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EXTENDED ABSTRACT 

An accurate estimation of roughness coefficients 
is of vital importance in any open channel flow 
study. In flood routing in natural rivers, most 
channels have compound sections and the 
roughness values in main channel and flood 
plains are usually different. In order to have more 
accurate results, the roughness of main channel 
and flood plains should be considered separately. 
It is possible to identify the values of roughness 
using optimisation methods. However, studies on 
the inverse problem of estimating roughness 
values in compound channels are still limited.  

In this study, some sets of synthetic data to work 
on the problem of identification of roughness 
values in a compound channel have been used. 
The writers adopt the implicit finite difference 
four-point box scheme to solve the Saint-Venant 
equations. The compound channel is treated as a 
divided channel section in which for any depth 
the conveyance of the compound section is then 
the sum of the main channel and floodplain 
conveyances. The algebraic equation system is 
linearised and solved by using the double sweep 
algorithm.  The objective function of least square 
errors between observed and simulated 
discharge/stage is chosen for this inverse problem 
and solved by the Powell algorithm. The 
roughness values in compound channels are 
formulated as two quadratic polynomial functions 
of stage, one for main channel (nc) and the other 
for flood plains (nf). The performance of the 
model is evaluated for both cases when observed 
data are with and without noise. The computed 
results indicate that when observed data contain 
no noise the model can obtain very good results, 
especially for the main channel roughness. 
However, when the data contain noise although 
the computed main channel roughnesses are still 
very good there are some more biases of the 
computed floodplain roughness from the true 
value (see Figure 1).   
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Figure 1. The true roughness and computed 
roughness versus depth when data contained noise 
(5 noisy data samples) 

In the case when the cross-sections along the 
reach do not change much, an alternative 
approach using conveyance K is then tested. For 
this case the conveyance is presented as a cubic 
function of depth. Figure 2 shows the true 
conveyance which is calculated from the true 
roughness functions and the computed 
conveyance functions for both cases when 
observed data are with and without noise. From 
the figure it can be seen that there is a good 
agreement between the computed conveyance and 
the true one even when the data contain noise. 
The results indicate that using the conveyance 
function can give appropriate results and can 
reduce the number of variables. Solution results 
for illustrative problems indicate the potential 
applicability of the model for natural rivers.  
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Figure 2. The true conveyance and computed 
conveyances versus depth when data with and 
without noise 
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1. INTRODUCTION 

Flood routing in open channels is of vital 
importance to river engineers and managers. The 
basic equations can be derived from the principles 
of conservation of mass and momentum. The 
resulting equations are hyperbolic, non-linear 
differential equations known as the Saint-Venant 
equations. The channel roughness coefficients 
(Manning’s n) as embedded in the momentum 
equation cannot be measured directly and 
therefore need to be estimated. As an empirical 
parameter, the estimation of this coefficient for a 
natural channel is not a trivial task as it depends 
on several factors, including surface roughness 
characteristics, vegetation, channel irregularity, 
bedform and flow conditions etc. (Chow 1959; 
Rouse 1965; Coon 1998) and the exact values are 
often uncertain.    

In unsteady open channel flow modelling, direct 
or explicit parameter determination using 
empirical methods such as Chow (1959) and 
Urquhart (1975) is not adequate.  Therefore, the 
values of roughness parameters are often 
estimated through a trial-and-error procedure 
based on visual comparison of simulated and 
observed values. This approach suffers from 
subjectivity, and is tedious and time-consuming. 
To overcome this problem automatic optimisation 
methods may be applied to identify the roughness 
values by minimizing a chosen objective function. 
Becker and Yeh (1972, 1973) used the influence 
coefficient approach by minimising the sum of 
squares of differences between observed data and 
numerically simulated values to estimate the 
parameters. Wiggert et al. (1976) employed a 
conjugate gradient method and formulated the 
objective function by using the sum of the 
absolute difference between observed and 
simulated stages and discharges at intermediate 
sections. Fread and Smith (1978) used a modified 
Newton-Raphson search technique for estimating 
the roughness parameter as a function of stage 
and discharge. They minimized the sum of the 
absolute value of the difference between observed 
and computed stages and discharges. Their 
method required breaking down the river into a 
number of single channel reaches before 
calibrating each reach separately. Wormleaton 
and Karmegam (1984) formulated the objective 
function in terms of relative errors using both 
depth and discharge values and identified the 
parameters with the influence coefficient 
algorithm and also a nonlinear least-square 
technique. Khatibi et al. (1997) used a nonlinear 
least square technique with three types of 
objective function by a modified Gauss-Newton 
method. They investigated the statistical 

behaviour of the errors induced in the identified 
parameter in response to Gaussian noise as 
normally contained in the observed data.  Atanov 
et al. (1999) introduced a variational approach of 
Lagrangian multipliers using a least square errors 
criterion to estimate roughness coefficients. 
However, the algorithm can be applied only to 
simple prismatic channels. The Sequential 
Quadratic Programming Algorithm was used by 
Ramesh et al. (2000) to minimize the objective 
function based on the least square error criterion. 
Recently, a Limited-memory quasi-Newton 
method was used by Ding et al. (2004) to identify 
Manning’s n in shallow water flows and applied 
to the East Fork River.  

At present, studies on the roughness identification 
problem are still sparse and the above studies 
have just considered roughness parameters in the 
in-bank channel. However, in flood routing in 
natural rivers, most channels have compound 
sections and the roughness values in main channel 
and flood plains are usually different. As 
indicated by Wormleaton and Karmegam (1984) 
this problem needs to extend to over-bank flow 
where flood plain roughness will obviously have 
to be considered. Some problems identified 
roughness in compound channels where the 
roughness in main channel and flood plains are 
constants, as done  by Nguyen and Fenton (2004), 
however in some natural channels the roughness 
varies considerably with stage or discharge, hence 
the constant values of roughness may not be 
adequate to represent the roughness in these 
channels. 

Therefore, in this study, the roughness 
identification problem has been extended for 
compound channels where the roughness values 
are formulated as two separate polynomial 
functions of stage, one for main channel and the 
other for flood plains. Moreover, in cases when 
the cross-sections along the reach do not change 
much, the more practical concept of conveyance 
K is tested.  

2. METHODOLOGY 

2.1. Governing Equations 

The unsteady one-dimensional open-channel 
equations can be derived from the principles of 
conservation of mass and momentum resulting in 
equations known as the Saint-Venant equations: 
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where A is the wetted cross-sectional area; Q is 
the discharge; Z is the water stage or surface 
water elevation; q is the lateral inflow per unit 
length of channel; B is the channel width at the 
surface water; β  is the momentum correction 
factor; g is the acceleration of gravity; 0S  is the 
channel bed slope; Sf is the friction slope; uq is the 
x direction velocity component of the lateral 
inflow; x and t are space and time variables 
respectively. 

The friction slope Sf is given by Manning’s 
equation. For compound channels, the critical 
assumption is that friction slope is constant in 
main channel and floodplains. The conveyance is 
computed using divided section method in which 
for any depth the conveyance of the compound 
section is the sum of the main channel and 
floodplain conveyances. Then: 
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where Qc, Qf and Q are the discharge of main 
channel and flood plains and  the total discharge 
of the section,  Kc and Kf are the conveyances of 
main channel and floodplains and which are 
determined as follows: 
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where iK , iA , iR  and in  are conveyance, area, 
hydraulic radius and Manning’s roughness 
coefficient of sub-cross-section i respectively.                        

In this study, the Saint-Venant equations are 
solved by the implicit finite difference 
Preissmann box scheme. The algebraic equation 
system is linearised and solved by using the 
double sweep algorithm (Liggett and Cunge 1975, 
Cunge et al. 1980). 

2.2. Roughness Identification Procedure 

The capability for the identification of the 
roughness coefficient of the model river is based 
on minimising a chosen objective function. The 
procedure starts with initial estimated parameters 

and performs a completed simulation run. The 
objective functions are evaluated by comparing 
the observed data against the simulated ones by 
the model. If the value of the function is above 
the prescribed tolerance value, the process is 
continued iteratively through computing a 
correction to the parameters by using an 
optimisation. In this study Powell’s optimisation 
algorithm (Press et al. 1992, p. 409) is applied. 
The advantage of using this algorithm is that it 
does not need to calculate the derivatives of the 
objective function. Also, the upper and lower 
constraints are introduced to restrict the 
coefficients to physically realistic values. 

The selection of objective functions is one of the 
factors affecting the quality of identification 
problem. Nguyen and Fenton (2004) investigated 
the effect of three main types of objective 
function and showed that least square objective 
function had the best performance. Khabiti et al. 
(1997) indicated that the selection of objective 
function was found to be prone to undue biases 
affecting the identified parameters, which could 
be avoided through a careful consideration of the 
problem. They considered the sum of square of 
errors using absolute errors and relative errors 
with respect to observed values and relative errors 
with respect to simulated values. They concluded 
that the formulation of the objective function 
using relative errors seems to induce an undue 
bias that increase with increasing noise level. 
Therefore, in this study the objective function 
sum of square of absolute errors between 
observed and simulated stages/discharges is 
considered as follows:   
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where the subscripts i, j  correspond respectively 
to the values at different times and locations, M is 
number of observation times, N is number of 
observation stations, OY  is observed discharge or 
stages, SY  is simulated discharge or stage.  

In this study, the roughness coefficients of the 
main channel and flood plains are formulated as 
second order polynomial functions of water stage 
as follows.  For main channel roughness: 

          2
02010 )()( ZZaZZaanc −+−+=      (6) 

For main floodplains roughness: 

         2
210 )()( fff ZZbZZbbn −+−+=       (7) 
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where: nc and nf are roughness coefficients of 
main channel and floodplains respectively, Z is 
the water stage, Z0 is the minimum water level at 
a certain cross section at which the cross section 
characteristics are initially tabulated in the input 
data, Zf is elevation of floodplains, and a0, a1, a2, 
b0, b1 and b2 are coefficients of the roughness 
functions that need to be identified.  

Moreover, an alternative approach for the case 
where the cross-sections along the reach are not 
changed much, the more practical concept of 
conveyance K is used. Several types of 
conveyance functions were tested and a cubic 
function of depth was found to be an appropriate 
function to present for K of a compound channel: 
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where Zb is the bed elevation, and K1, K2 and K3 
are coefficients of conveyance function that need 
to be identified.  

3. SYNTHETIC DATA 

The model for identification of roughness 
coefficients n was tested using synthetic data in a 
compound channel where the roughness functions 
are defined. Because in the field the true value of 
roughness is not known, the advantage of using 
synthetic data is that it is possible to make 
comparisons between the estimated n with the 
true n. This can provide the abilities to evaluate 
the performance of the model. 

The observed gauge station was located at 
intermediate section of the channel. The 
observation data for these cases were simulated 
by solving governing Equations (1) and (2) with 
the true values n. Identical initial and boundary 
conditions were applied while obtaining the 
simulated observation data and while solving the 
optimisation models.  

A model channel has a length of 40 km with slope 
of 0.0004. The geometry of the compound cross 
section is illustrated in Figure 3. The side slopes 
of the cross section for both main channel and 
flood plain are 1.5. The downstream boundary 
condition is the stage hydrograph at 40 km point 
of a 80 km long channel. The downstream 
boundary condition for the 80 km channel, which 
has the same channel properties and upstream 
boundary condition as the 40 km channel, is a 
steady uniform rating function. The upstream 
boundary condition is the synthetic hydrograph 
generated by: 
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where bQ is initial discharge, Qp is peak discharge 
and tp is time to peak, β is a constant. In this 
case 200=bQ m3/s, 1500=pQ m3/s, 4=pt hours 
and 5=β . 

 

 

 

 

Figure 3. The cross section of the compound 
channel 

The true roughness function of main channel (nc) 
and flood plains (nf) were presented as function of 
stage as follows: 

For main channel roughness: 

2)(0001.0)(0015.0032.0 fff ZZZZn −−−+=       
(10) 

For main floodplains roughness: 

2)(001.0)(002.0043.0 fff ZZZZn −−−+=      
(11) 

In practice, flow measurement data usually 
contain observation errors/noise. Also, in 
mathematical modelling the other error sources 
are “model errors” and “numerical errors”. 
“Model errors” are associated with imperfections 
of the governing equation and some restricted 
assumptions to simplify the physical processes. 
“Numerical errors” include rounded errors, 
truncation errors related to the finite different 
methods.   These random errors are generally 
thought to be normally distributed (Khabiti et al. 
(1997)). In this study, the noise was introduced 
into the simulated observed discharges or depths 
(noise free) oY  as follows: 

                            oo
n

o YYY ε+=                      (12) 

where n
oY is the simulated observed data with 

noise level σ , ),( σμ=ε N  is a random error term 
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sampled from a normal distribution of zero mean 
and standard deviation of σ .  

4.     RESULTS AND DISCUSSION 

The identification procedure starts with initial 
assumed coefficients in Equations (6) and (7). 
The results indicate that when there is no noise 
contained in the observed data, the model can 
identify properly the roughness functions. 
Although the computed coefficients are different 
from the coefficients of the true roughness 
functions (Equations (10) and (11)) the computed 
roughness curves are very close to the true ones 
especially for the main channel roughness, as 
illustrated in Figure 4. There is some deviation of 
the flood plain values, and this may be attributed 
to the compensation of conveyance between main 
channel and floodplains because when the water 
level is greater than bank-full level at a cross 
section there are two important roughness values 
that can offset each other.  
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Figure 4. The true roughness and computed 
roughness versus depth when data contain no 
noise 

To consider the case when data contain noise, 5 
samples noise of 0.05σ =  were generated from 
different seeding random numbers. Figure 5 
shows the true roughness and computed 
roughness n1, n2, n3, n4 and n5 with five noisy 
observed data sets respectively. Although the 
main channel roughness can be identified rather 
accurately (the maximum deviation from the true 
one is less than 8%) the floodplain roughness 
values are biased from the true ones. The 
computed results also indicate that there is some 
compensation of floodplain roughness because of 
some small deviation of main channel roughness. 
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Figure 5. The true roughness and computed 
roughness versus depth when data contained noise 
(5 noisy data samples) 

An alternative approach using conveyance K was 
then tested, where instead of identifying the 
coefficients of roughness functions, the 
coefficients of the conveyance function (Equation 
(8)) were identified. The advantage of using 
conveyance function is that it can reduce the 
number of unknown coefficients and therefore it 
can reduce computation time. 

Figure 6 shows the true conveyance which is 
calculated from the true roughness functions 
(Equations (10) and (11)) of the given channel 
above and the computed conveyance functions for 
both cases when observed data are with and 
without noise. From the figure it can be seen that 
there is a good agreement between the computed 
conveyance and the true one even when data 
contain noise. 
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Figure 6. The true conveyance and computed 
conveyances versus depth when data with and 
without noise 

Figure 7 shows the observed hydrographs (using 
true roughness functions), the computed 
hydrographs using computed roughness functions 
and computed conveyance function at 10 km from 
the downstream end of the reach. From the figure 
it can be seen that the hydrographs using the 
computed roughness functions are closer to the 
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observed hydrographs than the other. Although 
the simulated hydrograph obtained by using the 
conveyance function approach is not as accurate 
as using roughness functions for practical 
purposes it is still acceptable.  
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Figure 7. Observed hydrographs computed from 
the true roughness function and simulated 
hydrographs computed from the computed 
roughness functions and computed conveyance 
function 

5.     CONCLUSIONS 

In this study, the inverse problem of estimating 
roughness values has been studied for compound 
channels by using synthetic data. The true values 
of roughness in the channel were presented as two 
quadratic polynomial functions, one for the main 
channel and the other for the flood plain.  The 
performance of the model was evaluated for both 
cases when observed data were with and without 
noise. The computed results indicate that the 
model can identify properly the value of 
roughness in the main channel even when 
observed data contain noise. However, there are 
some biases of the computed floodplain 
roughness from the true one. An alternative 
approach using conveyance K was tested. The 
results indicate that for prismatic channels using 
the conveyance function can give appropriate 
results and can reduce the number of variables. 

Solution results for illustrative problems indicate 
the potential applicability of the model for the 
natural rivers.  
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