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EXTENDED ABSTRACT 
In a Bayesian network the state distribution of a 
node is conditionally independent of the set of all 
its nondescendents given the set of all its parents. 
The conditional probability table (CPT), which  
relates states of the parent nodes to those of a child 
node, includes entries for all possible combinations 
of the child and parent node states. Already with 
moderate dimensions the size of the CPT becomes 
so large that eliciting the required conditional 
probabilities from a panel of experts becomes 
impractical. Motivation of this paper is to make 
expert elicitation more feasible for populating 
CPTs in discrete state Bayesian networks. To 
achieve this, a method is presented that specifies 
how the CPT can be described with the aid of link 
strength parameters that are assigned to each link 
from a parent node to a child node, and that attain 
values from -1 to 1. In addition to aiding 
parameterisation of the CPT using expert 
knowledge, the link strength approach also 
provides a means to derive complete CPTs from 
training data when not all state combinations of 
parent nodes are present in the training data set. 

The method presented in this paper relies on the 
concept of the link strength introduced in Varis 
and Kuikka (1994) and the generalised Noisy-Or 
model of Srinivas (1993). A link strength with a 
value of one characterises a perfect one-to-one 
relationship between a parent node and the child 
node, and a link strength with a value of zero 
indicates that the two nodes are completely 
independent. A negative link strength indicates 
that there is a negative relationship between the 
two nodes. The generalised Noisy-Or model 
provides a methodology for constructing the CPT 
for the child node given its parent nodes using a 
set of parameters whose number is equal to the 
sum of parent node states. This paper combines the 
link strength concept and the generalised Noisy-Or 
model to outline a method where the number of 
parameters required for defining the CPT is 
reduced to the number of parent nodes. 

 

 

The link strength approach suggested in Varis and 
Kuikka (1994) has been modified to better suit for 
variables that are defined in the ratio scale 
statespace. In environmental studies concentrations 
and loads are typical examples of such variables. 
Then it is reasonable to assume that those states 
that are close to the most likely state have a higher 
probability of occurrence when compared to states 
that are far from it.  

To ensure that the relationship between link 
strength parameters and the resulting CPT is 
intuitively reasonable, the following properties are 
targeted. First, inclusion of a parent node with a 
link strength value of zero should give an identical 
CPT to the case where that node is absent. Second, 
equal link strength values should result in an 
equally strong effect on the child node. Third, the 
effect of a negative link strength should have the 
same magnitude as the effect of an equally strong 
positive link, but be in the opposite direction. And 
finally, when all link strengths are zero, the CPT 
should be non-informative, i.e. all probabilities are 
equal to the inverse of the number of states in the 
child node. Simple examples are presented to 
demonstrate how link strength values are 
converted into CPTs, and the resulting CPTs are 
discussed in the light of the properties listed above.  

The main contribution of this paper is to suggest a 
new method for describing the CPT with link 
strength parameters, whose number is equal to the 
number of parent nodes. This method is envisaged 
to aid in 1) defining CPTs based on the 
information acquired from an expert panel, and 2) 
deriving complete CPTs from training data when 
not all state combinations of parent nodes are 
present in the training data set. 
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1.  INTRODUCTION 

Bayesian networks provide a useful method for 
simplifying the assessment of the joint distribution 
of a set of random variables by exploiting 
conditional independencies among these variables. 
Also, the graphical nature of Bayesian networks is 
convenient as it facilitates the users to get a visual 
overview of the problem at hand. Bayesian 
inference has been extensively applied in many 
fields including medicine (e.g. Chevrolat et al. 
1998), computer science (e.g. Heckerman et al. 
1994), and environmental sciences (e.g. Ames 
2002, Borsuk et al. 2004, Varis and Kuikka 1994).  

In a Bayesian network, the Markov condition 
requires that the state distribution of a node is 
conditionally independent of the set of all its 
nondescendents given the set of all its parents. The 
conditional probability table (CPT), which  relates 
states of the parent nodes to those of a child node, 
includes entries for all possible combinations of 
the child and parent node states. Now, if a child 
node has p parent nodes, and both the child node 
and its parents have s states, the total number of 
entries in the CPT becomes sp+1. Already with 
moderate dimensions (e.g. p = 3 and s = 5), the 
size of the CPT is so large (625 entries) that 
eliciting the required conditional probabilities from 
a panel of experts can become difficult and time-
consuming. This paper presents a method for 
specifying how the CPT can be described with the 
aid of link strength parameters that are assigned to 
each link from a parent node to a child node, and 
that attain values from -1 to 1. The method applies 
to Bayesian networks where nodes have discrete 
states. 

In addition to parameterising the CPT using expert 
knowledge, the link strength approach provides a 
means to populate also those rows in the CPT that 
remain empty after initial application of training 
data. This is necessary as the training data may not 
include all combinations of parent node states. 
Assume, for example, that a lake water quality 
variable is explained by the amount of runoff and 
the percentage of peat land in the catchment 
draining to the lake. Now, if there are data from a 
set of lakes, it can happen that in the most peat 
dominated catchment there has not been a dry 
summer during the measurement period, and hence 
the row in the CPT corresponding to a high peat 
percentage and a low runoff remains empty even 
after using training data. 

 

2. METHODOLOGICAL BACKGROUND 

2.1. Noisy-Or model 

Pearl (1988) presented a method which considers 
the case where any one of a set of conditions is 
likely to cause the same effect in the child node, 
and the likelihood of the effect does not diminish 
when several of these conditions are present 
simultaneously. This method is called the Noisy-
Or model (Figure 1), and it presumes each node to 
be Boolean having only two states: true or false.  
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Figure 1. Schematic of the Noisy-Or model. 
Notation: Ii is the ith inhibitor mechanism, ui is the 
state of the ith parent node, and x is the state of the 

child node. 

In the Noisy-Or model it is sufficient to determine 
the conditional probabilities between the child 
node and each of its parent nodes (causes) 
separately. These probabilities are typically much 
easier to identify than the conditional probabilities 
between a child node and the set of all its parents. 
Moreover, given one parent at a time the number 
of conditional probabilities increases linearly with 
an increasing number of parent nodes (Neapolitan 
2004), as opposed to an exponential increase in the 
case when the dependency between the child node 
and all its parents is defined concurrently. 

2.2. Generalised Noisy-Or model 

Srinivas (1993) generalised the Noisy-Or model to 
the case where both the parent and child nodes can 
have any number of discrete states. Figure 2 shows 
the schematic of the generalised Noisy-Or model. 
The state of each parent node ui is passed through 
a line failure device Ni that yields as an output ui’, 
which can (in case of failure) be different to ui. 

429



The symbol i is the index of a parent node. The 
function F maps the output from all failure 
devices, u’= [u1’, u2’,  …, un’], to the state of the 
child node x where n is the number of parent 
nodes. The aim is to create the CPT P(x|u) relating 
the states of the parent nodes u and the states of 
the child node x with aid of the failure devices {Ni} 
and the mapping function F. 
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Figure 2. Schematic of the generalized Noisy-Or 

model. 

Each line failure device Ni is parameterised with 
line failure probabilities fail

ip for all states of the 
parent node. The reader is referred to Srinivas 
(1993) for a detailed description on how the 
conditional probabilities P(u’|u) are determined by 
the line failure probabilities. Table 1a shows an 
example of P(u’|u) where a parent node has three 
states, and each of these states has a zero line 
failure probability. In another example in Table 1b 
all three states have an equal line failure 
probability of  1/3. Clearly, Table 1a depicts a 
situation where the state ui determines with 
certainty the state u’i, whereas in the case 
presented in Table 1b knowledge about the state ui 
does not convey any information about the state 
u’i. 

In case of the original Boolean Noisy-Or model, 
the F function yields state true for the child node if 
any of the parent nodes is in state true.  Srinivas 
(1993) suggested the following form of the F 
function for the generalised case where nodes may 
take any of a number of discrete states: 
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where F(·) gives the state of the child node x, I(ui’) 
(∈{1,2,…mi}) is the index of the state ui’, mx is the 
number of states of the child node, mi is the 
number of states in the ith parent node, and 
ceiling[·] is a roundup function to the closest 
integer. The notation x(j) denotes the jth state of the 

child node x. The above F function is in essence a 
weighted average over the state indices of u’, and 
it degenerates to the Boolean Or function when the 
inputs and outputs have only two states. 

Table 1. Conditional probabilities P (u’|u) for the 
cases (a) where all line failure probabilities fail

ip are 
zero and (b) where all three states have an equal 
line failure probability ( fail

ip  = [1/3, 1/3, 1/3]). 
Analogically to x(j), ui(j) and ui’(j) denote the jth 

state of ui and ui’, respectively.  

a)
u i (1) u i (2) u i (3)

u i ' (1) 1 0 0
u i ' (2) 0 1 0
u i ' (3) 0 0 1
b)

u i (1) u i (2) u i (3)
u i ' (1) 0.33 0.33 0.33
u i ' (2) 0.33 0.33 0.33
u i ' (3) 0.33 0.33 0.33  

Srinivas (1993) derived the following equation for 
the conditional probabilities between the states of 
the child node and the states of the parent nodes 
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2.3. Concept of link strength in fully 
connected belief networks 

To parameterise the conditional probabilities 
P(u’|u) in the generalised Noisy-Or model, line 
failure probabilities need to be determined for each 
state in each parent node. The link strength 
approach of Varis and Kuikka (1994) provides a 
way to describing a CPT relating two nodes with 
aid of a single link strength parameter, and this 
method can be used to define P(u’|u) with just one 
parameter for each parent node. 

When the link strength η increases from zero to 
one, the diagonal of the CPT increases from 1/m 
(in the case of m states) to 1, and the remaining 
probability mass is distributed evenly over the off-
diagonal elements of the CPT: 
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The notations ui(j) and ui’(j) denote the jth state of 
the ui and ui’, respectively. A negative link 
strength indicates that there is a negative 
relationship between the two nodes. A link 
strength with a value of one characterises a perfect 
one-to-one relationship (Table 1a), and a link 
strength with a value of zero indicates that the two 
nodes are completely independent (Table 1b). 
These extreme cases are identical to the 
conditional probabilities P(u’|u) shown in Table 1. 
Table 2 illustrates the CPT when the link strength 
is 0.5 or -0.5. 

Table 2. The CPT in the fully connected networks 
of Varis and Kuikka (1994) for the cases  where 
the link strength parameter is (a) 0.5  or (b) –0.5. 

a)
u i (1) u i (2) u i (3)

u i ' (1) 0.67 0.17 0.17
u i ' (2) 0.17 0.67 0.17
u i ' (3) 0.17 0.17 0.67
b)

u i (1) u i (2) u i (3)

u i ' (1) 0.17 0.17 0.67
u i ' (2) 0.17 0.67 0.17
u i ' (3) 0.67 0.17 0.17  

 

3. METHOD 

3.1. Conditional probability P(u’|u) 

While this study adopts the concept of link 
strength in determining the conditional 
probabilities P(u’|u), the method for constructing 
these probabilities used here has modified that of 
Varis and Kuikka (1994).  

The modification was introduced as it was seen 
desirable to assign a higher probability to those 
states that are close to the most likely state when 
compared to states that are far from it. This is a 
reasonable assumption when the studied variables  
are defined in the ratio scale statespace. In 
environmental studies concentrations and loads are 
typical examples of such variables. Instead of 
distributing the probability that the parent nodes 
after line failure are in different states equally 
across the off-diagonal states, regardless of 
distance between states, the inverse of the squared 
distance between state indices is proposed as a 
weighting criterion. 

The conditional probabilities P(u’|u) were 
constructed according to the following equation 
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where r is the index of the state ui’, c is the index 
of the state ui, ηi is the link strength of the ith node, 
and K = 1  – 1 /mi, and | · | is the absolute value 
function.  In Equation (4b), the second term of the 
product is probability of parent states being 
affected by line failure, and the first term of the 
product is a weighting coefficient. The value of the 
weight depends on the inverse of the squared 
distance between parent node state before and after 
line failure, 1 / (c – r)2, and on the value of the link 
strength. The distance dependency was introduced 
in order to increase the probability of the state ui’ 
when its index is close to that of state ui.  

3.2. Desired properties of the conditional 
probabilities P(x|u) 

To guarantee that the relationship between link 
strength parameters and the resulting conditional 
probabilities P(x|u) is intuitively reasonable, the 
following properties need to be satisfied: 

Property 1. Inclusion of a parent node 
with a link strength value of zero should 
give an identical result to the case where 
that node is absent. For example, when 
one link has the value of one, and all 
others are zero, then the index of the state 
x should be with certainty equal to the 
index of state of the variable with link 
strength one. 

Property 2. Equal link strength values 
should result in an equally strong effect 
on P(x|u). 

Property 3. The effect of a negative link 
strength should have the same magnitude 
as the effect of an equally strong positive 
link, but be in the opposite direction. 

Property 4. When all link strengths are 
zero, the CPT should be non-informative, 
i.e. all probabilities are equal to the 
inverse of the number of states in x. 
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3.3. Mapping of child node states 

For the sake of simplicity, it is now assumed that 
all parent nodes and the child node have the same 
number of states, i.e. mi = mx = m for all i. In order 
to satisfy Properties 1 to 3, Equation 1 was 
modified and the F function was written in the 
following form 
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Use of the absolute values of link strengths to 
weight the indices of the states ui’ in Equation 5 
ensures that a parent node having a link strength of 
zero is equal to not having that variable in the 
network at all (Property 1). 

As the ceiling function in Equation (1) always 
rounds the index of the child node state up to the 
next integer, the resulting index of the child node 
state becomes biased upwards. This leads to a 
violation of Property 2, and therefore the ceiling 
function was removed. Now, if the index of the 
child node state, I(x), attains a non-integer value, 
both states around that value are assigned with 
weights w that are linearly related to the difference 
between the indices of these states and I(x). For 
example, if I(x) = 2.8 then states I(x) = 2 and I(x) = 
3 are assigned with weights 0.2 and 0.8, 
respectively. 

Property 3 is satisfied by introducing the function 
Η that in case of a negative link strength mirrors 
the index of the state ui’ over the median index. 

3.4. Conditional probabilities P(x|u) 

Computation of the conditional probabilities P(x|u) 
according to Equations (2), (4) and (5) leads to a 
result that is in violation of Property 4. In cases 
where all link strengths are weak, and close to each 
other, the distribution of the index of state x is not 
uniform over the dimension of x as required. This 
is due to the fact that the weighted average 
calculated in the F function is not uniformly 
distributed, although the indices of the parent node 
states are (nearly) uniformly distributed. 

Therefore, in order to satisfy Property 4, the values 
of the conditional probabilities P(x|u) were 
adjusted with a correction in such a manner that 
P(x|u) becomes non-informative when all link 
strengths approach zero. For two parents and three 
states the correction c2 is derived from the 
following equation. 
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where w is the weight resulting from a non integer 
state index (see Section 3.3.), |ηmax| and |ηmin| are 
the higher and the lower absolute values of the two 
link strengths, respectively, and bi is a coefficient 
for an ith state (b1 = 1.5, b2 = 0.6, b3 = 1.5). The 
values of bi are based on the distribution of the 
arithmetic average of uniformly distributed 
variables. The rationale behind Equation (6) is that 
correction is only necessary when both link 
strengths are weak and close to each other. 
Equation (6b) ensures that when any of the link 
strengths is strong the correction is low. And 
Equation (6a) specifies that the closer the two 
strengths are to each other, the more correction is 
applied. The correction attains its maximum when 
all link strengths approach zero, and no correction 
is applied when any of the (absolute values of) link 
strengths approaches one. 

4. RESULTS 

Conditional probabilities P(x|u) with varying link 
strength values are demonstrated in the following 
simple examples, where the Bayesian network has 
a child node with two parents, and all nodes have 
three states. Table 3 lists the combinations of link 
strengths that will be discussed. 

 

Table 3. Link strength combinations (η1, η2) 
discussed in this section. 

Parent 1 (η1) Parent 2 (η2)
Case 1 0 0
Case 2 1 0
Case 3 1 1
Case 4 0.5 0.5
Case 5 0.5 -0.5  
In Case 1 neither one of the two parent nodes have 
control over the child node, and all CPT entries 
attain a value of 1/3. In Case 2 the state of the first 
parent determines the state of the child node with 
certainty regardless of the state of the second 
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parent. This leads to a CPT where the information 
shown in Table 1a is repeated three times. This is 
in line with Property 1 discussed earlier. Table 4 
presents the CPT for Case 3 where both parent 
nodes have link strengths of one. Two 
characteristics are worth noting here. Firstly, in the 
third row the first and the second parent would set 
the child node in state 1 and state 3, respectively. 
As both parents have equal link strengths of one, 
the child node attains with certainty the average 
state of these two (i.e. state 2). Secondly, in the 
second row the probability is split between two 
states of the child node. Here the first and the 
second parent are in states 1 and 2, respectively, 
and both have equal link strength values. In order 
to satisfy Property 2, both parents should have an 
equal control over the child node state, which 
requires the probability mass to be split between 
the child node states of 1 and 2. 

Table 4. CPT for the case where the child node 
has two parent nodes, all nodes have three states, 

and both link strength parameters have the value of 
one. 

    x(1) x(2) x(3) 

u1(1) u2(1) 1 0 0 

u1(1) u2(2) 0.5 0.5 0 

u1(1) u2(3) 0 1 0 

u1(2) u2(1) 0.5 0.5 0 

u1(2) u2(2) 0 1 0 

u1(2) u2(3) 0 0.5 0.5 

u1(3) u2(1) 0 1 0 

u1(3) u2(2) 0 0.5 0.5 

u1(3) u2(3) 0 0 1 

Table 5 shows the CPT for Case 4 where the two 
parent nodes have link strength values of 0.5. The 
form of the CPT is similar to Case 3 (Table 4), but 
the spread of the probability mass is greater in 
each row. Note that in row 2, according to 
Property 2, the probabilities of child node states 1 
and 2 should be equal, but there is a slight 
difference between them (0.44 vs. 0.46). This 
difference is partly contributed to the non-uniform 
distribution of the probability mass to the off 
diagonal of P(ui’|ui), and partly to an inaccuracy in 
the correction algorithm outlined in Section 3.4. In 
Case 5 the negative link strength for the second 
parent merely causes a rearrangement of rows as 
compared to Case 4. Rows 1 and 3 (as well as 4 
and 6, and 7 and 9) change places. This is in 
accordance with Property 3. 

Table 5. CPT for the case where the child node 
has two parent nodes, all nodes have three states, 

and both link strength parameters have the value of 
0.5. 

    x(1) x(2) x(3) 

u1(1) u2(1) 0.68 0.28 0.04 

u1(1) u2(2) 0.44 0.46 0.10 

u1(1) u2(3) 0.21 0.57 0.21 

u1(2) u2(1) 0.44 0.46 0.10 

u1(2) u2(2) 0.19 0.62 0.19 

u1(2) u2(3) 0.10 0.46 0.44 

u1(3) u2(1) 0.21 0.57 0.21 

u1(3) u2(2) 0.10 0.46 0.44 

u1(3) u2(3) 0.04 0.28 0.68 

 

5. DISCUSSION 

The method presented above provides a means to 
describe the CPT that relates states of the parent 
nodes to those of a child node with link strength 
parameters. It was demonstrated that the proposed 
method produces CPTs that are in line with the 
desired properties outlined in Section 3.2.  

The mapping function relating parent node states 
to the states of the child node is based on the 
average of state indices of parent nodes. Therefore, 
the CPT fails to be non-informative when all link 
strengths approach zero unless a correction is 
applied. This is a result of the central limit theorem 
stating that the sum of any distributions ultimately 
approaches the normal distribution, and hence the 
average of uniformly distributed states of u’ also 
approaches the normal distribution. The current 
correction scheme gives satisfactory results for the 
cases of two and three parent nodes, but it is not 
applicable to networks having a greater number of 
parent nodes for any one child node. 

The motivation behind the presented approach to 
describing conditional probability tables with link 
strength parameters is two-fold. Firstly, it 
facilitates determining conditional probabilities 
based on the information acquired from a panel of 
experts, which otherwise easily becomes 
impractical if the number of parent nodes or the 
number of node states is large. Various studies 
have shown that the link strength approach allows 
a transparent, pragmatic and communicative means 
for elicitating expert judgment values for Bayesian 
network models. Varis and Kuikka (1994) 
demonstrated how link strengths can be elicited 
from a panel of experts in assessing the impact of 
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climate change for southern part of Finland. 
Pellikka et al. (2005) analyzed a palette of options 
of wildlife management in Finland on the basis of 
an expert panel. Varis and Keskinen (2005) 
performed a policy analysis of the Tonle Sap Lake, 
Cambodia using the same approach. Secondly, 
when data are available to populate a subset of the 
CPT, the presented method provides a tool for 
deriving complete CPTs from training data. 
Koivusalo et al. (2005) report a study where 
conditional frequencies obtained from 
environmental simulation models are used to 
define CPTs of a Bayesian network using the 
method presented in this paper. In the above study, 
strength values were optimized against the 
conditional frequencies derived from the training 
data. 

 

6. CONCLUSIONS 

A new method for discrete state Bayesian 
networks was presented for describing the CPT 
that relates parent node states to child node states 
with aid of link strength parameters. The number 
of link strength parameters is equal to the number 
of parent nodes. This method is envisaged to aid in 
1) defining CPTs based on the information 
acquired from an expert panel, and 2) deriving 
complete CPTs from training data when not all 
state combinations of parent nodes are present in 
the training data set. 
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