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EXTENDED ABSTRACT 

Spatially and temporally explicit simulation 
modelling of natural resource management 
systems provides a framework to draw together in 
a mathematically unambiguous manner a wealth 
of information, and, as such, allows rigorous 
testing of hypotheses of how such systems can be 
changed, without the time, expense and moral 
implications of altering a real system. In recent 
years, a large number of integrated assessment 
models linking the human and biophysical 
components of particular systems have been 
developed to address this need, but in many of 
these models the human dimension is based on 
economic cost-benefit principles that attempt to 
optimise use of resources such as capital or labour 
to maximise a particular output. Limitations to 
these approaches are that they are structured to 
represent an equilibrium when production has 
stabilised, they presuppose a ‘goal’ of the system, 
and do not adequately consider the micro-
decisions being made by the various actors within 
it.  

Agent-based modelling (ABM) is an approach 
that has been receiving attention in recent years as 
a way of linking the biophysical and socio-
economic characteristics of a system, and which 
provides a way of addressing these limitations. 
ABM has aroused the interest of environmental 
modellers, mainly because it offers a way of 
incorporating the influence of human decision-
making on the environment in a mechanistic and 
spatially explicit way, taking into account social 
interaction, adaptation, and multiple scales of 
decision-making. Several such models are now 
beginning to appear, many of which involve the 
grafting of an ABM representing a number of 
households onto a cellular automata ‘landscape’, 
with each agent being linked in some way to the 
cells over which it has influence. Apart from 
changes in actual land cover, however, these 
models generally treat the landscape as a 
relatively static entity, and do not simulate 
processes such as soil water and nutrient 
dynamics. The ones that do include such 
processes, do so somewhat simplistically. 

There is a need, therefore, to integrate dynamic 
biophysical simulation models with these emerging 
agent-based social simulation models. Different 
approaches to integrating such models are 
recognised – one such scheme refers to ‘loosely-
coupled’, ‘closely-coupled’, and ‘fully integrated’ 
levels of integration. Loose- and closely-coupled 
models exchange driving variables between them, 
with closely-coupled models sharing common sub-
processes, meaning that temporal and spatial scales 
may be determined by the original (sub-)models 
being coupled together. By contrast, in fully 
integrated models, these scales are dictated by the 
processes being simulated. It is our view that it is 
necessary to focus on the fully integrated level in 
developing models to adequately understand the 
behaviour of managed ecosystems. 

We discuss an agent architecture that allows agents 
to communicate regardless of the programming 
language used – each agent should have a 
translation module that translates incoming 
messages and triggers the appropriate internal 
response, and a conversation module which checks 
ingoing and outgoing messages, and manages 
communications between multiple agents. The 
overall system should be coordinated by manager 
and router agents to ensure the provision of global 
information and correct delivery of 
communications between agents, respectively. To 
link this to different sub-models of biophysical 
processes, a limited number of common properties 
of the sub-models are required: (a) each sub-model 
must have the ability to advance one time-step on 
request, (b) it should be able to save the states of all 
its variables at the end of each time-step on request, 
and be able to reload these later, also on request, (c) 
it must be able to respond to predefined message 
requests for information, and (d) the calculation of 
rates of change of its state variables must be 
separate from the updating of those state variables, 
with both operations being carried out on request. 

There is a danger that such models become too 
complex – it is suggested that the best way forward 
may be to take a simple framework as the starting 
point, and incorporate additional detail as necessary 
to describe the processes of interest.  

1617



1. INTRODUCTION 

There is a growing awareness that single factor-
based research has been inadequate in addressing 
many environmental problems, and that more 
interdisciplinary approaches are required, in which 
account is taken of human and biophysical 
processes interacting together. Some authors have 
conceptualised this as a need to integrate the 
geosphere (the inanimate world), the biosphere 
(the animate world), and the noosphere (the 
conscious world) (e.g. Naveh, 2001); others have 
seen it as a combination of the social, economic 
and natural sciences (e.g. Gunderson & Holling, 
2001). Either way, the essential idea is that 
humans are seen as an integral part of the systems 
being considered, rather than as impartial 
observers or external drivers influencing 
ecosystems but not being influenced by them, as 
has often been the case in ecological studies, or, 
conversely, being influenced by the environment 
but not influencing it, as has been the case in 
neoclassical microeconomics.  

However, as it is not usually possible to 
manipulate such ‘socio-ecological’ systems 
experimentally, there is a clear need for modelling 
studies to explore how such systems work. In 
recent years, a large number of integrated 
assessment models linking the human and 
biophysical components of particular systems have 
been developed to address this need, but in many 
of these models the human dimension is based on 
economic cost-benefit principles that attempt to 
optimise use of resources such as capital or labour 
to maximise a particular output. Limitations to 
these modelling approaches are that they are 
structured to represent an equilibrium when 
production has stabilised, they presuppose a ‘goal’ 
of the system, and they do not adequately consider 
the micro-decisions being made by the various 
actors within it. Indeed, it has even been argued 
that the assumptions used in these models are 
flawed and that their predictions are untrustworthy 
(e.g. Moss et al., 2001). For example, Becu et al. 
(2003) showed that the common practice of 
planting rice in the wet season in Thailand could 
not be justified on the basis of an economic 
analysis alone, noting that it is mostly motivated 
by socio-cultural preferences and household food 
security strategies. 

Agent-based modelling (ABM) has aroused the 
interest of environmental researchers recently, 
mainly because it offers a way of replacing 
differential equations at an aggregate level with 
decision rules of entities at a lower level (i.e. 
individuals or groups of individuals) along with 
the appropriate environmental feedbacks. 

Originating from the fields of distributed artificial 
intelligence and artificial life (depending on the 
level of detail with which cognition is represented 
(Hare & Deadman, 2004)), and with parallels with 
Individual Based Modelling (IBM) in ecology 
(Huston et al., 1988), agent-based models consist 
of a number of ‘agents’ which interact both with 
each other and with their environment, and can 
make decisions and change their actions as a result 
of this interaction (Ferber, 1999). Agents may 
contain their own ‘mental model’ of their 
environment (which may not necessarily be 
complete or even true) built up from its 
interactions with it. The behaviour of the whole 
system depends on the aggregated individual 
behaviour of each agent. This allows the influence 
of human decision-making on the environment to 
be incorporated in a mechanistic and spatially 
explicit way, also taking into account social 
interaction, adaptation, and multiple scales of 
decision-making. Agents can interact either 
through a shared environment and/or directly with 
each other through markets, social networks, and 
institutions. Higher-order variables (e.g. 
commodity prices, population dynamics, etc.) are 
not specified as they are in conventional 
mathematical programming techniques or 
econometrics, but, instead, may be emergent 
outcomes. A number of such agent-based models 
are now beginning to appear (see recent reviews by 
Parker et al., 2002; Bousquet & Le Page, 2004), 
many of which involve the grafting of a multi-
agent system representing a number of households 
onto a cellular automata ‘landscape’, with each 
agent being linked in some way to the cells over 
which it has influence. Apart from changes in 
actual land cover, however, these models generally 
treat the landscape as a relatively static entity, and 
do not simulate processes such as soil water and 
nutrient dynamics (e.g. Balmann et al., 2002; 
Deffuant et al., 2002). Some do include such 
processes, but somewhat simplistically –Lim et al. 
(2002), for example, use multiple regression 
equations for changes in soil characteristics and 
estimations of crop yields.  

However, as the interactions between humans and 
their environment are two-way, in that actions 
occurring as a result of human decisions affect 
aspects of the environment, which in turn may 
influence further decisions made, it would seem 
important, if we are to deepen our understanding 
of the way socio-ecological systems function, to 
represent environmental processes in an acceptably 
realistic way. Thus, there would appear to be a 
need to integrate existing dynamic biophysical 
simulation models with these emerging ABMs. 
However, due to different disciplinary paradigms 
and model architectures, this is not a straight-
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forward exercise. In this paper, we examine when 
it is appropriate to combine social and biophysical 
models, and discuss approaches to linking them. 

2. WHEN SHOULD WE COMBINE 
SOCIAL AND BIOPHYSICAL MODELS? 

Although not all problems lend themselves to 
coupling social and environmental processes, there 
are many cases where human-environmental 
interactions are non-linear, with the environment 
being affected by human decisions which in turn 
impact on the environment, potentially leading to 
complex systems behaviour, and when there is 
path dependence (in which the state of a system 
depends on its starting position and the route it 
followed to get there). For example, gradual 
changes in slow variables can result in thresholds 
suddenly being reached when unexpected 
behaviour may be triggered (Scheffer & Carpenter, 
2003; Walker & Meyers, 2004). In such cases, it is 
important to know under what conditions the 
dynamics of a socio-ecological system become 
unpredictable or radically change its mode of 
functioning, and what the impacts of different 
human responses are likely to be. Such 
‘catastrophic’ behaviour can often be accompanied 
by hysteresis, when the forward trajectory of a 
process is not the same as its return trajectory. 
Carpenter & Cottingham (2002) give an example 
of the build-up of phosphorus in lakes causing a 
sudden change in the eutrophication level to a new 
stable state which is difficult to reverse even if the 
phosphorous level is lowered. 

3. APPROACHES TO COMBINING 
SOCIAL AND BIOPHYSICAL MODELS 

There are various approaches to classifying and 
understanding work that couples models together, 
with several authors having identified three levels 
of model integration. Hartkamp et al. (1999), for 
example, used the terms ‘linking’, ‘combining’, 
and ‘integration’ when discussing the coupling of 
GIS with environmental process models, with 
‘linking’ referring to exchanging data as input and 
output between the GIS and the model, 
‘combining’ to exchanging data and functionality, 
and ‘integration’ to a complete embedding of a 
model within a GIS or vice versa. A comparable 
scheme was proposed by Antle et al. (2001) who 
referred to ‘loosely-coupled’, ‘closely-coupled’, 
and ‘fully integrated’ levels of integration. Loose- 
and closely-coupled models exchange driving 
variables between them, with closely-coupled 
models sharing common sub-processes, meaning 
that temporal and spatial scales may be determined 
by the original (sub-)models being coupled 
together. By contrast, in fully integrated models, 

these scales are dictated by the processes being 
simulated. Similarly, Westervelt (2002) used the 
terms ‘loose’ for when the programs run 
independently and exchange data using ordinary 
text files, ‘moderate’ for when they run 
independently but exchange information using 
specialised files, and ‘tight’, for when the agent-
based model and GIS are compiled into a single 
program. Antle et al. (2001) argue that it is 
necessary to focus on the fully integrated level in 
each case in developing models that adequately 
capture the behaviour of managed ecosystems.  

Clarke & Dietzel (2004) noted that when they 
coupled a biophysical model to a social model the 
result was something that only the developers 
could understand. Frysinger (2002) also expresses 
concern about what he calls tightly coupled models 
(which corresponds to the closely coupled 
classification of Antle et al. (2001)), arguing that 
modifying the code of one model to couple it with 
another could interfere with its functionality, 
raising questions over the quality of the result. He 
suggested modular designs as an approach to 
addressing this issue. Modularity is one of the key 
benefits of object-oriented (OO) programming, and 
many commonly used programming languages 
(Java, C++, Objective-C and Delphi) offer OO 
functionality. However, classes in object-oriented 
programming languages are still open to misuse, 
especially, as is often the case, if appropriate 
documentation for the source code is not available. 
Agent-oriented (AO) design approaches (Deloach 
et al., 2001; Bauer et al., 2001; Wooldridge et al., 
2000), which entail a much stronger concept of 
encapsulation (Wooldridge et al., 2000, p. 307), 
may offer a more rigorous alternative, particularly 
if the software agents1 are self-describing. 

Kuhlman (2004) outlined four key challenges 
when coupling models, based on his experience 
involving linkages among no less than seven 
models. Firstly, there may be differences in the 
understanding of the scenario among members of 
the interdisciplinary team. Next, there may also be 
variations in the underlying assumptions among 
team members, and hence in the sub-models. 
Thirdly, there can be multiple sources for what are 
essentially the same data, with the various sub-
models not necessarily all using the same source. 
Finally, there can be overlap in functionality 
between sub-models. This last point is worth 
emphasising, as it presents a critical technical issue 
with integrative efforts that fall under the loosely- 
and closely-coupled, rather than fully integrated, 
classes of Antle et al. (2001). Two (or more) sub-
                                                           
1 Software agents should not be confused with the 
concept of an agent in an agent-based model. 
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models that, for one reason or another, happen to 
contain subcomponents representing the same real 
world phenomenon, are at risk of telling a different 
story about the fate of that phenomenon in the 
coupled whole, with potentially disastrous knock-
on effects on other sub-components and sub-
models that take input from them through feedback 
loops. This is a particular vulnerability in coupled 
systems with models that simulate the shared 
subcomponent at different spatial or temporal 
scales, or use dissimilar data structures and 
algorithms to represent its state and processes. 
Clearly, any coupled model where, for example, a 
bumper harvest and a severe crop failure could 
feasibly occur in the same place at the same time is 
not one to be trusted. An approach that begins with 
a shared ontology, as stipulated by full integration, 
should avoid such undesirable consequences. 

Full integration of models poses the greatest 
challenge in terms of required effort, but it is also 
the most rigorous as it ensures common 
understanding of underlying assumptions and 
theories. Any associated modelling software will 
be designed to meet the needs of the integrated 
work, instead of the work having to be fitted 
around constraints and assumptions of existing 
software. Examples of such integrated approaches 
include the integrated catchment assessment model 
of Scoccimarro et al. (1999) in northern Thailand, 
and the integrated urban development and 
ecological simulation model of Alberti & Waddell 
(2000). 

4. HOW DO WE COMBINE SOCIAL AND 
BIOPHYSICAL MODELS? 

There is a temptation to exploit the reusability of 
object-oriented software, and develop modular 
frameworks that can be used in a number of 
studies relating to coupled biophysical and socio-
economic systems. There are ways in which this 
enhances rigour, as standardised free programming 
libraries create a shared resource that avoids 
remaking common errors in development of such 
software, whilst allowing corrections, 
enhancements and bug-fixes to be made quickly. 
Though not common practice, appropriate 
annotation of the modular components using 
semantic grid concepts (de Roure et al., 2001) 
would facilitate the development of an ontology 
from the bottom-up (based on the modules used), 
allow potential conflicts in domain assumptions to 
be automatically detected, and create a searchable 
resource that is reusable by a wider community. 
However these benefits of standardised platforms 
should be weighed against the risk they create of a 
single point of failure: any mistakes or errors in the 
code will appear in the work of all scientists using 

it as the basis of their work. These issues can apply 
to seemingly trivial aspects such as use of random 
number generators (van Niel & Laffan, 2003) and 
floating point arithmetic (Polhill et al., 2005a; 
Polhill et al., 2005b), as well as more substantive 
issues such as representation of spatial data 
(McNoleg, 1998; Hauert & Doebeli, 2004) and 
scheduling (Kirchkamp, 2000). 

Standardised libraries to facilitate development of 
simulation models are by their very nature tied to 
particular programming languages, preventing 
developers from choosing programming languages 
that best suit the task, meaning that they become 
the servants of the technology rather than the 
converse, as should be the case. Worse, libraries 
are not always available on all platforms, meaning 
that the choice of operating system and underlying 
hardware may also be undesirably constrained. 
Finally, the licensing of such libraries that is 
required to ensure standards of scientific rigour 
may contravene policies of less enlightened 
research institutions relating to intellectual 
property rights. The worst possible scenario from a 
scientific point of view is that an international 
standard relies on proprietary software that cannot 
be inspected, modified, and bug-fixed by the 
community using it to conduct their studies. Since 
issues can potentially derive from any software 
involved in the development and use of the 
framework, this point applies to the operating 
system and compiler (or interpreter) as well as the 
programming libraries themselves. A framework 
built around the semantic grid, however, need not 
be so vulnerable to these issues. A suite of 
resources, some of which implement the same 
utility, can be built using a variety of programming 
languages, avoiding reliance on any one library, 
operating system, or hardware platform. With 
appropriate modularity in the design of such a 
framework, and compositional modelling tools to 
facilitate model development, researchers would 
be able to check the ‘algorithmic sensitivity’ 
(Edwards et al., 2005) of their work. 

Mentges (1999), recognising that a unified 
modelling and simulation language for agent-based 
simulation is unrealistic, proposed instead a 
modelling framework consisting of a number of 
layers with increasing abstraction levels. Models 
can be developed within any layer without 
knowledge of the specifics of models in other 
layers. On the lowest layer, agents communicate 
by exchanging messages using the quasi-standard 
agent communication language KQML (Mayfield 
et al., 1996). On the next level up, common 
message sequences can be defined as basic 
building blocks of communication between agents. 
In the third layer, agents are given generic role 

1620



properties determining goals, responsibilities, task 
and expertise, which can be used as the building 
blocks of more specialised heterogeneous agents. 
Mentges (1999) then proposes an agent 
architecture that allows agents to communicate 
regardless of the programming language used – 
each agent has a translation module that translates 
incoming KQML messages and triggers the 
appropriate internal response, and a conversation 
module which checks ingoing and outgoing 
messages, and managing communications between 
multiple agents. The whole multi-agent system is 
coordinated by manager and router agents to 
ensure the provision of global information and 
correct delivery of communications between 
agents, respectively. Such an approach allows the 
distributed design and distribution of models, with 
sub-models even in different geographical 
locations.  

A prototype of such an approach has, in fact, been 
implemented in the PALM model of farming 
systems in Nepal, in which not only households 
are agents with decision-making capability, but the 
landscape components and livestock are also 
reactive agents (Matthews, 2006). Each agent can 
send and receive messages from other agents, and 
indeed, can only interact with other components of 
the system via KQML messages (Figure 1). For 
example, if a household agent wants to know the 
state of one of its fields, it sends a message to the 
landscape agent requesting the information that it 
requires, to which the landscape agent will respond 
with another message containing the information, 
provided it has been able to interpret the requesting 
message. Messages can be requests for 
information, as in the example just given, or 
commands to carry out specified actions, for 
example to plant a crop on a certain date, which 
would result in a method within the landscape 
agent being called to plant the crop.  

For different sub-models to interact in this way, a 
limited number of common properties are required: 
(a) each sub-model must have the ability to 
advance one time-step on request, (b) it should be 
able to save the states of all its variables at the end 
of each time-step on request, and be able to reload 
these later, also on request, (c) it must be able to 
respond to predefined message requests for 
information, and (d) the calculation of rates of 
change of its state variables must be separate from 
the updating of those state variables, with both 
operations being carried out on request. This last 
requirement allows all of the different sub-models 
to calculate their rates of change before any 
updating is carried out, approximating parallel 
running of each sub-model. 
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Figure 1: Internal structure and flows of 
information in a household agent in the PALM 
model (from Matthews, 2006). 

5. MODEL COMPLEXITY 

A key issue underlying all of these activities is that 
of complexity, which poses a dilemma for 
modellers. On one hand, there is the general 
preference of policy makers for simple 
explanations (Couclelis, 2002) so that they can 
justify their decisions to their constituencies, 
members of which may not be so appreciative of 
highly complex systems. On the other hand, there 
is no escaping the fact that socio-ecological 
systems are complicated systems in that a 
significant number of components interact with 
each other, and may also be complex adaptive 
systems in that they are path dependent with their 
current and future states depending on their 
history, and may exhibit nonlinear behaviour, self-
organised criticality and clustered volatility (Bak, 
1994). Certainly the complicatedness, and possibly 
the complex nature of such systems, require 
sufficiently detailed models to be developed in 
order to capture behaviours that would not be 
possible with simpler models. Thinking has moved 
on from the view that such systems can be 
modelled using a few elegant mathematical 
expressions to developing sophisticated software 
products with many tens, if not hundreds, of 
thousands of lines of computer code. 

However, given that all models are simplifications 
of reality, the dilemma is what constitutes 
‘sufficient detail’ for such models. One school of 
thought, referred to as ‘greedy reductionism’ by 
Pinker (2002:69), argues that increasingly detailed 
models are required that are capable of simulating 
processes at finer and finer levels. A contrasting 
point of view is that simpler frameworks, more 
readily aligned with end-users’ modes of action, 
are required (e.g. Shorter et al., 1991). The two 
approaches may not necessarily be mutually 
exclusive – the best way forward may be to take a 
simple framework as the starting point, and 
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incorporate additional detail as necessary to 
describe the processes of interest. A danger of this 
approach, which needs to be guarded against, is 
that the resulting model may reflect the prejudices 
of the user, and only contain the components that 
he/she thinks are important.  

6. CONCLUSIONS 

Many of the environmental problems facing 
modern society can only be addressed by taking 
account of the social, economic and biophysical 
components of managed ecosystems. There is, 
therefore, a need to develop simulation models that 
link these components. Different approaches to 
linking existing models for each of these 
components are discussed, but it is suggested that 
the fully integrated models, with shared ontologies 
for each of the model components, is probably the 
best way forward, albeit the most challenging. A 
balance must be struck between incorporating 
enough sophistication in such models to capture all 
the relevant processes, and keeping them simple 
enough so that understanding of these processes 
and their interactions is not obscured. 
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