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1 EXTENDED ABSTRACT

It is not rare to analyze large data sets these
days. Large data is usually of census type and
is called the micro data in econometrics. The
basic method of analysis is to estimate a single
regression equation with common coefficients over
the whole data. The same applies to other method of
estimation such as the discrete choice models, Tobit
models, and so on. Heterogeneity in the data is
usually adjusted by the dummy variables. Dummy
variables represent socioeconomic differences among
individuals in the sample. Including the coefficients of
dummy variables, only one equation is estimated for
the whole large sample, and it is usually not preferred
to divide the whole sample into sub-samples. Data
is said to be homogenous in this paper if a single
equation is fit to the whole data, and it explains
socioeconomic properties of the data well. We
may estimate an equation in each sub-population if
the whole population is divided into known sub-
populations. It is assumed that the coefficients are
different from one sub-population to another in this
case. Data is said to be heterogeneous in our paper.
The analysis of variance is applied if sub-populations
are known and sub-sample is collected from each sub-
population.

In this paper, a test is proposed to find if the data is
homogenous or not. Our test uses the full sample
of size N and randomly chosen sub-samples of size
n. They are randomly chosen since sub-populations
are unknown. A regression equation with common
coefficients over the whole sample such as

yik = x′ikβ0 + uik

is assumed under the null hypothesis. A regression
equation with variable coefficients

yik = x′ik(β0 +
n

N
βk) + uik

is assumed under the alternative hypothesis. This
alternative hypothesis states that the deviation from
a common regression is small when the size n of
randomly chosen sub-samples is small compared with
N. This reflects our intuition that it is too restrictive to
fit one regression equation with common coefficients

to a large sample. It may be impossible to avoid
specification errors in this estimation. However,
specification errors may be negligible if a regression
equation is fit to a small sub-sample.

For a given sub-sample of size n, the Wu-Hausman
statistic

WH = (bs − bf )′(V (bs)− V (bf ))−1(bs − bf )

is used for the test wherebf and bs are the full
sample and the sub-sample least squares estimator,
respectively. It is asymptotically distributed asχ2(K)
under the null hypothesis where K is the number of
coefficients. The sub-sample of size n is repeatedly
and randomly taken from the full sample of size N
for Ns times, and the test statistic is calculated for Ns
times accordingly. Since n is arbitrary, various values
of n are chosen in the test starting from 5% to more
than one third of the full sample. An alternative WH
test statistic uses the bootstrapping estimators of the
coefficients and the variance covariance matrices.

The sub-sample test statistics can be correlated
with each other since the sub-samples are randomly
chosen from the full sample and can be overlapped.
Critical values of the test statistics are calculated by
simulations. An example follows.
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2 INTRODUCTION

The population Π is partitioned into m sub-
populations such as

Π = {Π1 ∪Π2 ∪ · · · ∪Πm}.

The sampleS consists of N subjects, and is partitioned
into m disjoint sub-samples such as

S = {S1 ∪ S2 ∪ · · · ∪ Sm}.

The researcher, however, does not have any
information on the partitions ofΠ nor S. The full
sample includes observations on

(yi, xi), i = 1, 2, · · · , N

whereN is the full sample size, and the kth sub-
sample is

(yjk, xjk), j = 1, 2, · · · , nk.

A regression equation

yi = x′iβ0 + ui (1)

is maintained over the whole sample under the
null hypothesis. The error term satisfies usual
assumptions, andV (ui) = σ2.However, it seems too
restrictive to assume that the coefficients are fixed over
the whole sample, in particular, when the data set is
large.

For each sub-population,

yik = x′ik(β0 + βk) + uik, (2)

i ∈ Sk, k = 1, 2, · · · ,m

is a possible regression equation under the alternative
hypothesis, additional coefficientsβk are nuisances,
andx′ik is 1 ×K row vector of explanatory variables
associated with thekth sub-population. However,
there is no way to estimate coefficients consistently
since the partition of the population is unknown.
A feasible regression equation under the alternative
hypothesis may be

yik = x′ik(β0 +
n

N
βk) + uik,

i ∈ Sk, k = 1, 2, · · · ,m (3)

wheren is the sub-sample size which are randomly
chosen in the test. This specification implies that the
nuisance parameter depends on n proportional to N,
and it is negligible when this ratio is small. Motivation
of this study lies in this equation. Nuisance parameters
may be negligible if a randomly chosen sub-sample is
relatively small. It may not be negligible if it is applied
to large samples such as census. We will propose a test
for this conjecture.

3 PROPERTIES OF ESTIMATORS

Denote b the least squares estimator of the slope
coefficient. If we estimate the regression equation
using the full sample wheren is N , the full
sample estimator is inconsistent under the alternative
hypothesis,i.e.,

p lim
N→∞

bf = β0 + lim
N→∞

m∑

k=1

(X ′X)−1X ′
kXkβk

where

X ′ = (X ′
1, X

′
2, · · · , X ′

m), X ′X =
m∑

k=1

X ′
kXk,

and
m∑

k=1

(X ′X)−1X ′
kXk = I.

The sub-sample is small relative to the full sample. It
is further assumed thatn →∞ asN →∞,and also

lim
N→∞

n

N
= 0, (4)

then the sub-sample estimator is consistent,i.e.,

p lim
N→∞

bs = β0 + lim
N→∞

n

N

m∑

k=1

(X ′
sXs)−1X ′

skXskβk

= β0

whereXs is the explanatory variables in a sub-sample,
X ′

s = (X ′
s1, X

′
s2, · · · , X ′

sm), and X ′
sk consists of

sub-columns inX ′
k associated with the kth group or

zero if kth group is not in the sub-sample.

The regression equation(3) can be written as

yik = x′ikβ0 +
n

N
ηik + uik, (5)

i ∈ Sk, k = 1, 2, · · · ,m (6)

where ηik is a idiosyncratic nuisance termx′ikβk.
A more general interpretation can be given to the
nuisance term in(5). Whatever the interpretation can
be, the nuisance term is negligible in a small sub-
sample where(4) holds, but not in the full sample.
The probability limit of the least squares estimator is

p lim
N→∞

bs = β0

+ lim
N→∞

n

N

m∑

k=1

(
1
n

X ′
sXs)−1(

1
n

∑

i∈Sub

xikηik)

where the last summation is over the sub-samples.
The least squares estimator is consistent if the
assumption(4) holds.
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4 WU-HAUSMAN TEST

The null model of the test is equation(1) , and the
alternative model is equation(3) or (5). The Wu-
Hausman test statistic is

WH = (bs − bf )′(V (bs)− V (bf ))−1(bs − bf ) (7)

wherebf andbs are the full sample and the sub-sample
least squares estimators, respectively. It is known that

 

bf 
bs 

Figure 1: Sub and Full Sample 

bf is the efficient estimator under the null hypotheses,
andbs is a consistent estimator under the alternative
hypothesis. In fact,bs is an instrumental variable
estimator since

bs = (X ′
sXs)−1X ′

sys

= (X ′W (W ′W )−1W ′X)−1(X ′W (W ′W )−1W ′y)

where the instruments are the selection matrix so that

W ′X = Xs.

Then,

V (bs)− V (bf )

= σ2{(X ′
sXs)−1 − (X ′X)−1}

is positive definite. Moment condition is not satisfied
by this instruments sincelimN−→∞W ′W/N = 0.

The asymptotic distribution ofWH is χ2 with K
degrees of freedom. This follows since, under the null
hypothesis,

V ar{√n(bs − bf )}
= σ2{( 1

n
X ′

sXs)−1 − n

N
(

1
N

X ′X)−1}

and if the assumption(4) holds,

lim
N−→∞

V ar{√n(bs − bf )}

= σ2( lim
n−→∞

1
n

X ′
sXs)−1

which is not degenerated. Note thatV (bf )
does not affect the asymptotic distribution, and
limN−→∞ V ar{√N(bs − bf )} diverges to infinity.
Furthermore, by the same reason,
√

n(bs − bf ) =
√

n(bs − β0)−
√

n(bf − β0)

=
√

n(bs − β0)−
√

n√
N

√
N(bf − β0)

=
√

n(bs − β0) + op(1),

then

WH = (bs − β0)′V (bs)−1(bs − β0) + op(1).

Under the alternative hypothesis,

p lim
N→∞

(bs − bf ) = p lim
N→∞

{(bs − β0)− (bf − β0)}

= p lim
N→∞

m∑

k=1

(X ′X)−1X ′
kXkβk

which is of O(1), and the consistency of the test is
obvious.

Since this test depends on the selection of a sub-
sample, sub-samples of the same size are chosen
randomly and repeatedly forNs times. TheseNs test
statistics are dependent on each other. For example,
two test statistics are

WH1 = (bf − bs1)′(V (bs1)− V (bf ))−1(bf − bs1),
(8)

and

WH2 = (bf − bs2)′(V (bs2)− V (bf ))−1(bf − bs2),
(9)

bf is commonly used, and the two sub-samplesS1 and
S2 may share common observations.

 

bf 

bs1 
bs2 

Figure 2: Two Sub-samples 

5 BOOTSTRAP TEST

The same hypotheses can be tested by the bootstrap
method. Given a sub-sample, we estimate coefficient
and the variance-covariance matrix by bootstrapping.
Let B is the number of repetition in bootstrapping,
then the coefficient is estimated by the sample mean

bs =
1
B

B∑

i=1

bsi,
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and the variance covariance matrix is estimated by the
sample moment

V (bs) =
1

B − 1

B∑

i=1

(bsi − bs)(bsi − bs)′,

and the full sample estimatorsbf and V (bf ) are
calculated by the same way.

The hypothesis(1) can be tested for a particular sub-
sample. However, if the test uses only one sub-
sample, it will depend on a selected sub-sample and
will be biased. To avoid the bias of the test, we
randomly choose sub-samples from the full sample
repeatedly forNs times. The test is repeated forNs
times.

Since the test statistic is asymptotically distributed
as χ2 with K degrees of freedom, the empirical
distribution of the test statistic is compared with
the theoretical distribution. A simple method is to
compare the real size of 5% test with the nominal
size. If the empirical distribution rejects more than
the nominal size, the null hypothesis of common
coefficient is rejected.

6 BOOTSTRAP TEST OF INDEPENDENT
SUB-SAMPLES

The bootstrap test explained so far uses dependent
sub-samples. It is also possible to apply the same test
statistic but using the non-overlapping sub-samples
in the full sample. This method limits the number
of sub-samples to N/n, and the computation is much
faster. However, the computation can take long if
the N/n sub-samples is repeatedly chosen. It is of
interest to compare the dependent sub-sample and the
independent sub-sample tests.
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Figure : Independent Sub-samples 

7 NULL DISTRIBUTION OF THE TEST

The null distribution is calculated for some cases by
simulations. Dependency among the test statistics is

of small order of magnitudeo(( n
N )2), but it may affect

the distributions of the test statistic. They depend on
the following parameters.

1. Test statistics. (The WH test(7) or the WH test
which uses bootstrapping estimations.)

2. Sample size N.

3. Sub-sample size n.

4. The number of coefficients K.

We have calculated the real size of 5% test under the
null hypothesis of the test. The error term distribution
is a normal distribution with unknown variances. The
5 percentiles of theχ2 distribution with K degrees
of freedom are used as the critical values. The table
1 tabulates real sizes of the WH test which uses the
least square estimates of coefficients and variance
covariance matrices. It may be found that the real size
are very close to the nominal size.

Table 1: Real Size of 5% WH Tests

n K=5 K=10 K=15

1000 7 6 6

1500 5 6 6

2000 5 4 6

2500 5 5 6

3000 6 5 7

4000 6 5 3

5000 5 6 6

6000 5 4 7

7000 5 4 6

8000 6 5 5

10000 6 4 6

The upper  5% point of Chi-square

(K)  is used as a critical value.

 (N=30000, Ns=800)

Histogram of WH test statistic is plotted for the
case where N=30000, n=3000, K=15, B=200, and
Ns=800. This empirical distribution is tested against
the asymptotic null distributionχ2(15). The null
distribution was not rejected by Kolmogorov,Cramer-
Von Mises, Watson, and Anderson-Darling tests. This
result is natural since this simulation on the WH
test statistic is almost the same as the simulation of
χ2 random variables. The difference is only in the
estimation of variances of the error term.
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In the table 2, real sizes of the bootstrapping WH
test statistic are tabulated. Real size is mostly larger
than 5%, and the dependency among the test statistics
is not negligible when the sub-sample size is 8000
and 10000. The bootstrapping WH test has a thicker
tail than the WH test statistic, andχ2(16.8) as a
null distribution cannot be rejected by the Cramer-
Von Mises, Watson, and Anderson-Darling tests. This
degrees of freedom is estimated by the method of
maximum likelihood.

It may be more convenient to use the WH test than the
bootstrapping WH test since the former does not need
repeated calculations of bootstrapping. However, the
null distribution of the WH test may heavily depend
on the normal random variables.

Table 2: Real Size of 5% BWH Tests

n K=5 K=10 K=15

1000 8 9 11

1500 7 7 11

2000 6 8 12

2500 7 8 11

3000 7 9 11

4000 7 9 10

5000 7 9 13

6000 7 9 14

7000 9 9 17

8000 8 11 18

10000 10 15 26

The upper  5% point of Chi-square

(K)  is used as a critical value.

 (N=30000, Ns=800,B=200)

By examining the Tables 1 and 2, a proper sub-sample
size in this test may be about ten percent or smaller of
the full sample size. It will be found that it should
not be too small since the bootstrapping method is
degenerated.

8 EXAMPLE

We used the pair bootstrapping in our study since
specification of the regression equation is in question
in the test. Data is taken from Olsen (1998), and
this example uses the probit estimation, not the linear
regression, of a large sample. N=22272, K=19, and
Nine independent variables are dummies. The ninth
dummy is excluded in our study since it takes one only
for 1241 individual among 22272, the ratio of which
is 0.056. This dummy variable took only zero in sub-
sample bootstrapping estimations a few times which
terminated simulations.

The sub-sample size (n) is arbitrary. In this study,
n is chosen to be from 1,000 to 10,000 which are
from 5% to 50% of the full sample. Sub-samples, are
randomly chosen. The number of sub-samples is 800
in the Wu-Hausman test. Since critical values of the
WH test statistic are not calculated, the real size of
the 5%χ2 test are tabulated. (The second column
in the Table 3. The critical value is 28.87 when
the degrees of freedom is 18.) These real sizes are
compared with the real sizes of the test statistics under
the null hypothesis. (The third column in the Table 3.
The critical value is 28.87, again.) Since the real sizes
of the test statistics are mostly smaller than the real
sizes of the null distribution, the null hypothesis may
not be rejected. This data set is homogenous.

Table 3: 5% WH TEST

n WH null size

1,000 4.3 6

1,500 4.4 6

2,000 5.4 6

2,500 5.4 6

3,000 5.3 7

4,000 5.3 6

5,000 6.9 7

6,000 5.0 6

7,000 6.0 5

8,000 5.6 6

10,000 4.6 6

(N=22272, K=18 for each 

sub-sample. Ns is 800)

The bootstrapping WH test is also calculated and
tabulated. The second column is the real sizes of the
bootstrapping WH test statistics.(The critical value is
28.87.) The third column tabulates the real size of
the test statistic under the null hypothesis. In this
calculations, Ns and B are take to be 100 and 500,
respectively, which turned out to be too small and too
many, respectively. This means that the real sizes
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of the test statistics are effected by the selection of
100 randomly chosen sub-samples, but they are stable
even if the number of bootstrapping is reduced. On
the whole, it seems this test does not reject the null
hypothesis, either. The real sizes in the second column
are smaller than those in the third column. It is noted
that the second column shows dependency among test
statistics as well as the third column when the sub-
sample size is greater than 7000 which is one third of
the full sample size. Compared with the Table 3, both
the second and the third columns take larger values in
the Table 4.

Table 4: 5% BWH TEST

n real size null size

1,000 3.8 11

1,500 4 11

2,000 8.5 12

2,500 8 11

3,000 9.4 11

4,000 8.6 10

5,000 7 13

6,000 8 14

7,000 11.3 17

8,000 13.5 18

10,000 22 26

(N=22272, K=18,B=500 for

each sub-sample. Ns is 100*4)

The table 5 uses independent sub-samples. The first
sub-sample is chosen randomly, and the second sub-
sample is chosen randomly from the rest of the full
sample. This continues until the rest of the full
sample is smaller than n. Calculation is fast. In
this calculation, the BWH test statistic takes more
significant values than the table 4 shows, particularly
when n is 2500 and 3000. It is necessary to repeat
the calculation with different starting sub-samples,
and the total task of calculation may not be anything
faster than the dependent sub-sample test. The null
distribution need to be calculated by the same way.
However, the dependency among the test statistics
will be avoided.

9 CONCLUSION

It was aimed to test the homogeneity of a census
type large sample by the Wu-Hausman test statistic.
This test statistic includes two sets of estimators as
components. One is the full sample estimator usually
used in empirical studies, and the other is a sub-
sample estimator which uses only a part of the full
sample. Naturally, the test is effected by the selection

of a sub-sample. We randomly choose the sub-
samples, repeatedly calculate the test statistic, and
examine the distribution of its values. It is necessary
to study further properties of the test. 1. More
precise null distributions are needed to derive the null
percentile of the test statistic. 2. The power of the
test must be examined. It is noted that the WH test
is inconsistent under the usual specification of the
alternative hypothesis(2) . 3. The independent sub-
sample and the overlapping sub-sample tests must
be compared with each other from the view point
of the null distribution and also of the power of
the test. Most importantly, we need to develop a
method to partition the full sample when the null
hypothesis of a homogenous sample is rejected by
the test. It seems too time consuming to measure
distances among subjects in the sample.
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