables 1 
and 2. 

Consideration of individual storm events shows 
that the spline and kriging methods provide more 
accurate estimations than the IDW method. More 
frequent occurrence of extreme error was observed 
with the IDW method. The spline and kriging 
methods produced errors of approximately 30% of 
the mean rainfall. Estimated rainfall using these 2 
methods was found to be relatively unbiased. 

For the aggregated storm set of 4 events, the IDW 
and kriging methods were found to perform 
comparably to each other. Contrastingly, the spline 
method had the highest percentage RMSE. The 
estimation error for the IDW and kriging method 
was approximately 30% of the mean. The IDW 
method was found to have the greatest model 
efficiency of all three methods.  

Accordingly, it appears that when larger sample 
size of measurements is selected, the IDW method 
improves substantially in comparison to the spline 
and kriging methods. 

4. CONCLUSIONS 

Three interpolation methods have been 
investigated in this study in the context of small 
urban catchments. Their performance in terms of 
their accuracy in rainfall estimation has been 
analysed in detail. 

The inverse-distance weighted average 
interpolation technique was found to involve the 
most frequent occurrence of extreme error for 
rainfall estimation for individual storm events. The 
average RMSE for the method was calculated to be 
22mm or 42% of the observed rainfall mean. For 
individual storm events, the spline and kriging 
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methods have similar predictive capacity 
producing errors of approximately 30% of the 
mean.  

Analysis of an increased sample size of estimated 
and observed rainfall by aggregating data from a 
set of 4 storms, showed that the reduction of 
random error associated with IDW estimations 
served to improve model efficiency. RMSE values 
of 26mm (30% of the mean of the observed 
events) were recorded for interpolation using 
ordinary kriging. Model efficiency was greatest for 
the IDW method. The thin plate spline method 
using ANUSPLIN software was found to produce 
errors of 29mm, i.e. 35% of the mean the observed 
events. 

Relatively high estimation error for all three 
interpolation methods is attributed to the time scale 
used in this study, namely 24-hour event rainfall. 
Daily rainfall is noted to be more variable than 
monthly and annual measurements, thus making it 
harder to estimate.  

In the context of Brisbane’s small urban 
catchments, the IDW method was found to be the 
most accurate and reliable interpolation method to 
be used. The IDW method was considered superior 
to the kriging method for this application due to 
the small set of gauges analysed in the study.  
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